/** @file CPUID leaf definitions. Provides defines for CPUID leaf indexes. Data structures are provided for registers returned by a CPUID leaf that contain one or more bit fields. If a register returned is a single 32-bit value, then a data structure is not provided for that register. Copyright (c) 2015 - 2016, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. @par Specification Reference: Intel(R) 64 and IA-32 Architectures Software Developer's Manual, Volume 2A, September 2016, CPUID instruction. **/ #ifndef __CPUID_H__ #define __CPUID_H__ /** CPUID Signature Information @param EAX CPUID_SIGNATURE (0x00) @retval EAX Returns the highest value the CPUID instruction recognizes for returning basic processor information. The value is returned is processor specific. @retval EBX First 4 characters of a vendor identification string. @retval ECX Last 4 characters of a vendor identification string. @retval EDX Middle 4 characters of a vendor identification string. Example usage @code UINT32 Eax; UINT32 Ebx; UINT32 Ecx; UINT32 Edx; AsmCpuid (CPUID_SIGNATURE, &Eax, &Ebx, &Ecx, &Edx); @endcode **/ #define CPUID_SIGNATURE 0x00 /// /// @{ CPUID signature values returned by Intel processors /// #define CPUID_SIGNATURE_GENUINE_INTEL_EBX SIGNATURE_32 ('G', 'e', 'n', 'u') #define CPUID_SIGNATURE_GENUINE_INTEL_EDX SIGNATURE_32 ('i', 'n', 'e', 'I') #define CPUID_SIGNATURE_GENUINE_INTEL_ECX SIGNATURE_32 ('n', 't', 'e', 'l') /// /// @} /// /** CPUID Version Information @param EAX CPUID_VERSION_INFO (0x01) @retval EAX Returns Model, Family, Stepping Information described by the type CPUID_VERSION_INFO_EAX. @retval EBX Returns Brand, Cache Line Size, and Initial APIC ID described by the type CPUID_VERSION_INFO_EBX. @retval ECX CPU Feature Information described by the type CPUID_VERSION_INFO_ECX. @retval EDX CPU Feature Information described by the type CPUID_VERSION_INFO_EDX. Example usage @code CPUID_VERSION_INFO_EAX Eax; CPUID_VERSION_INFO_EBX Ebx; CPUID_VERSION_INFO_ECX Ecx; CPUID_VERSION_INFO_EDX Edx; AsmCpuid (CPUID_VERSION_INFO, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32); @endcode **/ #define CPUID_VERSION_INFO 0x01 /** CPUID Version Information returned in EAX for CPUID leaf #CPUID_VERSION_INFO. **/ typedef union { /// /// Individual bit fields /// struct { UINT32 SteppingId:4; ///< [Bits 3:0] Stepping ID UINT32 Model:4; ///< [Bits 7:4] Model UINT32 FamilyId:4; ///< [Bits 11:8] Family UINT32 ProcessorType:2; ///< [Bits 13:12] Processor Type UINT32 Reserved1:2; ///< [Bits 15:14] Reserved UINT32 ExtendedModelId:4; ///< [Bits 19:16] Extended Model ID UINT32 ExtendedFamilyId:8; ///< [Bits 27:20] Extended Family ID UINT32 Reserved2:4; ///< Reserved } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_VERSION_INFO_EAX; /// /// @{ Define value for bit field CPUID_VERSION_INFO_EAX.ProcessorType /// #define CPUID_VERSION_INFO_EAX_PROCESSOR_TYPE_ORIGINAL_OEM_PROCESSOR 0x00 #define CPUID_VERSION_INFO_EAX_PROCESSOR_TYPE_INTEL_OVERDRIVE_PROCESSOR 0x01 #define CPUID_VERSION_INFO_EAX_PROCESSOR_TYPE_DUAL_PROCESSOR 0x02 /// /// @} /// /** CPUID Version Information returned in EBX for CPUID leaf #CPUID_VERSION_INFO. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 7:0] Provides an entry into a brand string table that contains /// brand strings for IA-32 processors. /// UINT32 BrandIndex:8; /// /// [Bits 15:8] Indicates the size of the cache line flushed by the CLFLUSH /// and CLFLUSHOPT instructions in 8-byte increments. This field was /// introduced in the Pentium 4 processor. /// UINT32 CacheLineSize:8; /// /// [Bits 23:16] Maximum number of addressable IDs for logical processors /// in this physical package. /// /// @note /// The nearest power-of-2 integer that is not smaller than EBX[23:16] is /// the number of unique initial APICIDs reserved for addressing different /// logical processors in a physical package. This field is only valid if /// CPUID.1.EDX.HTT[bit 28]= 1. /// UINT32 MaximumAddressableIdsForLogicalProcessors:8; /// /// [Bits 31:24] The 8-bit ID that is assigned to the local APIC on the /// processor during power up. This field was introduced in the Pentium 4 /// processor. /// UINT32 InitialLocalApicId:8; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_VERSION_INFO_EBX; /** CPUID Version Information returned in ECX for CPUID leaf #CPUID_VERSION_INFO. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the /// processor supports this technology /// UINT32 SSE3:1; /// /// [Bit 1] A value of 1 indicates the processor supports the PCLMULQDQ /// instruction. Carryless Multiplication /// UINT32 PCLMULQDQ:1; /// /// [Bit 2] 64-bit DS Area. A value of 1 indicates the processor supports /// DS area using 64-bit layout. /// UINT32 DTES64:1; /// /// [Bit 3] MONITOR/MWAIT. A value of 1 indicates the processor supports /// this feature. /// UINT32 MONITOR:1; /// /// [Bit 4] CPL Qualified Debug Store. A value of 1 indicates the processor /// supports the extensions to the Debug Store feature to allow for branch /// message storage qualified by CPL /// UINT32 DS_CPL:1; /// /// [Bit 5] Virtual Machine Extensions. A value of 1 indicates that the /// processor supports this technology. /// UINT32 VMX:1; /// /// [Bit 6] Safer Mode Extensions. A value of 1 indicates that the processor /// supports this technology /// UINT32 SMX:1; /// /// [Bit 7] Enhanced Intel SpeedStep(R) technology. A value of 1 indicates /// that the processor supports this technology /// UINT32 EIST:1; /// /// [Bit 8] Thermal Monitor 2. A value of 1 indicates whether the processor /// supports this technology /// UINT32 TM2:1; /// /// [Bit 9] A value of 1 indicates the presence of the Supplemental Streaming /// SIMD Extensions 3 (SSSE3). A value of 0 indicates the instruction /// extensions are not present in the processor. /// UINT32 SSSE3:1; /// /// [Bit 10] L1 Context ID. A value of 1 indicates the L1 data cache mode /// can be set to either adaptive mode or shared mode. A value of 0 indicates /// this feature is not supported. See definition of the IA32_MISC_ENABLE MSR /// Bit 24 (L1 Data Cache Context Mode) for details /// UINT32 CNXT_ID:1; /// /// [Bit 11] A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE /// MSR for silicon debug /// UINT32 SDBG:1; /// /// [Bit 12] A value of 1 indicates the processor supports FMA (Fused Multiple /// Add) extensions using YMM state. /// UINT32 FMA:1; /// /// [Bit 13] CMPXCHG16B Available. A value of 1 indicates that the feature /// is available. /// UINT32 CMPXCHG16B:1; /// /// [Bit 14] xTPR Update Control. A value of 1 indicates that the processor /// supports changing IA32_MISC_ENABLE[Bit 23]. /// UINT32 xTPR_Update_Control:1; /// /// [Bit 15] Perfmon and Debug Capability: A value of 1 indicates the /// processor supports the performance and debug feature indication MSR /// IA32_PERF_CAPABILITIES. /// UINT32 PDCM:1; UINT32 Reserved:1; /// /// [Bit 17] Process-context identifiers. A value of 1 indicates that the /// processor supports PCIDs and that software may set CR4.PCIDE to 1. /// UINT32 PCID:1; /// /// [Bit 18] A value of 1 indicates the processor supports the ability to /// prefetch data from a memory mapped device. Direct Cache Access. /// UINT32 DCA:1; /// /// [Bit 19] A value of 1 indicates that the processor supports SSE4.1. /// UINT32 SSE4_1:1; /// /// [Bit 20] A value of 1 indicates that the processor supports SSE4.2. /// UINT32 SSE4_2:1; /// /// [Bit 21] A value of 1 indicates that the processor supports x2APIC /// feature. /// UINT32 x2APIC:1; /// /// [Bit 22] A value of 1 indicates that the processor supports MOVBE /// instruction. /// UINT32 MOVBE:1; /// /// [Bit 23] A value of 1 indicates that the processor supports the POPCNT /// instruction. /// UINT32 POPCNT:1; /// /// [Bit 24] A value of 1 indicates that the processor's local APIC timer /// supports one-shot operation using a TSC deadline value. /// UINT32 TSC_Deadline:1; /// /// [Bit 25] A value of 1 indicates that the processor supports the AESNI /// instruction extensions. /// UINT32 AESNI:1; /// /// [Bit 26] A value of 1 indicates that the processor supports the /// XSAVE/XRSTOR processor extended states feature, the XSETBV/XGETBV /// instructions, and XCR0. /// UINT32 XSAVE:1; /// /// [Bit 27] A value of 1 indicates that the OS has set CR4.OSXSAVE[Bit 18] /// to enable XSETBV/XGETBV instructions to access XCR0 and to support /// processor extended state management using XSAVE/XRSTOR. /// UINT32 OSXSAVE:1; /// /// [Bit 28] A value of 1 indicates the processor supports the AVX instruction /// extensions. /// UINT32 AVX:1; /// /// [Bit 29] A value of 1 indicates that processor supports 16-bit /// floating-point conversion instructions. /// UINT32 F16C:1; /// /// [Bit 30] A value of 1 indicates that processor supports RDRAND instruction. /// UINT32 RDRAND:1; /// /// [Bit 31] Always returns 0. /// UINT32 NotUsed:1; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_VERSION_INFO_ECX; /** CPUID Version Information returned in EDX for CPUID leaf #CPUID_VERSION_INFO. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] Floating Point Unit On-Chip. The processor contains an x87 FPU. /// UINT32 FPU:1; /// /// [Bit 1] Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, /// including CR4.VME for controlling the feature, CR4.PVI for protected /// mode virtual interrupts, software interrupt indirection, expansion of /// the TSS with the software indirection bitmap, and EFLAGS.VIF and /// EFLAGS.VIP flags. /// UINT32 VME:1; /// /// [Bit 2] Debugging Extensions. Support for I/O breakpoints, including /// CR4.DE for controlling the feature, and optional trapping of accesses to /// DR4 and DR5. /// UINT32 DE:1; /// /// [Bit 3] Page Size Extension. Large pages of size 4 MByte are supported, /// including CR4.PSE for controlling the feature, the defined dirty bit in /// PDE (Page Directory Entries), optional reserved bit trapping in CR3, /// PDEs, and PTEs. /// UINT32 PSE:1; /// /// [Bit 4] Time Stamp Counter. The RDTSC instruction is supported, /// including CR4.TSD for controlling privilege. /// UINT32 TSC:1; /// /// [Bit 5] Model Specific Registers RDMSR and WRMSR Instructions. The /// RDMSR and WRMSR instructions are supported. Some of the MSRs are /// implementation dependent. /// UINT32 MSR:1; /// /// [Bit 6] Physical Address Extension. Physical addresses greater than 32 /// bits are supported: extended page table entry formats, an extra level in /// the page translation tables is defined, 2-MByte pages are supported /// instead of 4 Mbyte pages if PAE bit is 1. /// UINT32 PAE:1; /// /// [Bit 7] Machine Check Exception. Exception 18 is defined for Machine /// Checks, including CR4.MCE for controlling the feature. This feature does /// not define the model-specific implementations of machine-check error /// logging, reporting, and processor shutdowns. Machine Check exception /// handlers may have to depend on processor version to do model specific /// processing of the exception, or test for the presence of the Machine /// Check feature. /// UINT32 MCE:1; /// /// [Bit 8] CMPXCHG8B Instruction. The compare-and-exchange 8 bytes(64 bits) /// instruction is supported (implicitly locked and atomic). /// UINT32 CX8:1; /// /// [Bit 9] APIC On-Chip. The processor contains an Advanced Programmable /// Interrupt Controller (APIC), responding to memory mapped commands in the /// physical address range FFFE0000H to FFFE0FFFH (by default - some /// processors permit the APIC to be relocated). /// UINT32 APIC:1; UINT32 Reserved1:1; /// /// [Bit 11] SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT /// and associated MSRs are supported. /// UINT32 SEP:1; /// /// [Bit 12] Memory Type Range Registers. MTRRs are supported. The MTRRcap /// MSR contains feature bits that describe what memory types are supported, /// how many variable MTRRs are supported, and whether fixed MTRRs are /// supported. /// UINT32 MTRR:1; /// /// [Bit 13] Page Global Bit. The global bit is supported in paging-structure /// entries that map a page, indicating TLB entries that are common to /// different processes and need not be flushed. The CR4.PGE bit controls /// this feature. /// UINT32 PGE:1; /// /// [Bit 14] Machine Check Architecture. A value of 1 indicates the Machine /// Check Architecture of reporting machine errors is supported. The MCG_CAP /// MSR contains feature bits describing how many banks of error reporting /// MSRs are supported. /// UINT32 MCA:1; /// /// [Bit 15] Conditional Move Instructions. The conditional move instruction /// CMOV is supported. In addition, if x87 FPU is present as indicated by the /// CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported. /// UINT32 CMOV:1; /// /// [Bit 16] Page Attribute Table. Page Attribute Table is supported. This /// feature augments the Memory Type Range Registers (MTRRs), allowing an /// operating system to specify attributes of memory accessed through a /// linear address on a 4KB granularity. /// UINT32 PAT:1; /// /// [Bit 17] 36-Bit Page Size Extension. 4-MByte pages addressing physical /// memory beyond 4 GBytes are supported with 32-bit paging. This feature /// indicates that upper bits of the physical address of a 4-MByte page are /// encoded in bits 20:13 of the page-directory entry. Such physical /// addresses are limited by MAXPHYADDR and may be up to 40 bits in size. /// UINT32 PSE_36:1; /// /// [Bit 18] Processor Serial Number. The processor supports the 96-bit /// processor identification number feature and the feature is enabled. /// UINT32 PSN:1; /// /// [Bit 19] CLFLUSH Instruction. CLFLUSH Instruction is supported. /// UINT32 CLFSH:1; UINT32 Reserved2:1; /// /// [Bit 21] Debug Store. The processor supports the ability to write debug /// information into a memory resident buffer. This feature is used by the /// branch trace store (BTS) and precise event-based sampling (PEBS) /// facilities. /// UINT32 DS:1; /// /// [Bit 22] Thermal Monitor and Software Controlled Clock Facilities. The /// processor implements internal MSRs that allow processor temperature to /// be monitored and processor performance to be modulated in predefined /// duty cycles under software control. /// UINT32 ACPI:1; /// /// [Bit 23] Intel MMX Technology. The processor supports the Intel MMX /// technology. /// UINT32 MMX:1; /// /// [Bit 24] FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR /// instructions are supported for fast save and restore of the floating /// point context. Presence of this bit also indicates that CR4.OSFXSR is /// available for an operating system to indicate that it supports the /// FXSAVE and FXRSTOR instructions. /// UINT32 FXSR:1; /// /// [Bit 25] SSE. The processor supports the SSE extensions. /// UINT32 SSE:1; /// /// [Bit 26] SSE2. The processor supports the SSE2 extensions. /// UINT32 SSE2:1; /// /// [Bit 27] Self Snoop. The processor supports the management of /// conflicting memory types by performing a snoop of its own cache /// structure for transactions issued to the bus. /// UINT32 SS:1; /// /// [Bit 28] Max APIC IDs reserved field is Valid. A value of 0 for HTT /// indicates there is only a single logical processor in the package and /// software should assume only a single APIC ID is reserved. A value of 1 /// for HTT indicates the value in CPUID.1.EBX[23:16] (the Maximum number of /// addressable IDs for logical processors in this package) is valid for the /// package. /// UINT32 HTT:1; /// /// [Bit 29] Thermal Monitor. The processor implements the thermal monitor /// automatic thermal control circuitry (TCC). /// UINT32 TM:1; UINT32 Reserved3:1; /// /// [Bit 31] Pending Break Enable. The processor supports the use of the /// FERR#/PBE# pin when the processor is in the stop-clock state (STPCLK# is /// asserted) to signal the processor that an interrupt is pending and that /// the processor should return to normal operation to handle the interrupt. /// Bit 10 (PBE enable) in the IA32_MISC_ENABLE MSR enables this capability. /// UINT32 PBE:1; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_VERSION_INFO_EDX; /** CPUID Cache and TLB Information @param EAX CPUID_CACHE_INFO (0x02) @retval EAX Cache and TLB Information described by the type CPUID_CACHE_INFO_CACHE_TLB. CPUID_CACHE_INFO_CACHE_TLB.CacheDescriptor[0] always returns 0x01 and must be ignored. Only valid if CPUID_CACHE_INFO_CACHE_TLB.Bits.NotValid is clear. @retval EBX Cache and TLB Information described by the type CPUID_CACHE_INFO_CACHE_TLB. Only valid if CPUID_CACHE_INFO_CACHE_TLB.Bits.NotValid is clear. @retval ECX Cache and TLB Information described by the type CPUID_CACHE_INFO_CACHE_TLB. Only valid if CPUID_CACHE_INFO_CACHE_TLB.Bits.NotValid is clear. @retval EDX Cache and TLB Information described by the type CPUID_CACHE_INFO_CACHE_TLB. Only valid if CPUID_CACHE_INFO_CACHE_TLB.Bits.NotValid is clear. Example usage @code CPUID_CACHE_INFO_CACHE_TLB Eax; CPUID_CACHE_INFO_CACHE_TLB Ebx; CPUID_CACHE_INFO_CACHE_TLB Ecx; CPUID_CACHE_INFO_CACHE_TLB Edx; AsmCpuid (CPUID_CACHE_INFO, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32); @endcode Cache Descriptor values
Value Type Description
0x00 General Null descriptor, this byte contains no information
0x01 TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries
0x02 TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries
0x03 TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries
0x04 TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries
0x05 TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries
0x06 Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size
0x08 Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size
0x09 Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size
0x0A Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size
0x0B TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries
0x0C Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size
0x0D Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size
0x0E Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size
0x1D Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size
0x21 Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size
0x22 Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector
0x23 Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
0x24 Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size
0x25 Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
0x29 Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
0x2C Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size
0x30 Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size
0x40 Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache
0x41 Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size
0x42 Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size
0x43 Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size
0x44 Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size
0x45 Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size
0x46 Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size
0x47 Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size
0x48 Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size
0x49 Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 06H)
2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size
0x4A Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size
0x4B Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size
0x4C Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size
0x4D Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size
0x4E Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size
0x4F TLB Instruction TLB: 4 KByte pages, 32 entries
0x50 TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries
0x51 TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries
0x52 TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries
0x55 TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries
0x56 TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries
0x57 TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries
0x59 TLB Data TLB0: 4 KByte pages, fully associative, 16 entries
0x5A TLB Data TLB0: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries
0x5B TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries
0x5C TLB Data TLB: 4 KByte and 4 MByte pages,128 entries
0x5D TLB Data TLB: 4 KByte and 4 MByte pages,256 entries
0x60 Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size
0x61 TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries
0x63 TLB Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1 GByte pages, 4-way set associative, 4 entries
0x64 TLB Data TLB: 4 KByte pages, 4-way set associative, 512 entries
0x66 Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size
0x67 Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size
0x68 Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size
0x6A Cache uTLB: 4 KByte pages, 8-way set associative, 64 entries
0x6B Cache DTLB: 4 KByte pages, 8-way set associative, 256 entries
0x6C Cache DTLB: 2M/4M pages, 8-way set associative, 128 entries
0x6D Cache DTLB: 1 GByte pages, fully associative, 16 entries
0x70 Cache Trace cache: 12 K-uop, 8-way set associative
0x71 Cache Trace cache: 16 K-uop, 8-way set associative
0x72 Cache Trace cache: 32 K-uop, 8-way set associative
0x76 TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries
0x78 Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size
0x79 Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
0x7A Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
0x7B Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
0x7C Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector
0x7D Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size
0x7F Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size
0x80 Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size
0x82 Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size
0x83 Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size
0x84 Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size
0x85 Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size
0x86 Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size
0x87 Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size
0xA0 DTLB DTLB: 4k pages, fully associative, 32 entries
0xB0 TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries
0xB1 TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries
0xB2 TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries
0xB3 TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries
0xB4 TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries
0xB5 TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries
0xB6 TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries
0xBA TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries
0xC0 TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries
0xC1 STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries
0xC2 DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries
0xC3 STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages, 4-way, 16 entries.
0xC4 DTLB DTLB: 2M/4M Byte pages, 4-way associative, 32 entries
0xCA STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries
0xD0 Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size
0xD1 Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size
0xD2 Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size
0xD6 Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size
0xD7 Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size
0xD8 Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size
0xDC Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size
0xDD Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size
0xDE Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size
0xE2 Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size
0xE3 Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size
0xE4 Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size
0xEA Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size
0xEB Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size
0xEC Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size
0xF0 Prefetch 64-Byte prefetching
0xF1 Prefetch 128-Byte prefetching
0xFF General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters
**/ #define CPUID_CACHE_INFO 0x02 /** CPUID Cache and TLB Information returned in EAX, EBX, ECX, and EDX for CPUID leaf #CPUID_CACHE_INFO. **/ typedef union { /// /// Individual bit fields /// struct { UINT32 Reserved:31; /// /// [Bit 31] If 0, then the cache descriptor bytes in the register are valid. /// if 1, then none of the cache descriptor bytes in the register are valid. /// UINT32 NotValid:1; } Bits; /// /// Array of Cache and TLB descriptor bytes /// UINT8 CacheDescriptor[4]; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_CACHE_INFO_CACHE_TLB; /** CPUID Processor Serial Number Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use the PSN flag (returned using CPUID) to check for PSN support before accessing the feature. @param EAX CPUID_SERIAL_NUMBER (0x03) @retval EAX Reserved. @retval EBX Reserved. @retval ECX Bits 31:0 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value in this register is reserved.) @retval EDX Bits 63:32 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value in this register is reserved.) Example usage @code UINT32 Ecx; UINT32 Edx; AsmCpuid (CPUID_SERIAL_NUMBER, NULL, NULL, &Ecx, &Edx); @endcode **/ #define CPUID_SERIAL_NUMBER 0x03 /** CPUID Cache Parameters @param EAX CPUID_CACHE_PARAMS (0x04) @param ECX Cache Level. Valid values start at 0. Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an index value of 0, until the parameters report the value associated with the CacheType field in CPUID_CACHE_PARAMS_EAX is 0. @retval EAX Returns cache type information described by the type CPUID_CACHE_PARAMS_EAX. @retval EBX Returns cache line and associativity information described by the type CPUID_CACHE_PARAMS_EBX. @retval ECX Returns the number of sets in the cache. @retval EDX Returns cache WINVD/INVD behavior described by the type CPUID_CACHE_PARAMS_EDX. Example usage @code UINT32 CacheLevel; CPUID_CACHE_PARAMS_EAX Eax; CPUID_CACHE_PARAMS_EBX Ebx; UINT32 Ecx; CPUID_CACHE_PARAMS_EDX Edx; CacheLevel = 0; do { AsmCpuidEx ( CPUID_CACHE_PARAMS, CacheLevel, &Eax.Uint32, &Ebx.Uint32, &Ecx, &Edx.Uint32 ); CacheLevel++; } while (Eax.Bits.CacheType != CPUID_CACHE_PARAMS_CACHE_TYPE_NULL); @endcode **/ #define CPUID_CACHE_PARAMS 0x04 /** CPUID Cache Parameters Information returned in EAX for CPUID leaf #CPUID_CACHE_PARAMS. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 4:0] Cache type field. If #CPUID_CACHE_PARAMS_CACHE_TYPE_NULL, /// then there is no information for the requested cache level. /// UINT32 CacheType:5; /// /// [Bits 7:5] Cache level (Starts at 1). /// UINT32 CacheLevel:3; /// /// [Bit 8] Self Initializing cache level (does not need SW initialization). /// UINT32 SelfInitializingCache:1; /// /// [Bit 9] Fully Associative cache. /// UINT32 FullyAssociativeCache:1; /// /// [Bits 13:10] Reserved. /// UINT32 Reserved:4; /// /// [Bits 25:14] Maximum number of addressable IDs for logical processors /// sharing this cache. /// /// Add one to the return value to get the result. /// The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) /// is the number of unique initial APIC IDs reserved for addressing /// different logical processors sharing this cache. /// UINT32 MaximumAddressableIdsForLogicalProcessors:12; /// /// [Bits 31:26] Maximum number of addressable IDs for processor cores in /// the physical package. /// /// The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) /// is the number of unique Core_IDs reserved for addressing different /// processor cores in a physical package. Core ID is a subset of bits of /// the initial APIC ID. /// The returned value is constant for valid initial values in ECX. Valid /// ECX values start from 0. /// UINT32 MaximumAddressableIdsForProcessorCores:6; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_CACHE_PARAMS_EAX; /// /// @{ Define value for bit field CPUID_CACHE_PARAMS_EAX.CacheType /// #define CPUID_CACHE_PARAMS_CACHE_TYPE_NULL 0x00 #define CPUID_CACHE_PARAMS_CACHE_TYPE_DATA 0x01 #define CPUID_CACHE_PARAMS_CACHE_TYPE_INSTRUCTION 0x02 #define CPUID_CACHE_PARAMS_CACHE_TYPE_UNIFIED 0x03 /// /// @} /// /** CPUID Cache Parameters Information returned in EBX for CPUID leaf #CPUID_CACHE_PARAMS. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 11:0] System Coherency Line Size. Add one to the return value to /// get the result. /// UINT32 LineSize:12; /// /// [Bits 21:12] Physical Line Partitions. Add one to the return value to /// get the result. /// UINT32 LinePartitions:10; /// /// [Bits 31:22] Ways of associativity. Add one to the return value to get /// the result. /// UINT32 Ways:10; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_CACHE_PARAMS_EBX; /** CPUID Cache Parameters Information returned in EDX for CPUID leaf #CPUID_CACHE_PARAMS. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] Write-Back Invalidate/Invalidate. /// 0 = WBINVD/INVD from threads sharing this cache acts upon lower level /// caches for threads sharing this cache. /// 1 = WBINVD/INVD is not guaranteed to act upon lower level caches of /// non-originating threads sharing this cache. /// UINT32 Invalidate:1; /// /// [Bit 1] Cache Inclusiveness. /// 0 = Cache is not inclusive of lower cache levels. /// 1 = Cache is inclusive of lower cache levels. /// UINT32 CacheInclusiveness:1; /// /// [Bit 2] Complex Cache Indexing. /// 0 = Direct mapped cache. /// 1 = A complex function is used to index the cache, potentially using all /// address bits. /// UINT32 ComplexCacheIndexing:1; UINT32 Reserved:29; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_CACHE_PARAMS_EDX; /** CPUID MONITOR/MWAIT Information @param EAX CPUID_MONITOR_MWAIT (0x05) @retval EAX Smallest monitor-line size in bytes described by the type CPUID_MONITOR_MWAIT_EAX. @retval EBX Largest monitor-line size in bytes described by the type CPUID_MONITOR_MWAIT_EBX. @retval ECX Enumeration of Monitor-Mwait extensions support described by the type CPUID_MONITOR_MWAIT_ECX. @retval EDX Sub C-states supported described by the type CPUID_MONITOR_MWAIT_EDX. Example usage @code CPUID_MONITOR_MWAIT_EAX Eax; CPUID_MONITOR_MWAIT_EBX Ebx; CPUID_MONITOR_MWAIT_ECX Ecx; CPUID_MONITOR_MWAIT_EDX Edx; AsmCpuid (CPUID_MONITOR_MWAIT, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32); @endcode **/ #define CPUID_MONITOR_MWAIT 0x05 /** CPUID MONITOR/MWAIT Information returned in EAX for CPUID leaf #CPUID_MONITOR_MWAIT. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 15:0] Smallest monitor-line size in bytes (default is processor's /// monitor granularity). /// UINT32 SmallestMonitorLineSize:16; UINT32 Reserved:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_MONITOR_MWAIT_EAX; /** CPUID MONITOR/MWAIT Information returned in EBX for CPUID leaf #CPUID_MONITOR_MWAIT. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 15:0] Largest monitor-line size in bytes (default is processor's /// monitor granularity). /// UINT32 LargestMonitorLineSize:16; UINT32 Reserved:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_MONITOR_MWAIT_EBX; /** CPUID MONITOR/MWAIT Information returned in ECX for CPUID leaf #CPUID_MONITOR_MWAIT. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] If 0, then only EAX and EBX are valid. If 1, then EAX, EBX, ECX, /// and EDX are valid. /// UINT32 ExtensionsSupported:1; /// /// [Bit 1] Supports treating interrupts as break-event for MWAIT, even when /// interrupts disabled. /// UINT32 InterruptAsBreak:1; UINT32 Reserved:30; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_MONITOR_MWAIT_ECX; /** CPUID MONITOR/MWAIT Information returned in EDX for CPUID leaf #CPUID_MONITOR_MWAIT. @note The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-states. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 3:0] Number of C0 sub C-states supported using MWAIT. /// UINT32 C0States:4; /// /// [Bits 7:4] Number of C1 sub C-states supported using MWAIT. /// UINT32 C1States:4; /// /// [Bits 11:8] Number of C2 sub C-states supported using MWAIT. /// UINT32 C2States:4; /// /// [Bits 15:12] Number of C3 sub C-states supported using MWAIT. /// UINT32 C3States:4; /// /// [Bits 19:16] Number of C4 sub C-states supported using MWAIT. /// UINT32 C4States:4; /// /// [Bits 23:20] Number of C5 sub C-states supported using MWAIT. /// UINT32 C5States:4; /// /// [Bits 27:24] Number of C6 sub C-states supported using MWAIT. /// UINT32 C6States:4; /// /// [Bits 31:28] Number of C7 sub C-states supported using MWAIT. /// UINT32 C7States:4; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_MONITOR_MWAIT_EDX; /** CPUID Thermal and Power Management @param EAX CPUID_THERMAL_POWER_MANAGEMENT (0x06) @retval EAX Thermal and power management features described by the type CPUID_THERMAL_POWER_MANAGEMENT_EAX. @retval EBX Number of Interrupt Thresholds in Digital Thermal Sensor described by the type CPUID_THERMAL_POWER_MANAGEMENT_EBX. @retval ECX Performance features described by the type CPUID_THERMAL_POWER_MANAGEMENT_ECX. @retval EDX Reserved. Example usage @code CPUID_THERMAL_POWER_MANAGEMENT_EAX Eax; CPUID_THERMAL_POWER_MANAGEMENT_EBX Ebx; CPUID_THERMAL_POWER_MANAGEMENT_ECX Ecx; AsmCpuid (CPUID_THERMAL_POWER_MANAGEMENT, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, NULL); @endcode **/ #define CPUID_THERMAL_POWER_MANAGEMENT 0x06 /** CPUID Thermal and Power Management Information returned in EAX for CPUID leaf #CPUID_THERMAL_POWER_MANAGEMENT. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] Digital temperature sensor is supported if set. /// UINT32 DigitalTemperatureSensor:1; /// /// [Bit 1] Intel Turbo Boost Technology Available (see IA32_MISC_ENABLE[38]). /// UINT32 TurboBoostTechnology:1; /// /// [Bit 2] APIC-Timer-always-running feature is supported if set. /// UINT32 ARAT:1; UINT32 Reserved1:1; /// /// [Bit 4] Power limit notification controls are supported if set. /// UINT32 PLN:1; /// /// [Bit 5] Clock modulation duty cycle extension is supported if set. /// UINT32 ECMD:1; /// /// [Bit 6] Package thermal management is supported if set. /// UINT32 PTM:1; /// /// [Bit 7] HWP base registers (IA32_PM_ENABLE[Bit 0], IA32_HWP_CAPABILITIES, /// IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set. /// UINT32 HWP:1; /// /// [Bit 8] IA32_HWP_INTERRUPT MSR is supported if set. /// UINT32 HWP_Notification:1; /// /// [Bit 9] IA32_HWP_REQUEST[Bits 41:32] is supported if set. /// UINT32 HWP_Activity_Window:1; /// /// [Bit 10] IA32_HWP_REQUEST[Bits 31:24] is supported if set. /// UINT32 HWP_Energy_Performance_Preference:1; /// /// [Bit 11] IA32_HWP_REQUEST_PKG MSR is supported if set. /// UINT32 HWP_Package_Level_Request:1; UINT32 Reserved2:1; /// /// [Bit 13] HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, /// IA32_THREAD_STALL MSRs are supported if set. /// UINT32 HDC:1; UINT32 Reserved3:18; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_THERMAL_POWER_MANAGEMENT_EAX; /** CPUID Thermal and Power Management Information returned in EBX for CPUID leaf #CPUID_THERMAL_POWER_MANAGEMENT. **/ typedef union { /// /// Individual bit fields /// struct { /// /// {Bits 3:0] Number of Interrupt Thresholds in Digital Thermal Sensor. /// UINT32 InterruptThresholds:4; UINT32 Reserved:28; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_THERMAL_POWER_MANAGEMENT_EBX; /** CPUID Thermal and Power Management Information returned in ECX for CPUID leaf #CPUID_THERMAL_POWER_MANAGEMENT. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] Hardware Coordination Feedback Capability (Presence of IA32_MPERF /// and IA32_APERF). The capability to provide a measure of delivered /// processor performance (since last reset of the counters), as a percentage /// of the expected processor performance when running at the TSC frequency. /// UINT32 HardwareCoordinationFeedback:1; UINT32 Reserved1:2; /// /// [Bit 3] If this bit is set, then the processor supports performance-energy /// bias preference and the architectural MSR called IA32_ENERGY_PERF_BIAS /// (1B0H). /// UINT32 PerformanceEnergyBias:1; UINT32 Reserved2:28; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_THERMAL_POWER_MANAGEMENT_ECX; /** CPUID Structured Extended Feature Flags Enumeration @param EAX CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS (0x07) @param ECX CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO (0x00). @note If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n exceeds the value that sub-leaf 0 returns in EAX. @retval EAX The maximum input value for ECX to retrieve sub-leaf information. @retval EBX Structured Extended Feature Flags described by the type CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_EBX. @retval EBX Structured Extended Feature Flags described by the type CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX. @retval EDX Reserved. Example usage @code UINT32 Eax; CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_EBX Ebx; CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX Ecx; UINT32 SubLeaf; AsmCpuidEx ( CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO, &Eax, NULL, NULL, NULL ); for (SubLeaf = 0; SubLeaf <= Eax; SubLeaf++) { AsmCpuidEx ( CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, SubLeaf, NULL, &Ebx.Uint32, &Ecx.Uint32, NULL ); } @endcode **/ #define CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS 0x07 /// /// CPUID Structured Extended Feature Flags Enumeration sub-leaf /// #define CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO 0x00 /** CPUID Structured Extended Feature Flags Enumeration in EBX for CPUID leaf #CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS sub leaf #CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1. /// UINT32 FSGSBASE:1; /// /// [Bit 1] IA32_TSC_ADJUST MSR is supported if 1. /// UINT32 IA32_TSC_ADJUST:1; /// /// [Bit 2] Intel SGX is supported if 1. See section 37.7 "DISCOVERING SUPPORT /// FOR INTEL(R) SGX AND ENABLING ENCLAVE INSTRUCTIONS". /// UINT32 SGX:1; /// /// [Bit 3] If 1 indicates the processor supports the first group of advanced /// bit manipulation extensions (ANDN, BEXTR, BLSI, BLSMSK, BLSR, TZCNT) /// UINT32 BMI1:1; /// /// [Bit 4] Hardware Lock Elision /// UINT32 HLE:1; /// /// [Bit 5] If 1 indicates the processor supports AVX2 instruction extensions. /// UINT32 AVX2:1; /// /// [Bit 6] x87 FPU Data Pointer updated only on x87 exceptions if 1. /// UINT32 FDP_EXCPTN_ONLY:1; /// /// [Bit 7] Supports Supervisor-Mode Execution Prevention if 1. /// UINT32 SMEP:1; /// /// [Bit 8] If 1 indicates the processor supports the second group of /// advanced bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, /// SARX, SHLX, SHRX) /// UINT32 BMI2:1; /// /// [Bit 9] Supports Enhanced REP MOVSB/STOSB if 1. /// UINT32 EnhancedRepMovsbStosb:1; /// /// [Bit 10] If 1, supports INVPCID instruction for system software that /// manages process-context identifiers. /// UINT32 INVPCID:1; /// /// [Bit 11] Restricted Transactional Memory /// UINT32 RTM:1; /// /// [Bit 12] Supports Intel(R) Resource Director Technology (Intel(R) RDT) /// Monitoring capability if 1. /// UINT32 RDT_M:1; /// /// [Bit 13] Deprecates FPU CS and FPU DS values if 1. /// UINT32 DeprecateFpuCsDs:1; /// /// [Bit 14] Supports Intel(R) Memory Protection Extensions if 1. /// UINT32 MPX:1; /// /// [Bit 15] Supports Intel(R) Resource Director Technology (Intel(R) RDT) /// Allocation capability if 1. /// UINT32 RDT_A:1; UINT32 Reserved2:2; /// /// [Bit 18] If 1 indicates the processor supports the RDSEED instruction. /// UINT32 RDSEED:1; /// /// [Bit 19] If 1 indicates the processor supports the ADCX and ADOX /// instructions. /// UINT32 ADX:1; /// /// [Bit 20] Supports Supervisor-Mode Access Prevention (and the CLAC/STAC /// instructions) if 1. /// UINT32 SMAP:1; UINT32 Reserved3:2; /// /// [Bit 23] If 1 indicates the processor supports the CLFLUSHOPT instruction. /// UINT32 CLFLUSHOPT:1; /// /// [Bit 24] If 1 indicates the processor supports the CLWB instruction. /// UINT32 CLWB:1; /// /// [Bit 25] If 1 indicates the processor supports the Intel Processor Trace /// extensions. /// UINT32 IntelProcessorTrace:1; UINT32 Reserved4:3; /// /// [Bit 29] Supports Intel(R) Secure Hash Algorithm Extensions (Intel(R) /// SHA Extensions) if 1. /// UINT32 SHA:1; UINT32 Reserved5:2; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_EBX; /** CPUID Structured Extended Feature Flags Enumeration in ECX for CPUID leaf #CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS sub leaf #CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] If 1 indicates the processor supports the PREFETCHWT1 instruction. /// UINT32 PREFETCHWT1:1; UINT32 Reserved1:1; /// /// [Bit 2] Supports user-mode instruction prevention if 1. /// UINT32 UMIP:1; /// /// [Bit 3] Supports protection keys for user-mode pages if 1. /// UINT32 PKU:1; /// /// [Bit 4] If 1, OS has set CR4.PKE to enable protection keys (and the /// RDPKRU/WRPKRU instructions). /// UINT32 OSPKE:1; UINT32 Reserved2:12; /// /// [Bits 21:17] The value of MAWAU used by the BNDLDX and BNDSTX instructions /// in 64-bit mode. /// UINT32 MAWAU:5; /// /// [Bit 22] Supports Read Processor ID if 1. /// UINT32 RDPID:1; UINT32 Reserved3:7; /// /// [Bit 30] Supports SGX Launch Configuration if 1. /// UINT32 SGX_LC:1; UINT32 Reserved4:1; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX; /** CPUID Direct Cache Access Information @param EAX CPUID_DIRECT_CACHE_ACCESS_INFO (0x09) @retval EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H). @retval EBX Reserved. @retval ECX Reserved. @retval EDX Reserved. Example usage @code UINT32 Eax; AsmCpuid (CPUID_DIRECT_CACHE_ACCESS_INFO, &Eax, NULL, NULL, NULL); @endcode **/ #define CPUID_DIRECT_CACHE_ACCESS_INFO 0x09 /** CPUID Architectural Performance Monitoring @param EAX CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING (0x0A) @retval EAX Architectural Performance Monitoring information described by the type CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EAX. @retval EBX Architectural Performance Monitoring information described by the type CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EBX. @retval ECX Reserved. @retval EDX Architectural Performance Monitoring information described by the type CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EDX. Example usage @code CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EAX Eax; CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EBX Ebx; CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EDX Edx; AsmCpuid (CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING, &Eax.Uint32, &Ebx.Uint32, NULL, &Edx.Uint32); @endcode **/ #define CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING 0x0A /** CPUID Architectural Performance Monitoring EAX for CPUID leaf #CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 7:0] Version ID of architectural performance monitoring. /// UINT32 ArchPerfMonVerID:8; /// /// [Bits 15:8] Number of general-purpose performance monitoring counter /// per logical processor. /// /// IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous /// block of MSR address space. Each performance event select register is /// paired with a corresponding performance counter in the 0C1H address /// block. /// UINT32 PerformanceMonitorCounters:8; /// /// [Bits 23:16] Bit width of general-purpose, performance monitoring counter. /// /// The bit width of an IA32_PMCx MSR. This the number of valid bits for /// read operation. On write operations, the lower-order 32 bits of the MSR /// may be written with any value, and the high-order bits are sign-extended /// from the value of bit 31. /// UINT32 PerformanceMonitorCounterWidth:8; /// /// [Bits 31:24] Length of EBX bit vector to enumerate architectural /// performance monitoring events. /// UINT32 EbxBitVectorLength:8; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EAX; /** CPUID Architectural Performance Monitoring EBX for CPUID leaf #CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] Core cycle event not available if 1. /// UINT32 UnhaltedCoreCycles:1; /// /// [Bit 1] Instruction retired event not available if 1. /// UINT32 InstructionsRetired:1; /// /// [Bit 2] Reference cycles event not available if 1. /// UINT32 UnhaltedReferenceCycles:1; /// /// [Bit 3] Last-level cache reference event not available if 1. /// UINT32 LastLevelCacheReferences:1; /// /// [Bit 4] Last-level cache misses event not available if 1. /// UINT32 LastLevelCacheMisses:1; /// /// [Bit 5] Branch instruction retired event not available if 1. /// UINT32 BranchInstructionsRetired:1; /// /// [Bit 6] Branch mispredict retired event not available if 1. /// UINT32 AllBranchMispredictRetired:1; UINT32 Reserved:25; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EBX; /** CPUID Architectural Performance Monitoring EDX for CPUID leaf #CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 4:0] Number of fixed-function performance counters /// (if Version ID > 1). /// UINT32 FixedFunctionPerformanceCounters:5; /// /// [Bits 12:5] Bit width of fixed-function performance counters /// (if Version ID > 1). /// UINT32 FixedFunctionPerformanceCounterWidth:8; UINT32 Reserved:19; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_ARCHITECTURAL_PERFORMANCE_MONITORING_EDX; /** CPUID Extended Topology Information @note Most of Leaf 0BH output depends on the initial value in ECX. The EDX output of leaf 0BH is always valid and does not vary with input value in ECX. Output value in ECX[7:0] always equals input value in ECX[7:0]. For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0. If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX > n also return 0 in ECX[15:8]. @param EAX CPUID_EXTENDED_TOPOLOGY (0x0B) @param ECX Level number @retval EAX Extended topology information described by the type CPUID_EXTENDED_TOPOLOGY_EAX. @retval EBX Extended topology information described by the type CPUID_EXTENDED_TOPOLOGY_EBX. @retval ECX Extended topology information described by the type CPUID_EXTENDED_TOPOLOGY_ECX. @retval EDX x2APIC ID the current logical processor. Example usage @code CPUID_EXTENDED_TOPOLOGY_EAX Eax; CPUID_EXTENDED_TOPOLOGY_EBX Ebx; CPUID_EXTENDED_TOPOLOGY_ECX Ecx; UINT32 Edx; UINT32 LevelNumber; LevelNumber = 0; do { AsmCpuidEx ( CPUID_EXTENDED_TOPOLOGY, LevelNumber, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx ); LevelNumber++; } while (Eax.Bits.ApicIdShift != 0); @endcode **/ #define CPUID_EXTENDED_TOPOLOGY 0x0B /** CPUID Extended Topology Information EAX for CPUID leaf #CPUID_EXTENDED_TOPOLOGY. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 4:0] Number of bits to shift right on x2APIC ID to get a unique /// topology ID of the next level type. All logical processors with the /// same next level ID share current level. /// /// @note /// Software should use this field (EAX[4:0]) to enumerate processor /// topology of the system. /// UINT32 ApicIdShift:5; UINT32 Reserved:27; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_EXTENDED_TOPOLOGY_EAX; /** CPUID Extended Topology Information EBX for CPUID leaf #CPUID_EXTENDED_TOPOLOGY. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 15:0] Number of logical processors at this level type. The number /// reflects configuration as shipped by Intel. /// /// @note /// Software must not use EBX[15:0] to enumerate processor topology of the /// system. This value in this field (EBX[15:0]) is only intended for /// display/diagnostic purposes. The actual number of logical processors /// available to BIOS/OS/Applications may be different from the value of /// EBX[15:0], depending on software and platform hardware configurations. /// UINT32 LogicalProcessors:16; UINT32 Reserved:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_EXTENDED_TOPOLOGY_EBX; /** CPUID Extended Topology Information ECX for CPUID leaf #CPUID_EXTENDED_TOPOLOGY. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 7:0] Level number. Same value in ECX input. /// UINT32 LevelNumber:8; /// /// [Bits 15:8] Level type. /// /// @note /// The value of the "level type" field is not related to level numbers in /// any way, higher "level type" values do not mean higher levels. /// UINT32 LevelType:8; UINT32 Reserved:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_EXTENDED_TOPOLOGY_ECX; /// /// @{ Define value for CPUID_EXTENDED_TOPOLOGY_ECX.LevelType /// #define CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_INVALID 0x00 #define CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_SMT 0x01 #define CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_CORE 0x02 /// /// @} /// /** CPUID Extended State Information @param EAX CPUID_EXTENDED_STATE (0x0D) @param ECX CPUID_EXTENDED_STATE_MAIN_LEAF (0x00). CPUID_EXTENDED_STATE_SUB_LEAF (0x01). CPUID_EXTENDED_STATE_SIZE_OFFSET (0x02). Sub leafs 2..n based on supported bits in XCR0 or IA32_XSS_MSR. **/ #define CPUID_EXTENDED_STATE 0x0D /** CPUID Extended State Information Main Leaf @param EAX CPUID_EXTENDED_STATE (0x0D) @param ECX CPUID_EXTENDED_STATE_MAIN_LEAF (0x00) @retval EAX Reports the supported bits of the lower 32 bits of XCR0. XCR0[n] can be set to 1 only if EAX[n] is 1. The format of the extended state main leaf is described by the type CPUID_EXTENDED_STATE_MAIN_LEAF_EAX. @retval EBX Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area are not enabled. @retval ECX Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required by all supported features in the processor, i.e., all the valid bit fields in XCR0. @retval EDX Reports the supported bits of the upper 32 bits of XCR0. XCR0[n+32] can be set to 1 only if EDX[n] is 1. Example usage @code CPUID_EXTENDED_STATE_MAIN_LEAF_EAX Eax; UINT32 Ebx; UINT32 Ecx; UINT32 Edx; AsmCpuidEx ( CPUID_EXTENDED_STATE, CPUID_EXTENDED_STATE_MAIN_LEAF, &Eax.Uint32, &Ebx, &Ecx, &Edx ); @endcode **/ #define CPUID_EXTENDED_STATE_MAIN_LEAF 0x00 /** CPUID Extended State Information EAX for CPUID leaf #CPUID_EXTENDED_STATE, sub-leaf #CPUID_EXTENDED_STATE_MAIN_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] x87 state. /// UINT32 x87:1; /// /// [Bit 1] SSE state. /// UINT32 SSE:1; /// /// [Bit 2] AVX state. /// UINT32 AVX:1; /// /// [Bits 4:3] MPX state. /// UINT32 MPX:2; /// /// [Bits 7:5] AVX-512 state. /// UINT32 AVX_512:3; /// /// [Bit 8] Used for IA32_XSS. /// UINT32 IA32_XSS:1; /// /// [Bit 9] PKRU state. /// UINT32 PKRU:1; UINT32 Reserved:22; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_EXTENDED_STATE_MAIN_LEAF_EAX; /** CPUID Extended State Information Sub Leaf @param EAX CPUID_EXTENDED_STATE (0x0D) @param ECX CPUID_EXTENDED_STATE_SUB_LEAF (0x01) @retval EAX The format of the extended state sub-leaf is described by the type CPUID_EXTENDED_STATE_SUB_LEAF_EAX. @retval EBX The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS. @retval ECX The format of the extended state sub-leaf is described by the type CPUID_EXTENDED_STATE_SUB_LEAF_ECX. @retval EDX Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] can be set to 1 only if EDX[n] is 1. Example usage @code CPUID_EXTENDED_STATE_SUB_LEAF_EAX Eax; UINT32 Ebx; CPUID_EXTENDED_STATE_SUB_LEAF_ECX Ecx; UINT32 Edx; AsmCpuidEx ( CPUID_EXTENDED_STATE, CPUID_EXTENDED_STATE_SUB_LEAF, &Eax.Uint32, &Ebx, &Ecx.Uint32, &Edx ); @endcode **/ #define CPUID_EXTENDED_STATE_SUB_LEAF 0x01 /** CPUID Extended State Information EAX for CPUID leaf #CPUID_EXTENDED_STATE, sub-leaf #CPUID_EXTENDED_STATE_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] XSAVEOPT is available. /// UINT32 XSAVEOPT:1; /// /// [Bit 1] Supports XSAVEC and the compacted form of XRSTOR if set. /// UINT32 XSAVEC:1; /// /// [Bit 2] Supports XGETBV with ECX = 1 if set. /// UINT32 XGETBV:1; /// /// [Bit 3] Supports XSAVES/XRSTORS and IA32_XSS if set. /// UINT32 XSAVES:1; UINT32 Reserved:28; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_EXTENDED_STATE_SUB_LEAF_EAX; /** CPUID Extended State Information ECX for CPUID leaf #CPUID_EXTENDED_STATE, sub-leaf #CPUID_EXTENDED_STATE_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 7:0] Used for XCR0. /// UINT32 XCR0:1; /// /// [Bit 8] PT STate. /// UINT32 PT:1; /// /// [Bit 9] Used for XCR0. /// UINT32 XCR0_1:1; UINT32 Reserved:22; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_EXTENDED_STATE_SUB_LEAF_ECX; /** CPUID Extended State Information Size and Offset Sub Leaf @note Leaf 0DH output depends on the initial value in ECX. Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in either the XCR0 register or the IA32_XSS MSR. If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 <= n <= 31) is invalid if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 <= n <= 63) is invalid if sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32]. @param EAX CPUID_EXTENDED_STATE (0x0D) @param ECX CPUID_EXTENDED_STATE_SIZE_OFFSET (0x02). Sub leafs 2..n based on supported bits in XCR0 or IA32_XSS_MSR. @retval EAX The size in bytes (from the offset specified in EBX) of the save area for an extended state feature associated with a valid sub-leaf index, n. @retval EBX The offset in bytes of this extended state component's save area from the beginning of the XSAVE/XRSTOR area. This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register. @retval ECX The format of the extended state components's save area as described by the type CPUID_EXTENDED_STATE_SIZE_OFFSET_ECX. This field reports 0 if the sub-leaf index, n, is invalid. @retval EDX This field reports 0 if the sub-leaf index, n, is invalid; otherwise it is reserved. Example usage @code UINT32 Eax; UINT32 Ebx; CPUID_EXTENDED_STATE_SIZE_OFFSET_ECX Ecx; UINT32 Edx; UINTN SubLeaf; for (SubLeaf = CPUID_EXTENDED_STATE_SIZE_OFFSET; SubLeaf < 32; SubLeaf++) { AsmCpuidEx ( CPUID_EXTENDED_STATE, SubLeaf, &Eax, &Ebx, &Ecx.Uint32, &Edx ); } @endcode **/ #define CPUID_EXTENDED_STATE_SIZE_OFFSET 0x02 /** CPUID Extended State Information ECX for CPUID leaf #CPUID_EXTENDED_STATE, sub-leaf #CPUID_EXTENDED_STATE_SIZE_OFFSET. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] Is set if the bit n (corresponding to the sub-leaf index) is /// supported in the IA32_XSS MSR; it is clear if bit n is instead supported /// in XCR0. /// UINT32 XSS:1; /// /// [Bit 1] is set if, when the compacted format of an XSAVE area is used, /// this extended state component located on the next 64-byte boundary /// following the preceding state component (otherwise, it is located /// immediately following the preceding state component). /// UINT32 Compacted:1; UINT32 Reserved:30; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_EXTENDED_STATE_SIZE_OFFSET_ECX; /** CPUID Intel Resource Director Technology (Intel RDT) Monitoring Information @param EAX CPUID_INTEL_RDT_MONITORING (0x0F) @param ECX CPUID_INTEL_RDT_MONITORING_ENUMERATION_SUB_LEAF (0x00). CPUID_INTEL_RDT_MONITORING_L3_CACHE_SUB_LEAF (0x01). **/ #define CPUID_INTEL_RDT_MONITORING 0x0F /** CPUID Intel Resource Director Technology (Intel RDT) Monitoring Information Enumeration Sub-leaf @param EAX CPUID_INTEL_RDT_MONITORING (0x0F) @param ECX CPUID_INTEL_RDT_MONITORING_ENUMERATION_SUB_LEAF (0x00) @retval EAX Reserved. @retval EBX Maximum range (zero-based) of RMID within this physical processor of all types. @retval ECX Reserved. @retval EDX L3 Cache Intel RDT Monitoring Information Enumeration described by the type CPUID_INTEL_RDT_MONITORING_ENUMERATION_SUB_LEAF_EDX. Example usage @code UINT32 Ebx; CPUID_INTEL_RDT_MONITORING_ENUMERATION_SUB_LEAF_EDX Edx; AsmCpuidEx ( CPUID_INTEL_RDT_MONITORING, CPUID_INTEL_RDT_MONITORING_ENUMERATION_SUB_LEAF, NULL, &Ebx, NULL, &Edx.Uint32 ); @endcode **/ #define CPUID_INTEL_RDT_MONITORING_ENUMERATION_SUB_LEAF 0x00 /** CPUID Intel RDT Monitoring Information EDX for CPUID leaf #CPUID_INTEL_RDT_MONITORING, sub-leaf #CPUID_INTEL_RDT_MONITORING_ENUMERATION_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { UINT32 Reserved1:1; /// /// [Bit 1] Supports L3 Cache Intel RDT Monitoring if 1. /// UINT32 L3CacheRDT_M:1; UINT32 Reserved2:30; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_RDT_MONITORING_ENUMERATION_SUB_LEAF_EDX; /** CPUID L3 Cache Intel RDT Monitoring Capability Enumeration Sub-leaf @param EAX CPUID_INTEL_RDT_MONITORING (0x0F) @param ECX CPUID_INTEL_RDT_MONITORING_L3_CACHE_SUB_LEAF (0x01) @retval EAX Reserved. @retval EBX Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes). @retval ECX Maximum range (zero-based) of RMID of this resource type. @retval EDX L3 Cache Intel RDT Monitoring Capability information described by the type CPUID_INTEL_RDT_MONITORING_L3_CACHE_SUB_LEAF_EDX. Example usage @code UINT32 Ebx; UINT32 Ecx; CPUID_INTEL_RDT_MONITORING_L3_CACHE_SUB_LEAF_EDX Edx; AsmCpuidEx ( CPUID_INTEL_RDT_MONITORING, CPUID_INTEL_RDT_MONITORING_L3_CACHE_SUB_LEAF, NULL, &Ebx, &Ecx, &Edx.Uint32 ); @endcode **/ #define CPUID_INTEL_RDT_MONITORING_L3_CACHE_SUB_LEAF 0x01 /** CPUID L3 Cache Intel RDT Monitoring Capability Information EDX for CPUID leaf #CPUID_INTEL_RDT_MONITORING, sub-leaf #CPUID_INTEL_RDT_MONITORING_L3_CACHE_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] Supports L3 occupancy monitoring if 1. /// UINT32 L3CacheOccupancyMonitoring:1; /// /// [Bit 1] Supports L3 Total Bandwidth monitoring if 1. /// UINT32 L3CacheTotalBandwidthMonitoring:1; /// /// [Bit 2] Supports L3 Local Bandwidth monitoring if 1. /// UINT32 L3CacheLocalBandwidthMonitoring:1; UINT32 Reserved:29; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_RDT_MONITORING_L3_CACHE_SUB_LEAF_EDX; /** CPUID Intel Resource Director Technology (Intel RDT) Allocation Information @param EAX CPUID_INTEL_RDT_ALLOCATION (0x10). @param ECX CPUID_INTEL_RDT_ALLOCATION_ENUMERATION_SUB_LEAF (0x00). CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF (0x01). CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF (0x02). **/ #define CPUID_INTEL_RDT_ALLOCATION 0x10 /** Intel Resource Director Technology (Intel RDT) Allocation Enumeration Sub-leaf @param EAX CPUID_INTEL_RDT_ALLOCATION (0x10) @param ECX CPUID_INTEL_RDT_ALLOCATION_ENUMERATION_SUB_LEAF (0x00). @retval EAX Reserved. @retval EBX L3 and L2 Cache Allocation Technology information described by the type CPUID_INTEL_RDT_ALLOCATION_ENUMERATION_SUB_LEAF_EBX. @retval ECX Reserved. @retval EDX Reserved. Example usage @code CPUID_INTEL_RDT_ALLOCATION_ENUMERATION_SUB_LEAF_EBX Ebx; AsmCpuidEx ( CPUID_INTEL_RDT_ALLOCATION, CPUID_INTEL_RDT_ALLOCATION_ENUMERATION_SUB_LEAF, NULL, &Ebx.Uint32, NULL, NULL ); @endcode **/ #define CPUID_INTEL_RDT_ALLOCATION_ENUMERATION_SUB_LEAF 0x00 /** CPUID L3 and L2 Cache Allocation Support Information EBX for CPUID leaf #CPUID_INTEL_RDT_ALLOCATION, sub-leaf #CPUID_INTEL_RDT_ALLOCATION_ENUMERATION_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { UINT32 Reserved1:1; /// /// [Bit 1] Supports L3 Cache Allocation Technology if 1. /// UINT32 L3CacheAllocation:1; /// /// [Bit 2] Supports L2 Cache Allocation Technology if 1. /// UINT32 L2CacheAllocation:1; UINT32 Reserved2:29; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_RDT_ALLOCATION_ENUMERATION_SUB_LEAF_EBX; /** L3 Cache Allocation Technology Enumeration Sub-leaf @param EAX CPUID_INTEL_RDT_ALLOCATION (0x10) @param ECX CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF (0x01) @retval EAX RESID L3 Cache Allocation Technology information described by the type CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_EAX. @retval EBX Bit-granular map of isolation/contention of allocation units. @retval ECX RESID L3 Cache Allocation Technology information described by the type CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_ECX. @retval EDX RESID L3 Cache Allocation Technology information described by the type CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_EDX. Example usage @code CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_EAX Eax; UINT32 Ebx; CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_ECX Ecx; CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_EDX Edx; AsmCpuidEx ( CPUID_INTEL_RDT_ALLOCATION, CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF, &Eax.Uint32, &Ebx, &Ecx.Uint32, &Edx.Uint32 ); @endcode **/ #define CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF 0x01 /** CPUID L3 Cache Allocation Technology Information EAX for CPUID leaf #CPUID_INTEL_RDT_ALLOCATION, sub-leaf #CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 4:0] Length of the capacity bit mask for the corresponding ResID /// using minus-one notation. /// UINT32 CapacityLength:5; UINT32 Reserved:27; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_EAX; /** CPUID L3 Cache Allocation Technology Information ECX for CPUID leaf #CPUID_INTEL_RDT_ALLOCATION, sub-leaf #CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { UINT32 Reserved1:1; /// /// [Bit 1] Updates of COS should be infrequent if 1. /// UINT32 CosUpdatesInfrequent:1; /// /// [Bit 2] Code and Data Prioritization Technology supported if 1. /// UINT32 CodeDataPrioritization:1; UINT32 Reserved2:29; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_ECX; /** CPUID L3 Cache Allocation Technology Information EDX for CPUID leaf #CPUID_INTEL_RDT_ALLOCATION, sub-leaf #CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 15:0] Highest COS number supported for this ResID. /// UINT32 HighestCosNumber:16; UINT32 Reserved:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_RDT_ALLOCATION_L3_CACHE_SUB_LEAF_EDX; /** L2 Cache Allocation Technology Enumeration Sub-leaf @param EAX CPUID_INTEL_RDT_ALLOCATION (0x10) @param ECX CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF (0x02) @retval EAX RESID L2 Cache Allocation Technology information described by the type CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF_EAX. @retval EBX Bit-granular map of isolation/contention of allocation units. @retval ECX Reserved. @retval EDX RESID L2 Cache Allocation Technology information described by the type CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF_EDX. Example usage @code CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF_EAX Eax; UINT32 Ebx; CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF_EDX Edx; AsmCpuidEx ( CPUID_INTEL_RDT_ALLOCATION, CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF, &Eax.Uint32, &Ebx, NULL, &Edx.Uint32 ); @endcode **/ #define CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF 0x02 /** CPUID L2 Cache Allocation Technology Information EAX for CPUID leaf #CPUID_INTEL_RDT_ALLOCATION, sub-leaf #CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 4:0] Length of the capacity bit mask for the corresponding ResID /// using minus-one notation. /// UINT32 CapacityLength:5; UINT32 Reserved:27; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF_EAX; /** CPUID L2 Cache Allocation Technology Information EDX for CPUID leaf #CPUID_INTEL_RDT_ALLOCATION, sub-leaf #CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 15:0] Highest COS number supported for this ResID. /// UINT32 HighestCosNumber:16; UINT32 Reserved:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_RDT_ALLOCATION_L2_CACHE_SUB_LEAF_EDX; /** Intel SGX resource capability and configuration. See Section 37.7.2 "Intel(R) SGX Resource Enumeration Leaves". If CPUID.(EAX=07H, ECX=0H):EBX.SGX = 1, the processor also supports querying CPUID with EAX=12H on Intel SGX resource capability and configuration. @param EAX CPUID_INTEL_SGX (0x12) @param ECX CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF (0x00). CPUID_INTEL_SGX_CAPABILITIES_1_SUB_LEAF (0x01). CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF (0x02). Sub leafs 2..n based on the sub-leaf-type encoding (returned in EAX[3:0]) until the sub-leaf type is invalid. **/ #define CPUID_INTEL_SGX 0x12 /** Sub-Leaf 0 Enumeration of Intel SGX Capabilities. Enumerates Intel SGX capability, including enclave instruction opcode support. @param EAX CPUID_INTEL_SGX (0x12) @param ECX CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF (0x00) @retval EAX The format of Sub-Leaf 0 Enumeration of Intel SGX Capabilities is described by the type CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF_EAX. @retval EBX MISCSELECT: Reports the bit vector of supported extended features that can be written to the MISC region of the SSA. @retval ECX Reserved. @retval EDX The format of Sub-Leaf 0 Enumeration of Intel SGX Capabilities is described by the type CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF_EDX. Example usage @code CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF_EAX Eax; UINT32 Ebx; CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF_EDX Edx; AsmCpuidEx ( CPUID_INTEL_SGX, CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF, &Eax.Uint32, &Ebx, NULL, &Edx.Uint32 ); @endcode **/ #define CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF 0x00 /** Sub-Leaf 0 Enumeration of Intel SGX Capabilities EAX for CPUID leaf #CPUID_INTEL_SGX, sub-leaf #CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] If 1, indicates leaf functions of SGX1 instruction are supported. /// UINT32 SGX1:1; /// /// [Bit 1] If 1, indicates leaf functions of SGX2 instruction are supported. /// UINT32 SGX2:1; UINT32 Reserved:30; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF_EAX; /** Sub-Leaf 0 Enumeration of Intel SGX Capabilities EDX for CPUID leaf #CPUID_INTEL_SGX, sub-leaf #CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 7:0] The maximum supported enclave size is 2^(EDX[7:0]) bytes /// when not in 64-bit mode. /// UINT32 MaxEnclaveSize_Not64:8; /// /// [Bit 15:8] The maximum supported enclave size is 2^(EDX[15:8]) bytes /// when operating in 64-bit mode. /// UINT32 MaxEnclaveSize_64:8; UINT32 Reserved:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_SGX_CAPABILITIES_0_SUB_LEAF_EDX; /** Sub-Leaf 1 Enumeration of Intel SGX Capabilities. Enumerates Intel SGX capability of processor state configuration and enclave configuration in the SECS structure. @param EAX CPUID_INTEL_SGX (0x12) @param ECX CPUID_INTEL_SGX_CAPABILITIES_1_SUB_LEAF (0x01) @retval EAX Report the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE. SECS.ATTRIBUTES[n] can be set to 1 using ECREATE only if EAX[n] is 1, where n < 32. @retval EBX Report the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE. SECS.ATTRIBUTES[n+32] can be set to 1 using ECREATE only if EBX[n] is 1, where n < 32. @retval ECX Report the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE. SECS.ATTRIBUTES[n+64] can be set to 1 using ECREATE only if ECX[n] is 1, where n < 32. @retval EDX Report the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE. SECS.ATTRIBUTES[n+96] can be set to 1 using ECREATE only if EDX[n] is 1, where n < 32. Example usage @code UINT32 Eax; UINT32 Ebx; UINT32 Ecx; UINT32 Edx; AsmCpuidEx ( CPUID_INTEL_SGX, CPUID_INTEL_SGX_CAPABILITIES_1_SUB_LEAF, &Eax, &Ebx, &Ecx, &Edx ); @endcode **/ #define CPUID_INTEL_SGX_CAPABILITIES_1_SUB_LEAF 0x01 /** Sub-Leaf Index 2 or Higher Enumeration of Intel SGX Resources. Enumerates available EPC resources. @param EAX CPUID_INTEL_SGX (0x12) @param ECX CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF (0x02) @retval EAX The format of Sub-Leaf Index 2 or Higher Enumeration of Intel SGX Resources is described by the type CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EAX. @retval EBX The format of Sub-Leaf Index 2 or Higher Enumeration of Intel SGX Resources is described by the type CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EBX. @retval EDX The format of Sub-Leaf Index 2 or Higher Enumeration of Intel SGX Resources is described by the type CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_ECX. @retval EDX The format of Sub-Leaf Index 2 or Higher Enumeration of Intel SGX Resources is described by the type CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EDX. Example usage @code CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EAX Eax; CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EBX Ebx; CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_ECX Ecx; CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EDX Edx; AsmCpuidEx ( CPUID_INTEL_SGX, CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32 ); @endcode **/ #define CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF 0x02 /** Sub-Leaf Index 2 or Higher Enumeration of Intel SGX Resources EAX for CPUID leaf #CPUID_INTEL_SGX, sub-leaf #CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 3:0] Sub-leaf-type encoding. /// 0000b: This sub-leaf is invalid, EBX:EAX and EDX:ECX report 0. /// 0001b: This sub-leaf provides information on the Enclave Page Cache (EPC) /// in EBX:EAX and EDX:ECX. /// All other encoding are reserved. /// UINT32 SubLeafType:4; UINT32 Reserved:8; /// /// [Bit 31:12] If EAX[3:0] = 0001b, these are bits 31:12 of the physical address of /// the base of the EPC section. /// UINT32 LowAddressOfEpcSection:20; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EAX; /** Sub-Leaf Index 2 or Higher Enumeration of Intel SGX Resources EBX for CPUID leaf #CPUID_INTEL_SGX, sub-leaf #CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 19:0] If EAX[3:0] = 0001b, these are bits 51:32 of the physical address of /// the base of the EPC section. /// UINT32 HighAddressOfEpcSection:20; UINT32 Reserved:12; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EBX; /** Sub-Leaf Index 2 or Higher Enumeration of Intel SGX Resources ECX for CPUID leaf #CPUID_INTEL_SGX, sub-leaf #CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 3:0] The EPC section encoding. /// 0000b: Not valid. /// 0001b: The EPC section is confidentiality, integrity and replay protected. /// All other encoding are reserved. /// UINT32 EpcSection:4; UINT32 Reserved:8; /// /// [Bit 31:12] If EAX[3:0] = 0001b, these are bits 31:12 of the size of the /// corresponding EPC section within the Processor Reserved Memory. /// UINT32 LowSizeOfEpcSection:20; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_ECX; /** Sub-Leaf Index 2 or Higher Enumeration of Intel SGX Resources EDX for CPUID leaf #CPUID_INTEL_SGX, sub-leaf #CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 19:0] If EAX[3:0] = 0001b, these are bits 51:32 of the size of the /// corresponding EPC section within the Processor Reserved Memory. /// UINT32 HighSizeOfEpcSection:20; UINT32 Reserved:12; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_SGX_CAPABILITIES_RESOURCES_SUB_LEAF_EDX; /** CPUID Intel Processor Trace Information @param EAX CPUID_INTEL_PROCESSOR_TRACE (0x14) @param ECX CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF (0x00). CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF (0x01). **/ #define CPUID_INTEL_PROCESSOR_TRACE 0x14 /** CPUID Intel Processor Trace Information Main Leaf @param EAX CPUID_INTEL_PROCEDSSOR_TRACE (0x14) @param ECX CPUID_INTEL_PROCEDSSOR_TRACE_MAIN_LEAF (0x00) @retval EAX Reports the maximum sub-leaf supported in leaf 14H. @retval EBX Returns Intel processor trace information described by the type CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF_EBX. @retval ECX Returns Intel processor trace information described by the type CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF_ECX. @retval EDX Reserved. Example usage @code UINT32 Eax; CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF_EBX Ebx; CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF_ECX Ecx; AsmCpuidEx ( CPUID_INTEL_PROCESSOR_TRACE, CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF, &Eax, &Ebx.Uint32, &Ecx.Uint32, NULL ); @endcode **/ #define CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF 0x00 /** CPUID Intel Processor Trace EBX for CPUID leaf #CPUID_INTEL_PROCESSOR_TRACE, sub-leaf #CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] If 1, indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, /// and that IA32_RTIT_CR3_MATCH MSR can be accessed. /// UINT32 Cr3Filter:1; /// /// [Bit 1] If 1, indicates support of Configurable PSB and Cycle-Accurate /// Mode. /// UINT32 ConfigurablePsb:1; /// /// [Bit 2] If 1, indicates support of IP Filtering, TraceStop filtering, /// and preservation of Intel PT MSRs across warm reset. /// UINT32 IpTraceStopFiltering:1; /// /// [Bit 3] If 1, indicates support of MTC timing packet and suppression of /// COFI-based packets. /// UINT32 Mtc:1; /// /// [Bit 4] If 1, indicates support of PTWRITE. Writes can set /// IA32_RTIT_CTL[12] (PTWEn) and IA32_RTIT_CTL[5] (FUPonPTW), and PTWRITE /// can generate packets. /// UINT32 PTWrite:1; /// /// [Bit 5] If 1, indicates support of Power Event Trace. Writes can set /// IA32_RTIT_CTL[4] (PwrEvtEn), enabling Power Event Trace packet /// generation. /// UINT32 PowerEventTrace:1; UINT32 Reserved:26; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF_EBX; /** CPUID Intel Processor Trace ECX for CPUID leaf #CPUID_INTEL_PROCESSOR_TRACE, sub-leaf #CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence /// utilizing the ToPA output scheme; IA32_RTIT_OUTPUT_BASE and /// IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed. /// UINT32 RTIT:1; /// /// [Bit 1] If 1, ToPA tables can hold any number of output entries, up to /// the maximum allowed by the MaskOrTableOffset field of /// IA32_RTIT_OUTPUT_MASK_PTRS. /// UINT32 ToPA:1; /// /// [Bit 2] If 1, indicates support of Single-Range Output scheme. /// UINT32 SingleRangeOutput:1; /// /// [Bit 3] If 1, indicates support of output to Trace Transport subsystem. /// UINT32 TraceTransportSubsystem:1; UINT32 Reserved:27; /// /// [Bit 31] If 1, generated packets which contain IP payloads have LIP /// values, which include the CS base component. /// UINT32 LIP:1; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF_ECX; /** CPUID Intel Processor Trace Information Sub-leaf @param EAX CPUID_INTEL_PROCEDSSOR_TRACE (0x14) @param ECX CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF (0x01) @retval EAX Returns Intel processor trace information described by the type CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF_EAX. @retval EBX Returns Intel processor trace information described by the type CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF_EBX. @retval ECX Reserved. @retval EDX Reserved. Example usage @code UINT32 MaximumSubLeaf; UINT32 SubLeaf; CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF_EAX Eax; CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF_EBX Ebx; AsmCpuidEx ( CPUID_INTEL_PROCESSOR_TRACE, CPUID_INTEL_PROCESSOR_TRACE_MAIN_LEAF, &MaximumSubLeaf, NULL, NULL, NULL ); for (SubLeaf = CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF; SubLeaf <= MaximumSubLeaf; SubLeaf++) { AsmCpuidEx ( CPUID_INTEL_PROCESSOR_TRACE, SubLeaf, &Eax.Uint32, &Ebx.Uint32, NULL, NULL ); } @endcode **/ #define CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF 0x01 /** CPUID Intel Processor Trace EAX for CPUID leaf #CPUID_INTEL_PROCESSOR_TRACE, sub-leaf #CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 2:0] Number of configurable Address Ranges for filtering. /// UINT32 ConfigurableAddressRanges:3; UINT32 Reserved:13; /// /// [Bits 31:16] Bitmap of supported MTC period encodings /// UINT32 MtcPeriodEncodings:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF_EAX; /** CPUID Intel Processor Trace EBX for CPUID leaf #CPUID_INTEL_PROCESSOR_TRACE, sub-leaf #CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 15:0] Bitmap of supported Cycle Threshold value encodings. /// UINT32 CycleThresholdEncodings:16; /// /// [Bits 31:16] Bitmap of supported Configurable PSB frequency encodings. /// UINT32 PsbFrequencyEncodings:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_INTEL_PROCESSOR_TRACE_SUB_LEAF_EBX; /** CPUID Time Stamp Counter and Nominal Core Crystal Clock Information @note If EBX[31:0] is 0, the TSC/"core crystal clock" ratio is not enumerated. EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock frequency. If ECX is 0, the nominal core crystal clock frequency is not enumerated. "TSC frequency" = "core crystal clock frequency" * EBX/EAX. The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies. @param EAX CPUID_TIME_STAMP_COUNTER (0x15) @retval EAX An unsigned integer which is the denominator of the TSC/"core crystal clock" ratio @retval EBX An unsigned integer which is the numerator of the TSC/"core crystal clock" ratio. @retval ECX An unsigned integer which is the nominal frequency of the core crystal clock in Hz. @retval EDX Reserved. Example usage @code UINT32 Eax; UINT32 Ebx; UINT32 Ecx; AsmCpuid (CPUID_TIME_STAMP_COUNTER, &Eax, &Ebx, &Ecx, NULL); @endcode **/ #define CPUID_TIME_STAMP_COUNTER 0x15 /** CPUID Processor Frequency Information @note Data is returned from this interface in accordance with the processor's specification and does not reflect actual values. Suitable use of this data includes the display of processor information in like manner to the processor brand string and for determining the appropriate range to use when displaying processor information e.g. frequency history graphs. The returned information should not be used for any other purpose as the returned information does not accurately correlate to information / counters returned by other processor interfaces. While a processor may support the Processor Frequency Information leaf, fields that return a value of zero are not supported. @param EAX CPUID_TIME_STAMP_COUNTER (0x16) @retval EAX Returns processor base frequency information described by the type CPUID_PROCESSOR_FREQUENCY_EAX. @retval EBX Returns maximum frequency information described by the type CPUID_PROCESSOR_FREQUENCY_EBX. @retval ECX Returns bus frequency information described by the type CPUID_PROCESSOR_FREQUENCY_ECX. @retval EDX Reserved. Example usage @code CPUID_PROCESSOR_FREQUENCY_EAX Eax; CPUID_PROCESSOR_FREQUENCY_EBX Ebx; CPUID_PROCESSOR_FREQUENCY_ECX Ecx; AsmCpuid (CPUID_PROCESSOR_FREQUENCY, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, NULL); @endcode **/ #define CPUID_PROCESSOR_FREQUENCY 0x16 /** CPUID Processor Frequency Information EAX for CPUID leaf #CPUID_PROCESSOR_FREQUENCY. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 15:0] Processor Base Frequency (in MHz). /// UINT32 ProcessorBaseFrequency:16; UINT32 Reserved:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_PROCESSOR_FREQUENCY_EAX; /** CPUID Processor Frequency Information EBX for CPUID leaf #CPUID_PROCESSOR_FREQUENCY. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 15:0] Maximum Frequency (in MHz). /// UINT32 MaximumFrequency:16; UINT32 Reserved:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_PROCESSOR_FREQUENCY_EBX; /** CPUID Processor Frequency Information ECX for CPUID leaf #CPUID_PROCESSOR_FREQUENCY. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 15:0] Bus (Reference) Frequency (in MHz). /// UINT32 BusFrequency:16; UINT32 Reserved:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_PROCESSOR_FREQUENCY_ECX; /** CPUID SoC Vendor Information @param EAX CPUID_SOC_VENDOR (0x17) @param ECX CPUID_SOC_VENDOR_MAIN_LEAF (0x00) CPUID_SOC_VENDOR_BRAND_STRING1 (0x01) CPUID_SOC_VENDOR_BRAND_STRING1 (0x02) CPUID_SOC_VENDOR_BRAND_STRING1 (0x03) @note Leaf 17H output depends on the initial value in ECX. SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of 00H. The complete SOC Vendor Brand String is constructed by concatenating in ascending order of EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3. **/ #define CPUID_SOC_VENDOR 0x17 /** CPUID SoC Vendor Information @param EAX CPUID_SOC_VENDOR (0x17) @param ECX CPUID_SOC_VENDOR_MAIN_LEAF (0x00) @retval EAX MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H. @retval EBX Returns SoC Vendor information described by the type CPUID_SOC_VENDOR_MAIN_LEAF_EBX. @retval ECX Project ID. A unique number an SOC vendor assigns to its SOC projects. @retval EDX Stepping ID. A unique number within an SOC project that an SOC vendor assigns. Example usage @code UINT32 Eax; CPUID_SOC_VENDOR_MAIN_LEAF_EBX Ebx; UINT32 Ecx; UINT32 Edx; AsmCpuidEx ( CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_MAIN_LEAF, &Eax, &Ebx.Uint32, &Ecx, &Edx ); @endcode **/ #define CPUID_SOC_VENDOR_MAIN_LEAF 0x00 /** CPUID SoC Vendor Information EBX for CPUID leaf #CPUID_SOC_VENDOR sub-leaf #CPUID_SOC_VENDOR_MAIN_LEAF. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 15:0] SOC Vendor ID. /// UINT32 SocVendorId:16; /// /// [Bit 16] If 1, the SOC Vendor ID field is assigned via an industry /// standard enumeration scheme. Otherwise, the SOC Vendor ID field is /// assigned by Intel. /// UINT32 IsVendorScheme:1; UINT32 Reserved:15; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_SOC_VENDOR_MAIN_LEAF_EBX; /** CPUID SoC Vendor Information @param EAX CPUID_SOC_VENDOR (0x17) @param ECX CPUID_SOC_VENDOR_BRAND_STRING1 (0x01) @retval EAX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. @retval EBX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. @retval ECX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. @retval EDX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. Example usage @code CPUID_SOC_VENDOR_BRAND_STRING_DATA Eax; CPUID_SOC_VENDOR_BRAND_STRING_DATA Ebx; CPUID_SOC_VENDOR_BRAND_STRING_DATA Ecx; CPUID_SOC_VENDOR_BRAND_STRING_DATA Edx; AsmCpuidEx ( CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_BRAND_STRING1, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32 ); @endcode **/ #define CPUID_SOC_VENDOR_BRAND_STRING1 0x01 /** CPUID SoC Vendor Brand String for CPUID leafs #CPUID_SOC_VENDOR_BRAND_STRING1, #CPUID_SOC_VENDOR_BRAND_STRING2, and #CPUID_SOC_VENDOR_BRAND_STRING3. **/ typedef union { /// /// 4 UTF-8 characters of Soc Vendor Brand String /// CHAR8 BrandString[4]; /// /// All fields as a 32-bit value /// UINT32 Uint32; } CPUID_SOC_VENDOR_BRAND_STRING_DATA; /** CPUID SoC Vendor Information @param EAX CPUID_SOC_VENDOR (0x17) @param ECX CPUID_SOC_VENDOR_BRAND_STRING2 (0x02) @retval EAX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. @retval EBX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. @retval ECX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. @retval EDX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. Example usage @code CPUID_SOC_VENDOR_BRAND_STRING_DATA Eax; CPUID_SOC_VENDOR_BRAND_STRING_DATA Ebx; CPUID_SOC_VENDOR_BRAND_STRING_DATA Ecx; CPUID_SOC_VENDOR_BRAND_STRING_DATA Edx; AsmCpuidEx ( CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_BRAND_STRING2, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32 ); @endcode **/ #define CPUID_SOC_VENDOR_BRAND_STRING2 0x02 /** CPUID SoC Vendor Information @param EAX CPUID_SOC_VENDOR (0x17) @param ECX CPUID_SOC_VENDOR_BRAND_STRING3 (0x03) @retval EAX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. @retval EBX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. @retval ECX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. @retval EDX SOC Vendor Brand String. UTF-8 encoded string of type CPUID_SOC_VENDOR_BRAND_STRING_DATA. Example usage @code CPUID_SOC_VENDOR_BRAND_STRING_DATA Eax; CPUID_SOC_VENDOR_BRAND_STRING_DATA Ebx; CPUID_SOC_VENDOR_BRAND_STRING_DATA Ecx; CPUID_SOC_VENDOR_BRAND_STRING_DATA Edx; AsmCpuidEx ( CPUID_SOC_VENDOR, CPUID_SOC_VENDOR_BRAND_STRING3, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32 ); @endcode **/ #define CPUID_SOC_VENDOR_BRAND_STRING3 0x03 /** CPUID Extended Function @param EAX CPUID_EXTENDED_FUNCTION (0x80000000) @retval EAX Maximum Input Value for Extended Function CPUID Information. @retval EBX Reserved. @retval ECX Reserved. @retval EDX Reserved. Example usage @code UINT32 Eax; AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL); @endcode **/ #define CPUID_EXTENDED_FUNCTION 0x80000000 /** CPUID Extended Processor Signature and Feature Bits @param EAX CPUID_EXTENDED_CPU_SIG (0x80000001) @retval EAX CPUID_EXTENDED_CPU_SIG. @retval EBX Reserved. @retval ECX Extended Processor Signature and Feature Bits information described by the type CPUID_EXTENDED_CPU_SIG_ECX. @retval EDX Extended Processor Signature and Feature Bits information described by the type CPUID_EXTENDED_CPU_SIG_EDX. Example usage @code UINT32 Eax; CPUID_EXTENDED_CPU_SIG_ECX Ecx; CPUID_EXTENDED_CPU_SIG_EDX Edx; AsmCpuid (CPUID_EXTENDED_CPU_SIG, &Eax, NULL, &Ecx.Uint32, &Edx.Uint32); @endcode **/ #define CPUID_EXTENDED_CPU_SIG 0x80000001 /** CPUID Extended Processor Signature and Feature Bits ECX for CPUID leaf #CPUID_EXTENDED_CPU_SIG. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bit 0] LAHF/SAHF available in 64-bit mode. /// UINT32 LAHF_SAHF:1; UINT32 Reserved1:4; /// /// [Bit 5] LZCNT. /// UINT32 LZCNT:1; UINT32 Reserved2:2; /// /// [Bit 8] PREFETCHW. /// UINT32 PREFETCHW:1; UINT32 Reserved3:23; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_EXTENDED_CPU_SIG_ECX; /** CPUID Extended Processor Signature and Feature Bits EDX for CPUID leaf #CPUID_EXTENDED_CPU_SIG. **/ typedef union { /// /// Individual bit fields /// struct { UINT32 Reserved1:11; /// /// [Bit 11] SYSCALL/SYSRET available in 64-bit mode. /// UINT32 SYSCALL_SYSRET:1; UINT32 Reserved2:8; /// /// [Bit 20] Execute Disable Bit available. /// UINT32 NX:1; UINT32 Reserved3:5; /// /// [Bit 26] 1-GByte pages are available if 1. /// UINT32 Page1GB:1; /// /// [Bit 27] RDTSCP and IA32_TSC_AUX are available if 1. /// UINT32 RDTSCP:1; UINT32 Reserved4:1; /// /// [Bit 29] Intel(R) 64 Architecture available if 1. /// UINT32 LM:1; UINT32 Reserved5:2; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_EXTENDED_CPU_SIG_EDX; /** CPUID Processor Brand String @param EAX CPUID_BRAND_STRING1 (0x80000002) @retval EAX Processor Brand String in type CPUID_BRAND_STRING_DATA. @retval EBX Processor Brand String Continued in type CPUID_BRAND_STRING_DATA. @retval ECX Processor Brand String Continued in type CPUID_BRAND_STRING_DATA. @retval EDX Processor Brand String Continued in type CPUID_BRAND_STRING_DATA. Example usage @code CPUID_BRAND_STRING_DATA Eax; CPUID_BRAND_STRING_DATA Ebx; CPUID_BRAND_STRING_DATA Ecx; CPUID_BRAND_STRING_DATA Edx; AsmCpuid (CPUID_BRAND_STRING1, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32); @endcode **/ #define CPUID_BRAND_STRING1 0x80000002 /** CPUID Processor Brand String for CPUID leafs #CPUID_BRAND_STRING1, #CPUID_BRAND_STRING2, and #CPUID_BRAND_STRING3. **/ typedef union { /// /// 4 ASCII characters of Processor Brand String /// CHAR8 BrandString[4]; /// /// All fields as a 32-bit value /// UINT32 Uint32; } CPUID_BRAND_STRING_DATA; /** CPUID Processor Brand String @param EAX CPUID_BRAND_STRING2 (0x80000003) @retval EAX Processor Brand String Continued in type CPUID_BRAND_STRING_DATA. @retval EBX Processor Brand String Continued in type CPUID_BRAND_STRING_DATA. @retval ECX Processor Brand String Continued in type CPUID_BRAND_STRING_DATA. @retval EDX Processor Brand String Continued in type CPUID_BRAND_STRING_DATA. Example usage @code CPUID_BRAND_STRING_DATA Eax; CPUID_BRAND_STRING_DATA Ebx; CPUID_BRAND_STRING_DATA Ecx; CPUID_BRAND_STRING_DATA Edx; AsmCpuid (CPUID_BRAND_STRING2, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32); @endcode **/ #define CPUID_BRAND_STRING2 0x80000003 /** CPUID Processor Brand String @param EAX CPUID_BRAND_STRING3 (0x80000004) @retval EAX Processor Brand String Continued in type CPUID_BRAND_STRING_DATA. @retval EBX Processor Brand String Continued in type CPUID_BRAND_STRING_DATA. @retval ECX Processor Brand String Continued in type CPUID_BRAND_STRING_DATA. @retval EDX Processor Brand String Continued in type CPUID_BRAND_STRING_DATA. Example usage @code CPUID_BRAND_STRING_DATA Eax; CPUID_BRAND_STRING_DATA Ebx; CPUID_BRAND_STRING_DATA Ecx; CPUID_BRAND_STRING_DATA Edx; AsmCpuid (CPUID_BRAND_STRING3, &Eax.Uint32, &Ebx.Uint32, &Ecx.Uint32, &Edx.Uint32); @endcode **/ #define CPUID_BRAND_STRING3 0x80000004 /** CPUID Extended Cache information @param EAX CPUID_EXTENDED_CACHE_INFO (0x80000006) @retval EAX Reserved. @retval EBX Reserved. @retval ECX Extended cache information described by the type CPUID_EXTENDED_CACHE_INFO_ECX. @retval EDX Reserved. Example usage @code CPUID_EXTENDED_CACHE_INFO_ECX Ecx; AsmCpuid (CPUID_EXTENDED_CACHE_INFO, NULL, NULL, &Ecx.Uint32, NULL); @endcode **/ #define CPUID_EXTENDED_CACHE_INFO 0x80000006 /** CPUID Extended Cache information ECX for CPUID leaf #CPUID_EXTENDED_CACHE_INFO. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 7:0] Cache line size in bytes. /// UINT32 CacheLineSize:8; UINT32 Reserved:4; /// /// [Bits 15:12] L2 Associativity field. Supported values are in the range /// #CPUID_EXTENDED_CACHE_INFO_ECX_L2_ASSOCIATIVITY_DISABLED to /// #CPUID_EXTENDED_CACHE_INFO_ECX_L2_ASSOCIATIVITY_FULL /// UINT32 L2Associativity:4; /// /// [Bits 31:16] Cache size in 1K units. /// UINT32 CacheSize:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_EXTENDED_CACHE_INFO_ECX; /// /// @{ Define value for bit field CPUID_EXTENDED_CACHE_INFO_ECX.L2Associativity /// #define CPUID_EXTENDED_CACHE_INFO_ECX_L2_ASSOCIATIVITY_DISABLED 0x00 #define CPUID_EXTENDED_CACHE_INFO_ECX_L2_ASSOCIATIVITY_DIRECT_MAPPED 0x01 #define CPUID_EXTENDED_CACHE_INFO_ECX_L2_ASSOCIATIVITY_2_WAY 0x02 #define CPUID_EXTENDED_CACHE_INFO_ECX_L2_ASSOCIATIVITY_4_WAY 0x04 #define CPUID_EXTENDED_CACHE_INFO_ECX_L2_ASSOCIATIVITY_8_WAY 0x06 #define CPUID_EXTENDED_CACHE_INFO_ECX_L2_ASSOCIATIVITY_16_WAY 0x08 #define CPUID_EXTENDED_CACHE_INFO_ECX_L2_ASSOCIATIVITY_FULL 0x0F /// /// @} /// /** CPUID Extended Time Stamp Counter information @param EAX CPUID_EXTENDED_TIME_STAMP_COUNTER (0x80000007) @retval EAX Reserved. @retval EBX Reserved. @retval ECX Reserved. @retval EDX Extended time stamp counter (TSC) information described by the type CPUID_EXTENDED_TIME_STAMP_COUNTER_EDX. Example usage @code CPUID_EXTENDED_TIME_STAMP_COUNTER_EDX Edx; AsmCpuid (CPUID_EXTENDED_TIME_STAMP_COUNTER, NULL, NULL, NULL, &Edx.Uint32); @endcode **/ #define CPUID_EXTENDED_TIME_STAMP_COUNTER 0x80000007 /** CPUID Extended Time Stamp Counter information EDX for CPUID leaf #CPUID_EXTENDED_TIME_STAMP_COUNTER. **/ typedef union { /// /// Individual bit fields /// struct { UINT32 Reserved1:8; /// /// [Bit 8] Invariant TSC available if 1. /// UINT32 InvariantTsc:1; UINT32 Reserved2:23; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_EXTENDED_TIME_STAMP_COUNTER_EDX; /** CPUID Linear Physical Address Size @param EAX CPUID_VIR_PHY_ADDRESS_SIZE (0x80000008) @retval EAX Linear/Physical Address Size described by the type CPUID_VIR_PHY_ADDRESS_SIZE_EAX. @retval EBX Reserved. @retval ECX Reserved. @retval EDX Reserved. Example usage @code CPUID_VIR_PHY_ADDRESS_SIZE_EAX Eax; AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, &Eax.Uint32, NULL, NULL, NULL); @endcode **/ #define CPUID_VIR_PHY_ADDRESS_SIZE 0x80000008 /** CPUID Linear Physical Address Size EAX for CPUID leaf #CPUID_VIR_PHY_ADDRESS_SIZE. **/ typedef union { /// /// Individual bit fields /// struct { /// /// [Bits 7:0] Number of physical address bits. /// /// @note /// If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address /// number supported should come from this field. /// UINT32 PhysicalAddressBits:8; /// /// [Bits 15:8] Number of linear address bits. /// UINT32 LinearAddressBits:8; UINT32 Reserved:16; } Bits; /// /// All bit fields as a 32-bit value /// UINT32 Uint32; } CPUID_VIR_PHY_ADDRESS_SIZE_EAX; #endif