/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % QQQ U U AAA N N TTTTT U U M M % % Q Q U U A A NN N T U U MM MM % % Q Q U U AAAAA N N N T U U M M M % % Q QQ U U A A N NN T U U M M % % QQQQ UUU A A N N T UUU M M % % % % IIIII M M PPPP OOO RRRR TTTTT % % I MM MM P P O O R R T % % I M M M PPPP O O RRRR T % % I M M P O O R R T % % IIIII M M P OOO R R T % % % % MagickCore Methods to Import Quantum Pixels % % % % Software Design % % Cristy % % October 1998 % % % % % % Copyright 1999-2019 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % https://imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/property.h" #include "MagickCore/blob.h" #include "MagickCore/blob-private.h" #include "MagickCore/color-private.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/cache.h" #include "MagickCore/constitute.h" #include "MagickCore/delegate.h" #include "MagickCore/geometry.h" #include "MagickCore/list.h" #include "MagickCore/magick.h" #include "MagickCore/memory_.h" #include "MagickCore/monitor.h" #include "MagickCore/option.h" #include "MagickCore/pixel.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/pixel-private.h" #include "MagickCore/quantum.h" #include "MagickCore/quantum-private.h" #include "MagickCore/resource_.h" #include "MagickCore/semaphore.h" #include "MagickCore/statistic.h" #include "MagickCore/stream.h" #include "MagickCore/string_.h" #include "MagickCore/utility.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I m p o r t Q u a n t u m P i x e l s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ImportQuantumPixels() transfers one or more pixel components from a user % supplied buffer into the image pixel cache of an image. The pixels are % expected in network byte order. It returns MagickTrue if the pixels are % successfully transferred, otherwise MagickFalse. % % The format of the ImportQuantumPixels method is: % % size_t ImportQuantumPixels(const Image *image,CacheView *image_view, % QuantumInfo *quantum_info,const QuantumType quantum_type, % const unsigned char *magick_restrict pixels,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o image_view: the image cache view. % % o quantum_info: the quantum info. % % o quantum_type: Declare which pixel components to transfer (red, green, % blue, opacity, RGB, or RGBA). % % o pixels: The pixel components are transferred from this buffer. % % o exception: return any errors or warnings in this structure. % */ static inline Quantum PushColormapIndex(const Image *image,const size_t index, MagickBooleanType *range_exception) { if (index < image->colors) return((Quantum) index); *range_exception=MagickTrue; return((Quantum) 0); } static inline const unsigned char *PushDoublePixel(QuantumInfo *quantum_info, const unsigned char *magick_restrict pixels,double *pixel) { double *p; unsigned char quantum[8]; if (quantum_info->endian == LSBEndian) { quantum[0]=(*pixels++); quantum[1]=(*pixels++); quantum[2]=(*pixels++); quantum[3]=(*pixels++); quantum[4]=(*pixels++); quantum[5]=(*pixels++); quantum[6]=(*pixels++); quantum[7]=(*pixels++); p=(double *) quantum; *pixel=(*p); *pixel-=quantum_info->minimum; *pixel*=quantum_info->scale; return(pixels); } quantum[7]=(*pixels++); quantum[6]=(*pixels++); quantum[5]=(*pixels++); quantum[4]=(*pixels++); quantum[3]=(*pixels++); quantum[2]=(*pixels++); quantum[1]=(*pixels++); quantum[0]=(*pixels++); p=(double *) quantum; *pixel=(*p); *pixel-=quantum_info->minimum; *pixel*=quantum_info->scale; return(pixels); } static inline const unsigned char *PushQuantumFloatPixel(QuantumInfo *quantum_info, const unsigned char *magick_restrict pixels,float *pixel) { float *p; unsigned char quantum[4]; if (quantum_info->endian == LSBEndian) { quantum[0]=(*pixels++); quantum[1]=(*pixels++); quantum[2]=(*pixels++); quantum[3]=(*pixels++); p=(float *) quantum; *pixel=(*p); *pixel-=quantum_info->minimum; *pixel*=quantum_info->scale; return(pixels); } quantum[3]=(*pixels++); quantum[2]=(*pixels++); quantum[1]=(*pixels++); quantum[0]=(*pixels++); p=(float *) quantum; *pixel=(*p); *pixel-=quantum_info->minimum; *pixel*=quantum_info->scale; return(pixels); } static inline const unsigned char *PushQuantumPixel(QuantumInfo *quantum_info, const unsigned char *magick_restrict pixels,unsigned int *quantum) { register ssize_t i; register size_t quantum_bits; *quantum=(QuantumAny) 0; for (i=(ssize_t) quantum_info->depth; i > 0L; ) { if (quantum_info->state.bits == 0UL) { quantum_info->state.pixel=(*pixels++); quantum_info->state.bits=8UL; } quantum_bits=(size_t) i; if (quantum_bits > quantum_info->state.bits) quantum_bits=quantum_info->state.bits; i-=(ssize_t) quantum_bits; quantum_info->state.bits-=quantum_bits; *quantum=(unsigned int) ((*quantum << quantum_bits) | ((quantum_info->state.pixel >> quantum_info->state.bits) &~ ((~0UL) << quantum_bits))); } return(pixels); } static inline const unsigned char *PushQuantumLongPixel( QuantumInfo *quantum_info,const unsigned char *magick_restrict pixels, unsigned int *quantum) { register ssize_t i; register size_t quantum_bits; *quantum=0UL; for (i=(ssize_t) quantum_info->depth; i > 0; ) { if (quantum_info->state.bits == 0) { pixels=PushLongPixel(quantum_info->endian,pixels, &quantum_info->state.pixel); quantum_info->state.bits=32U; } quantum_bits=(size_t) i; if (quantum_bits > quantum_info->state.bits) quantum_bits=quantum_info->state.bits; *quantum|=(((quantum_info->state.pixel >> (32U-quantum_info->state.bits)) & quantum_info->state.mask[quantum_bits]) << (quantum_info->depth-i)); i-=(ssize_t) quantum_bits; quantum_info->state.bits-=quantum_bits; } return(pixels); } static void ImportAlphaQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportBGRQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; ssize_t bit; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range),q); SetPixelGreen(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range), q); SetPixelBlue(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } case 12: { range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { p=PushShortPixel(quantum_info->endian,p,&pixel); switch (x % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p=PushShortPixel(quantum_info->endian,p,&pixel); switch ((x+1) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { p=PushShortPixel(quantum_info->endian,p,&pixel); switch ((x+bit) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p+=quantum_info->pad; } if (bit != 0) p++; break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportBGRAQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(quantum_info->endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetPixelRed(image,(Quantum) quantum,q); break; case 1: SetPixelGreen(image,(Quantum) quantum,q); break; case 2: SetPixelBlue(image,(Quantum) quantum,q); break; case 3: SetPixelAlpha(image,(Quantum) quantum,q); break; } n++; } p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportBGROQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelOpacity(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(quantum_info->endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetPixelRed(image,(Quantum) quantum,q); break; case 1: SetPixelGreen(image,(Quantum) quantum,q); break; case 2: SetPixelBlue(image,(Quantum) quantum,q); break; case 3: SetPixelOpacity(image,(Quantum) quantum,q); break; } n++; } p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportBlackQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; unsigned int pixel; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlack(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlack(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportBlueQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportCbYCrYQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 10: { Quantum cbcr[4]; pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) (number_pixels-3); x+=4) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(quantum_info->endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } cbcr[i]=(Quantum) (quantum); n++; } p+=quantum_info->pad; SetPixelRed(image,cbcr[1],q); SetPixelGreen(image,cbcr[0],q); SetPixelBlue(image,cbcr[2],q); q+=GetPixelChannels(image); SetPixelRed(image,cbcr[3],q); SetPixelGreen(image,cbcr[0],q); SetPixelBlue(image,cbcr[2],q); q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportCMYKQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; unsigned int pixel; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlack(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlack(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportCMYKAQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; unsigned int pixel; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlack(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlack(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportCMYKOQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q,ExceptionInfo *exception) { QuantumAny range; register ssize_t x; unsigned int pixel; if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColorSeparatedImageRequired","`%s'",image->filename); return; } switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlack(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelOpacity(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlack(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlack(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlack(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportGrayQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; ssize_t bit; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); pixel=0; switch (quantum_info->depth) { case 1: { register Quantum black, white; black=0; white=QuantumRange; if (quantum_info->min_is_white != MagickFalse) { black=QuantumRange; white=0; } for (x=0; x < ((ssize_t) number_pixels-7); x+=8) { for (bit=0; bit < 8; bit++) { SetPixelGray(image,((*p) & (1 << (7-bit))) == 0 ? black : white,q); q+=GetPixelChannels(image); } p++; } for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++) { SetPixelGray(image,((*p) & (0x01 << (7-bit))) == 0 ? black : white,q); q+=GetPixelChannels(image); } if (bit != 0) p++; break; } case 4: { register unsigned char pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < ((ssize_t) number_pixels-1); x+=2) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); pixel=(unsigned char) ((*p) & 0xf); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p++; q+=GetPixelChannels(image); } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { pixel=(unsigned char) (*p++ >> 4); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } case 8: { unsigned char pixel; if (quantum_info->min_is_white != MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelGray(image,QuantumRange-ScaleCharToQuantum(pixel),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelGray(image,ScaleCharToQuantum(pixel),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { if (image->endian == LSBEndian) { for (x=0; x < (ssize_t) (number_pixels-2); x+=3) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff, range),q); q+=GetPixelChannels(image); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); q+=GetPixelChannels(image); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff, range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } if (x++ < (ssize_t) (number_pixels-1)) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff, range),q); q+=GetPixelChannels(image); } if (x++ < (ssize_t) number_pixels) { SetPixelGray(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) (number_pixels-2); x+=3) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range), q); q+=GetPixelChannels(image); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range), q); q+=GetPixelChannels(image); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range), q); p+=quantum_info->pad; q+=GetPixelChannels(image); } if (x++ < (ssize_t) (number_pixels-1)) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff, range),q); q+=GetPixelChannels(image); } if (x++ < (ssize_t) number_pixels) { SetPixelGray(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff, range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 12: { range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (number_pixels-1); x+=2) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } if (bit != 0) p++; break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->min_is_white != MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,QuantumRange-ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGray(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGray(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportGrayAlphaQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; ssize_t bit; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 1: { register unsigned char pixel; bit=0; for (x=((ssize_t) number_pixels-3); x > 0; x-=4) { for (bit=0; bit < 8; bit+=2) { pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelGray(image,(Quantum) (pixel == 0 ? 0 : QuantumRange),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); q+=GetPixelChannels(image); } p++; } if ((number_pixels % 4) != 0) for (bit=3; bit >= (ssize_t) (4-(number_pixels % 4)); bit-=2) { pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelGray(image,(Quantum) (pixel != 0 ? 0 : QuantumRange),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); q+=GetPixelChannels(image); } if (bit != 0) p++; break; } case 4: { register unsigned char pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); pixel=(unsigned char) ((*p) & 0xf); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p++; q+=GetPixelChannels(image); } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelGray(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 12: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGray(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGray(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGray(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGray(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportGreenQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportIndexQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q,ExceptionInfo *exception) { MagickBooleanType range_exception; register ssize_t x; ssize_t bit; unsigned int pixel; if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColormappedImageRequired","`%s'",image->filename); return; } range_exception=MagickFalse; switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-7); x+=8) { for (bit=0; bit < 8; bit++) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception), q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=GetPixelChannels(image); } p++; } for (bit=0; bit < (ssize_t) (number_pixels % 8); bit++) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=GetPixelChannels(image); } break; } case 4: { register unsigned char pixel; for (x=0; x < ((ssize_t) number_pixels-1); x+=2) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=GetPixelChannels(image); pixel=(unsigned char) ((*p) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p++; q+=GetPixelChannels(image); } for (bit=0; bit < (ssize_t) (number_pixels % 2); bit++) { pixel=(unsigned char) ((*p++ >> 4) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); q+=GetPixelChannels(image); } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,ClampToQuantum( (double) QuantumRange*HalfToSinglePrecision(pixel)), &range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,ClampToQuantum(pixel), &range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,ClampToQuantum(pixel), &range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } if (range_exception != MagickFalse) (void) ThrowMagickException(exception,GetMagickModule(),CorruptImageError, "InvalidColormapIndex","`%s'",image->filename); } static void ImportIndexAlphaQuantum(const Image *image, QuantumInfo *quantum_info,const MagickSizeType number_pixels, const unsigned char *magick_restrict p,Quantum *magick_restrict q, ExceptionInfo *exception) { MagickBooleanType range_exception; QuantumAny range; register ssize_t x; ssize_t bit; unsigned int pixel; if (image->storage_class != PseudoClass) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ColormappedImageRequired","`%s'",image->filename); return; } range_exception=MagickFalse; switch (quantum_info->depth) { case 1: { register unsigned char pixel; for (x=((ssize_t) number_pixels-3); x > 0; x-=4) { for (bit=0; bit < 8; bit+=2) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelGray(image,(Quantum) (pixel == 0 ? 0 : QuantumRange),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); SetPixelIndex(image,(Quantum) (pixel == 0 ? 0 : 1),q); q+=GetPixelChannels(image); } } if ((number_pixels % 4) != 0) for (bit=3; bit >= (ssize_t) (4-(number_pixels % 4)); bit-=2) { if (quantum_info->min_is_white == MagickFalse) pixel=(unsigned char) (((*p) & (1 << (7-bit))) == 0 ? 0x00 : 0x01); else pixel=(unsigned char) (((*p) & (1 << (7-bit))) != 0 ? 0x00 : 0x01); SetPixelIndex(image,(Quantum) (pixel == 0 ? 0 : 1),q); SetPixelGray(image,(Quantum) (pixel == 0 ? 0 : QuantumRange),q); SetPixelAlpha(image,((*p) & (1UL << (unsigned char) (6-bit))) == 0 ? TransparentAlpha : OpaqueAlpha,q); q+=GetPixelChannels(image); } break; } case 4: { register unsigned char pixel; range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { pixel=(unsigned char) ((*p >> 4) & 0xf); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); pixel=(unsigned char) ((*p) & 0xf); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p++; q+=GetPixelChannels(image); } break; } case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,ClampToQuantum( (double) QuantumRange*HalfToSinglePrecision(pixel)), &range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image, ClampToQuantum(pixel),&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,ClampToQuantum(pixel), &range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelIndex(image,PushColormapIndex(image,pixel,&range_exception),q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) GetPixelIndex(image,q),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } if (range_exception != MagickFalse) (void) ThrowMagickException(exception,GetMagickModule(),CorruptImageError, "InvalidColormapIndex","`%s'",image->filename); } static void ImportOpacityQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelOpacity(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportRedQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } } static void ImportRGBQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; ssize_t bit; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); SetPixelAlpha(image,OpaqueAlpha,q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum((pixel >> 22) & 0x3ff,range),q); SetPixelGreen(image,ScaleAnyToQuantum((pixel >> 12) & 0x3ff,range), q); SetPixelBlue(image,ScaleAnyToQuantum((pixel >> 2) & 0x3ff,range),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } case 12: { range=GetQuantumRange(quantum_info->depth); if (quantum_info->pack == MagickFalse) { unsigned short pixel; for (x=0; x < (ssize_t) (3*number_pixels-1); x+=2) { p=PushShortPixel(quantum_info->endian,p,&pixel); switch (x % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p=PushShortPixel(quantum_info->endian,p,&pixel); switch ((x+1) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p+=quantum_info->pad; } for (bit=0; bit < (ssize_t) (3*number_pixels % 2); bit++) { p=PushShortPixel(quantum_info->endian,p,&pixel); switch ((x+bit) % 3) { default: case 0: { SetPixelRed(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 1: { SetPixelGreen(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); break; } case 2: { SetPixelBlue(image,ScaleAnyToQuantum((QuantumAny) (pixel >> 4), range),q); q+=GetPixelChannels(image); break; } } p+=quantum_info->pad; } if (bit != 0) p++; break; } if (quantum_info->quantum == 32U) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumLongPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportRGBAQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelAlpha(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(quantum_info->endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetPixelRed(image,(Quantum) quantum,q); break; case 1: SetPixelGreen(image,(Quantum) quantum,q); break; case 2: SetPixelBlue(image,(Quantum) quantum,q); break; case 3: SetPixelAlpha(image,(Quantum) quantum,q); break; } n++; } p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelAlpha(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelAlpha(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelAlpha(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } static void ImportRGBOQuantum(const Image *image,QuantumInfo *quantum_info, const MagickSizeType number_pixels,const unsigned char *magick_restrict p, Quantum *magick_restrict q) { QuantumAny range; register ssize_t x; unsigned int pixel; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); switch (quantum_info->depth) { case 8: { unsigned char pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushCharPixel(p,&pixel); SetPixelRed(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelGreen(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelBlue(image,ScaleCharToQuantum(pixel),q); p=PushCharPixel(p,&pixel); SetPixelOpacity(image,ScaleCharToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 10: { pixel=0; if (quantum_info->pack == MagickFalse) { register ssize_t i; size_t quantum; ssize_t n; n=0; quantum=0; for (x=0; x < (ssize_t) number_pixels; x++) { for (i=0; i < 4; i++) { switch (n % 3) { case 0: { p=PushLongPixel(quantum_info->endian,p,&pixel); quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 22) & 0x3ff) << 6))); break; } case 1: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 12) & 0x3ff) << 6))); break; } case 2: { quantum=(size_t) (ScaleShortToQuantum((unsigned short) (((pixel >> 2) & 0x3ff) << 6))); break; } } switch (i) { case 0: SetPixelRed(image,(Quantum) quantum,q); break; case 1: SetPixelGreen(image,(Quantum) quantum,q); break; case 2: SetPixelBlue(image,(Quantum) quantum,q); break; case 3: SetPixelOpacity(image,(Quantum) quantum,q); break; } n++; } p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleShortToQuantum((unsigned short) (pixel << 6)),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum((unsigned short) (pixel << 6)), q); q+=GetPixelChannels(image); } break; } case 16: { unsigned short pixel; if (quantum_info->format == FloatingPointQuantumFormat) { for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ClampToQuantum(QuantumRange* HalfToSinglePrecision(pixel)),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleShortToQuantum(pixel),q); p=PushShortPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleShortToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 32: { unsigned int pixel; if (quantum_info->format == FloatingPointQuantumFormat) { float pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushQuantumFloatPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) number_pixels; x++) { p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelRed(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelGreen(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelBlue(image,ScaleLongToQuantum(pixel),q); p=PushLongPixel(quantum_info->endian,p,&pixel); SetPixelOpacity(image,ScaleLongToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } case 64: { if (quantum_info->format == FloatingPointQuantumFormat) { double pixel; for (x=0; x < (ssize_t) number_pixels; x++) { p=PushDoublePixel(quantum_info,p,&pixel); SetPixelRed(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelGreen(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelBlue(image,ClampToQuantum(pixel),q); p=PushDoublePixel(quantum_info,p,&pixel); SetPixelOpacity(image,ClampToQuantum(pixel),q); p+=quantum_info->pad; q+=GetPixelChannels(image); } break; } } default: { range=GetQuantumRange(quantum_info->depth); for (x=0; x < (ssize_t) number_pixels; x++) { p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelRed(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelGreen(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelBlue(image,ScaleAnyToQuantum(pixel,range),q); p=PushQuantumPixel(quantum_info,p,&pixel); SetPixelOpacity(image,ScaleAnyToQuantum(pixel,range),q); q+=GetPixelChannels(image); } break; } } } MagickExport size_t ImportQuantumPixels(const Image *image, CacheView *image_view,QuantumInfo *quantum_info, const QuantumType quantum_type,const unsigned char *magick_restrict pixels, ExceptionInfo *exception) { MagickSizeType number_pixels; register const unsigned char *magick_restrict p; register ssize_t x; register Quantum *magick_restrict q; size_t extent; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(quantum_info != (QuantumInfo *) NULL); assert(quantum_info->signature == MagickCoreSignature); if (pixels == (const unsigned char *) NULL) pixels=(const unsigned char *) GetQuantumPixels(quantum_info); x=0; p=pixels; if (image_view == (CacheView *) NULL) { number_pixels=GetImageExtent(image); q=GetAuthenticPixelQueue(image); } else { number_pixels=GetCacheViewExtent(image_view); q=GetCacheViewAuthenticPixelQueue(image_view); } ResetQuantumState(quantum_info); extent=GetQuantumExtent(image,quantum_info,quantum_type); switch (quantum_type) { case AlphaQuantum: { ImportAlphaQuantum(image,quantum_info,number_pixels,p,q); break; } case BGRQuantum: { ImportBGRQuantum(image,quantum_info,number_pixels,p,q); break; } case BGRAQuantum: { ImportBGRAQuantum(image,quantum_info,number_pixels,p,q); break; } case BGROQuantum: { ImportBGROQuantum(image,quantum_info,number_pixels,p,q); break; } case BlackQuantum: { ImportBlackQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case BlueQuantum: case YellowQuantum: { ImportBlueQuantum(image,quantum_info,number_pixels,p,q); break; } case CMYKQuantum: { ImportCMYKQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case CMYKAQuantum: { ImportCMYKAQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case CMYKOQuantum: { ImportCMYKOQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case CbYCrYQuantum: { ImportCbYCrYQuantum(image,quantum_info,number_pixels,p,q); break; } case GrayQuantum: { ImportGrayQuantum(image,quantum_info,number_pixels,p,q); break; } case GrayAlphaQuantum: { ImportGrayAlphaQuantum(image,quantum_info,number_pixels,p,q); break; } case GreenQuantum: case MagentaQuantum: { ImportGreenQuantum(image,quantum_info,number_pixels,p,q); break; } case IndexQuantum: { ImportIndexQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case IndexAlphaQuantum: { ImportIndexAlphaQuantum(image,quantum_info,number_pixels,p,q,exception); break; } case OpacityQuantum: { ImportOpacityQuantum(image,quantum_info,number_pixels,p,q); break; } case RedQuantum: case CyanQuantum: { ImportRedQuantum(image,quantum_info,number_pixels,p,q); break; } case RGBQuantum: case CbYCrQuantum: { ImportRGBQuantum(image,quantum_info,number_pixels,p,q); break; } case RGBAQuantum: case CbYCrAQuantum: { ImportRGBAQuantum(image,quantum_info,number_pixels,p,q); break; } case RGBOQuantum: { ImportRGBOQuantum(image,quantum_info,number_pixels,p,q); break; } default: break; } if ((quantum_type == CbYCrQuantum) || (quantum_type == CbYCrAQuantum)) { Quantum quantum; register Quantum *magick_restrict q; q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { quantum=GetPixelRed(image,q); SetPixelRed(image,GetPixelGreen(image,q),q); SetPixelGreen(image,quantum,q); q+=GetPixelChannels(image); } } if (quantum_info->alpha_type == AssociatedQuantumAlpha) { double gamma, Sa; register Quantum *magick_restrict q; /* Disassociate alpha. */ q=GetAuthenticPixelQueue(image); if (image_view != (CacheView *) NULL) q=GetCacheViewAuthenticPixelQueue(image_view); for (x=0; x < (ssize_t) number_pixels; x++) { register ssize_t i; Sa=QuantumScale*GetPixelAlpha(image,q); gamma=PerceptibleReciprocal(Sa); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel = GetPixelChannelChannel(image,i); PixelTrait traits = GetPixelChannelTraits(image,channel); if ((channel == AlphaPixelChannel) || ((traits & UpdatePixelTrait) == 0)) continue; q[i]=ClampToQuantum(gamma*q[i]); } q+=GetPixelChannels(image); } } return(extent); }