// The MIT License (MIT) // // Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file). // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // Some of this code is taken from the ref10 version of Ed25519 in SUPERCOP // 20141124 (http://bench.cr.yp.to/supercop.html). That code is released as // public domain but parts have been replaced with code generated by Fiat // (https://github.com/mit-plv/fiat-crypto), which is MIT licensed. // // The field functions are shared by Ed25519 and X25519 where possible. #include #include #include #include #include #include #include #include #include "internal.h" #include "../../crypto/internal.h" // Various pre-computed constants. #include "./curve25519_tables.h" #if defined(BORINGSSL_CURVE25519_64BIT) #include "./curve25519_64.h" #else #include "./curve25519_32.h" #endif // BORINGSSL_CURVE25519_64BIT // Low-level intrinsic operations static uint64_t load_3(const uint8_t *in) { uint64_t result; result = (uint64_t)in[0]; result |= ((uint64_t)in[1]) << 8; result |= ((uint64_t)in[2]) << 16; return result; } static uint64_t load_4(const uint8_t *in) { uint64_t result; result = (uint64_t)in[0]; result |= ((uint64_t)in[1]) << 8; result |= ((uint64_t)in[2]) << 16; result |= ((uint64_t)in[3]) << 24; return result; } // Field operations. #if defined(BORINGSSL_CURVE25519_64BIT) typedef uint64_t fe_limb_t; #define FE_NUM_LIMBS 5 // assert_fe asserts that |f| satisfies bounds: // // [[0x0 ~> 0x8cccccccccccc], // [0x0 ~> 0x8cccccccccccc], // [0x0 ~> 0x8cccccccccccc], // [0x0 ~> 0x8cccccccccccc], // [0x0 ~> 0x8cccccccccccc]] // // See comments in curve25519_64.h for which functions use these bounds for // inputs or outputs. #define assert_fe(f) \ do { \ for (unsigned _assert_fe_i = 0; _assert_fe_i < 5; _assert_fe_i++) { \ assert(f[_assert_fe_i] <= UINT64_C(0x8cccccccccccc)); \ } \ } while (0) // assert_fe_loose asserts that |f| satisfies bounds: // // [[0x0 ~> 0x1a666666666664], // [0x0 ~> 0x1a666666666664], // [0x0 ~> 0x1a666666666664], // [0x0 ~> 0x1a666666666664], // [0x0 ~> 0x1a666666666664]] // // See comments in curve25519_64.h for which functions use these bounds for // inputs or outputs. #define assert_fe_loose(f) \ do { \ for (unsigned _assert_fe_i = 0; _assert_fe_i < 5; _assert_fe_i++) { \ assert(f[_assert_fe_i] <= UINT64_C(0x1a666666666664)); \ } \ } while (0) #else typedef uint32_t fe_limb_t; #define FE_NUM_LIMBS 10 // assert_fe asserts that |f| satisfies bounds: // // [[0x0 ~> 0x4666666], [0x0 ~> 0x2333333], // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333]] // // See comments in curve25519_32.h for which functions use these bounds for // inputs or outputs. #define assert_fe(f) \ do { \ for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \ assert(f[_assert_fe_i] <= \ ((_assert_fe_i & 1) ? 0x2333333u : 0x4666666u)); \ } \ } while (0) // assert_fe_loose asserts that |f| satisfies bounds: // // [[0x0 ~> 0xd333332], [0x0 ~> 0x6999999], // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999]] // // See comments in curve25519_32.h for which functions use these bounds for // inputs or outputs. #define assert_fe_loose(f) \ do { \ for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \ assert(f[_assert_fe_i] <= \ ((_assert_fe_i & 1) ? 0x6999999u : 0xd333332u)); \ } \ } while (0) #endif // BORINGSSL_CURVE25519_64BIT OPENSSL_STATIC_ASSERT(sizeof(fe) == sizeof(fe_limb_t) * FE_NUM_LIMBS, "fe_limb_t[FE_NUM_LIMBS] is inconsistent with fe"); static void fe_frombytes_strict(fe *h, const uint8_t s[32]) { // |fiat_25519_from_bytes| requires the top-most bit be clear. assert((s[31] & 0x80) == 0); fiat_25519_from_bytes(h->v, s); assert_fe(h->v); } static void fe_frombytes(fe *h, const uint8_t s[32]) { uint8_t s_copy[32]; OPENSSL_memcpy(s_copy, s, 32); s_copy[31] &= 0x7f; fe_frombytes_strict(h, s_copy); } static void fe_tobytes(uint8_t s[32], const fe *f) { assert_fe(f->v); fiat_25519_to_bytes(s, f->v); } // h = 0 static void fe_0(fe *h) { OPENSSL_memset(h, 0, sizeof(fe)); } static void fe_loose_0(fe_loose *h) { OPENSSL_memset(h, 0, sizeof(fe_loose)); } // h = 1 static void fe_1(fe *h) { OPENSSL_memset(h, 0, sizeof(fe)); h->v[0] = 1; } static void fe_loose_1(fe_loose *h) { OPENSSL_memset(h, 0, sizeof(fe_loose)); h->v[0] = 1; } // h = f + g // Can overlap h with f or g. static void fe_add(fe_loose *h, const fe *f, const fe *g) { assert_fe(f->v); assert_fe(g->v); fiat_25519_add(h->v, f->v, g->v); assert_fe_loose(h->v); } // h = f - g // Can overlap h with f or g. static void fe_sub(fe_loose *h, const fe *f, const fe *g) { assert_fe(f->v); assert_fe(g->v); fiat_25519_sub(h->v, f->v, g->v); assert_fe_loose(h->v); } static void fe_carry(fe *h, const fe_loose* f) { assert_fe_loose(f->v); fiat_25519_carry(h->v, f->v); assert_fe(h->v); } static void fe_mul_impl(fe_limb_t out[FE_NUM_LIMBS], const fe_limb_t in1[FE_NUM_LIMBS], const fe_limb_t in2[FE_NUM_LIMBS]) { assert_fe_loose(in1); assert_fe_loose(in2); fiat_25519_carry_mul(out, in1, in2); assert_fe(out); } static void fe_mul_ltt(fe_loose *h, const fe *f, const fe *g) { fe_mul_impl(h->v, f->v, g->v); } static void fe_mul_llt(fe_loose *h, const fe_loose *f, const fe *g) { fe_mul_impl(h->v, f->v, g->v); } static void fe_mul_ttt(fe *h, const fe *f, const fe *g) { fe_mul_impl(h->v, f->v, g->v); } static void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g) { fe_mul_impl(h->v, f->v, g->v); } static void fe_mul_ttl(fe *h, const fe *f, const fe_loose *g) { fe_mul_impl(h->v, f->v, g->v); } static void fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g) { fe_mul_impl(h->v, f->v, g->v); } static void fe_sq_tl(fe *h, const fe_loose *f) { assert_fe_loose(f->v); fiat_25519_carry_square(h->v, f->v); assert_fe(h->v); } static void fe_sq_tt(fe *h, const fe *f) { assert_fe_loose(f->v); fiat_25519_carry_square(h->v, f->v); assert_fe(h->v); } // Replace (f,g) with (g,f) if b == 1; // replace (f,g) with (f,g) if b == 0. // // Preconditions: b in {0,1}. static void fe_cswap(fe *f, fe *g, fe_limb_t b) { b = 0-b; for (unsigned i = 0; i < FE_NUM_LIMBS; i++) { fe_limb_t x = f->v[i] ^ g->v[i]; x &= b; f->v[i] ^= x; g->v[i] ^= x; } } static void fe_mul121666(fe *h, const fe_loose *f) { assert_fe_loose(f->v); fiat_25519_carry_scmul_121666(h->v, f->v); assert_fe(h->v); } // h = -f static void fe_neg(fe_loose *h, const fe *f) { assert_fe(f->v); fiat_25519_opp(h->v, f->v); assert_fe_loose(h->v); } // Replace (f,g) with (g,g) if b == 1; // replace (f,g) with (f,g) if b == 0. // // Preconditions: b in {0,1}. static void fe_cmov(fe_loose *f, const fe_loose *g, fe_limb_t b) { // Silence an unused function warning. |fiat_25519_selectznz| isn't quite the // calling convention the rest of this code wants, so implement it by hand. // // TODO(davidben): Switch to fiat's calling convention, or ask fiat to emit a // different one. (void)fiat_25519_selectznz; b = 0-b; for (unsigned i = 0; i < FE_NUM_LIMBS; i++) { fe_limb_t x = f->v[i] ^ g->v[i]; x &= b; f->v[i] ^= x; } } // h = f static void fe_copy(fe *h, const fe *f) { OPENSSL_memmove(h, f, sizeof(fe)); } static void fe_copy_lt(fe_loose *h, const fe *f) { OPENSSL_STATIC_ASSERT(sizeof(fe_loose) == sizeof(fe), "fe and fe_loose mismatch"); OPENSSL_memmove(h, f, sizeof(fe)); } #if !defined(OPENSSL_SMALL) static void fe_copy_ll(fe_loose *h, const fe_loose *f) { OPENSSL_memmove(h, f, sizeof(fe_loose)); } #endif // !defined(OPENSSL_SMALL) static void fe_loose_invert(fe *out, const fe_loose *z) { fe t0; fe t1; fe t2; fe t3; int i; fe_sq_tl(&t0, z); fe_sq_tt(&t1, &t0); for (i = 1; i < 2; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_tlt(&t1, z, &t1); fe_mul_ttt(&t0, &t0, &t1); fe_sq_tt(&t2, &t0); fe_mul_ttt(&t1, &t1, &t2); fe_sq_tt(&t2, &t1); for (i = 1; i < 5; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t1, &t2, &t1); fe_sq_tt(&t2, &t1); for (i = 1; i < 10; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t2, &t2, &t1); fe_sq_tt(&t3, &t2); for (i = 1; i < 20; ++i) { fe_sq_tt(&t3, &t3); } fe_mul_ttt(&t2, &t3, &t2); fe_sq_tt(&t2, &t2); for (i = 1; i < 10; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t1, &t2, &t1); fe_sq_tt(&t2, &t1); for (i = 1; i < 50; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t2, &t2, &t1); fe_sq_tt(&t3, &t2); for (i = 1; i < 100; ++i) { fe_sq_tt(&t3, &t3); } fe_mul_ttt(&t2, &t3, &t2); fe_sq_tt(&t2, &t2); for (i = 1; i < 50; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t1, &t2, &t1); fe_sq_tt(&t1, &t1); for (i = 1; i < 5; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(out, &t1, &t0); } static void fe_invert(fe *out, const fe *z) { fe_loose l; fe_copy_lt(&l, z); fe_loose_invert(out, &l); } // return 0 if f == 0 // return 1 if f != 0 static int fe_isnonzero(const fe_loose *f) { fe tight; fe_carry(&tight, f); uint8_t s[32]; fe_tobytes(s, &tight); static const uint8_t zero[32] = {0}; return CRYPTO_memcmp(s, zero, sizeof(zero)) != 0; } // return 1 if f is in {1,3,5,...,q-2} // return 0 if f is in {0,2,4,...,q-1} static int fe_isnegative(const fe *f) { uint8_t s[32]; fe_tobytes(s, f); return s[0] & 1; } static void fe_sq2_tt(fe *h, const fe *f) { // h = f^2 fe_sq_tt(h, f); // h = h + h fe_loose tmp; fe_add(&tmp, h, h); fe_carry(h, &tmp); } static void fe_pow22523(fe *out, const fe *z) { fe t0; fe t1; fe t2; int i; fe_sq_tt(&t0, z); fe_sq_tt(&t1, &t0); for (i = 1; i < 2; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t1, z, &t1); fe_mul_ttt(&t0, &t0, &t1); fe_sq_tt(&t0, &t0); fe_mul_ttt(&t0, &t1, &t0); fe_sq_tt(&t1, &t0); for (i = 1; i < 5; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t0, &t1, &t0); fe_sq_tt(&t1, &t0); for (i = 1; i < 10; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t1, &t1, &t0); fe_sq_tt(&t2, &t1); for (i = 1; i < 20; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t1, &t2, &t1); fe_sq_tt(&t1, &t1); for (i = 1; i < 10; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t0, &t1, &t0); fe_sq_tt(&t1, &t0); for (i = 1; i < 50; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t1, &t1, &t0); fe_sq_tt(&t2, &t1); for (i = 1; i < 100; ++i) { fe_sq_tt(&t2, &t2); } fe_mul_ttt(&t1, &t2, &t1); fe_sq_tt(&t1, &t1); for (i = 1; i < 50; ++i) { fe_sq_tt(&t1, &t1); } fe_mul_ttt(&t0, &t1, &t0); fe_sq_tt(&t0, &t0); for (i = 1; i < 2; ++i) { fe_sq_tt(&t0, &t0); } fe_mul_ttt(out, &t0, z); } // Group operations. void x25519_ge_tobytes(uint8_t s[32], const ge_p2 *h) { fe recip; fe x; fe y; fe_invert(&recip, &h->Z); fe_mul_ttt(&x, &h->X, &recip); fe_mul_ttt(&y, &h->Y, &recip); fe_tobytes(s, &y); s[31] ^= fe_isnegative(&x) << 7; } static void ge_p3_tobytes(uint8_t s[32], const ge_p3 *h) { fe recip; fe x; fe y; fe_invert(&recip, &h->Z); fe_mul_ttt(&x, &h->X, &recip); fe_mul_ttt(&y, &h->Y, &recip); fe_tobytes(s, &y); s[31] ^= fe_isnegative(&x) << 7; } int x25519_ge_frombytes_vartime(ge_p3 *h, const uint8_t s[32]) { fe u; fe_loose v; fe v3; fe vxx; fe_loose check; fe_frombytes(&h->Y, s); fe_1(&h->Z); fe_sq_tt(&v3, &h->Y); fe_mul_ttt(&vxx, &v3, &d); fe_sub(&v, &v3, &h->Z); // u = y^2-1 fe_carry(&u, &v); fe_add(&v, &vxx, &h->Z); // v = dy^2+1 fe_sq_tl(&v3, &v); fe_mul_ttl(&v3, &v3, &v); // v3 = v^3 fe_sq_tt(&h->X, &v3); fe_mul_ttl(&h->X, &h->X, &v); fe_mul_ttt(&h->X, &h->X, &u); // x = uv^7 fe_pow22523(&h->X, &h->X); // x = (uv^7)^((q-5)/8) fe_mul_ttt(&h->X, &h->X, &v3); fe_mul_ttt(&h->X, &h->X, &u); // x = uv^3(uv^7)^((q-5)/8) fe_sq_tt(&vxx, &h->X); fe_mul_ttl(&vxx, &vxx, &v); fe_sub(&check, &vxx, &u); if (fe_isnonzero(&check)) { fe_add(&check, &vxx, &u); if (fe_isnonzero(&check)) { return 0; } fe_mul_ttt(&h->X, &h->X, &sqrtm1); } if (fe_isnegative(&h->X) != (s[31] >> 7)) { fe_loose t; fe_neg(&t, &h->X); fe_carry(&h->X, &t); } fe_mul_ttt(&h->T, &h->X, &h->Y); return 1; } static void ge_p2_0(ge_p2 *h) { fe_0(&h->X); fe_1(&h->Y); fe_1(&h->Z); } static void ge_p3_0(ge_p3 *h) { fe_0(&h->X); fe_1(&h->Y); fe_1(&h->Z); fe_0(&h->T); } static void ge_cached_0(ge_cached *h) { fe_loose_1(&h->YplusX); fe_loose_1(&h->YminusX); fe_loose_1(&h->Z); fe_loose_0(&h->T2d); } static void ge_precomp_0(ge_precomp *h) { fe_loose_1(&h->yplusx); fe_loose_1(&h->yminusx); fe_loose_0(&h->xy2d); } // r = p static void ge_p3_to_p2(ge_p2 *r, const ge_p3 *p) { fe_copy(&r->X, &p->X); fe_copy(&r->Y, &p->Y); fe_copy(&r->Z, &p->Z); } // r = p void x25519_ge_p3_to_cached(ge_cached *r, const ge_p3 *p) { fe_add(&r->YplusX, &p->Y, &p->X); fe_sub(&r->YminusX, &p->Y, &p->X); fe_copy_lt(&r->Z, &p->Z); fe_mul_ltt(&r->T2d, &p->T, &d2); } // r = p void x25519_ge_p1p1_to_p2(ge_p2 *r, const ge_p1p1 *p) { fe_mul_tll(&r->X, &p->X, &p->T); fe_mul_tll(&r->Y, &p->Y, &p->Z); fe_mul_tll(&r->Z, &p->Z, &p->T); } // r = p void x25519_ge_p1p1_to_p3(ge_p3 *r, const ge_p1p1 *p) { fe_mul_tll(&r->X, &p->X, &p->T); fe_mul_tll(&r->Y, &p->Y, &p->Z); fe_mul_tll(&r->Z, &p->Z, &p->T); fe_mul_tll(&r->T, &p->X, &p->Y); } // r = p static void ge_p1p1_to_cached(ge_cached *r, const ge_p1p1 *p) { ge_p3 t; x25519_ge_p1p1_to_p3(&t, p); x25519_ge_p3_to_cached(r, &t); } // r = 2 * p static void ge_p2_dbl(ge_p1p1 *r, const ge_p2 *p) { fe trX, trZ, trT; fe t0; fe_sq_tt(&trX, &p->X); fe_sq_tt(&trZ, &p->Y); fe_sq2_tt(&trT, &p->Z); fe_add(&r->Y, &p->X, &p->Y); fe_sq_tl(&t0, &r->Y); fe_add(&r->Y, &trZ, &trX); fe_sub(&r->Z, &trZ, &trX); fe_carry(&trZ, &r->Y); fe_sub(&r->X, &t0, &trZ); fe_carry(&trZ, &r->Z); fe_sub(&r->T, &trT, &trZ); } // r = 2 * p static void ge_p3_dbl(ge_p1p1 *r, const ge_p3 *p) { ge_p2 q; ge_p3_to_p2(&q, p); ge_p2_dbl(r, &q); } // r = p + q static void ge_madd(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) { fe trY, trZ, trT; fe_add(&r->X, &p->Y, &p->X); fe_sub(&r->Y, &p->Y, &p->X); fe_mul_tll(&trZ, &r->X, &q->yplusx); fe_mul_tll(&trY, &r->Y, &q->yminusx); fe_mul_tlt(&trT, &q->xy2d, &p->T); fe_add(&r->T, &p->Z, &p->Z); fe_sub(&r->X, &trZ, &trY); fe_add(&r->Y, &trZ, &trY); fe_carry(&trZ, &r->T); fe_add(&r->Z, &trZ, &trT); fe_sub(&r->T, &trZ, &trT); } // r = p - q static void ge_msub(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) { fe trY, trZ, trT; fe_add(&r->X, &p->Y, &p->X); fe_sub(&r->Y, &p->Y, &p->X); fe_mul_tll(&trZ, &r->X, &q->yminusx); fe_mul_tll(&trY, &r->Y, &q->yplusx); fe_mul_tlt(&trT, &q->xy2d, &p->T); fe_add(&r->T, &p->Z, &p->Z); fe_sub(&r->X, &trZ, &trY); fe_add(&r->Y, &trZ, &trY); fe_carry(&trZ, &r->T); fe_sub(&r->Z, &trZ, &trT); fe_add(&r->T, &trZ, &trT); } // r = p + q void x25519_ge_add(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) { fe trX, trY, trZ, trT; fe_add(&r->X, &p->Y, &p->X); fe_sub(&r->Y, &p->Y, &p->X); fe_mul_tll(&trZ, &r->X, &q->YplusX); fe_mul_tll(&trY, &r->Y, &q->YminusX); fe_mul_tlt(&trT, &q->T2d, &p->T); fe_mul_ttl(&trX, &p->Z, &q->Z); fe_add(&r->T, &trX, &trX); fe_sub(&r->X, &trZ, &trY); fe_add(&r->Y, &trZ, &trY); fe_carry(&trZ, &r->T); fe_add(&r->Z, &trZ, &trT); fe_sub(&r->T, &trZ, &trT); } // r = p - q void x25519_ge_sub(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) { fe trX, trY, trZ, trT; fe_add(&r->X, &p->Y, &p->X); fe_sub(&r->Y, &p->Y, &p->X); fe_mul_tll(&trZ, &r->X, &q->YminusX); fe_mul_tll(&trY, &r->Y, &q->YplusX); fe_mul_tlt(&trT, &q->T2d, &p->T); fe_mul_ttl(&trX, &p->Z, &q->Z); fe_add(&r->T, &trX, &trX); fe_sub(&r->X, &trZ, &trY); fe_add(&r->Y, &trZ, &trY); fe_carry(&trZ, &r->T); fe_sub(&r->Z, &trZ, &trT); fe_add(&r->T, &trZ, &trT); } static uint8_t equal(signed char b, signed char c) { uint8_t ub = b; uint8_t uc = c; uint8_t x = ub ^ uc; // 0: yes; 1..255: no uint32_t y = x; // 0: yes; 1..255: no y -= 1; // 4294967295: yes; 0..254: no y >>= 31; // 1: yes; 0: no return y; } static void cmov(ge_precomp *t, const ge_precomp *u, uint8_t b) { fe_cmov(&t->yplusx, &u->yplusx, b); fe_cmov(&t->yminusx, &u->yminusx, b); fe_cmov(&t->xy2d, &u->xy2d, b); } void x25519_ge_scalarmult_small_precomp( ge_p3 *h, const uint8_t a[32], const uint8_t precomp_table[15 * 2 * 32]) { // precomp_table is first expanded into matching |ge_precomp| // elements. ge_precomp multiples[15]; unsigned i; for (i = 0; i < 15; i++) { // The precomputed table is assumed to already clear the top bit, so // |fe_frombytes_strict| may be used directly. const uint8_t *bytes = &precomp_table[i*(2 * 32)]; fe x, y; fe_frombytes_strict(&x, bytes); fe_frombytes_strict(&y, bytes + 32); ge_precomp *out = &multiples[i]; fe_add(&out->yplusx, &y, &x); fe_sub(&out->yminusx, &y, &x); fe_mul_ltt(&out->xy2d, &x, &y); fe_mul_llt(&out->xy2d, &out->xy2d, &d2); } // See the comment above |k25519SmallPrecomp| about the structure of the // precomputed elements. This loop does 64 additions and 64 doublings to // calculate the result. ge_p3_0(h); for (i = 63; i < 64; i--) { unsigned j; signed char index = 0; for (j = 0; j < 4; j++) { const uint8_t bit = 1 & (a[(8 * j) + (i / 8)] >> (i & 7)); index |= (bit << j); } ge_precomp e; ge_precomp_0(&e); for (j = 1; j < 16; j++) { cmov(&e, &multiples[j-1], equal(index, j)); } ge_cached cached; ge_p1p1 r; x25519_ge_p3_to_cached(&cached, h); x25519_ge_add(&r, h, &cached); x25519_ge_p1p1_to_p3(h, &r); ge_madd(&r, h, &e); x25519_ge_p1p1_to_p3(h, &r); } } #if defined(OPENSSL_SMALL) void x25519_ge_scalarmult_base(ge_p3 *h, const uint8_t a[32]) { x25519_ge_scalarmult_small_precomp(h, a, k25519SmallPrecomp); } #else static uint8_t negative(signed char b) { uint32_t x = b; x >>= 31; // 1: yes; 0: no return x; } static void table_select(ge_precomp *t, int pos, signed char b) { ge_precomp minust; uint8_t bnegative = negative(b); uint8_t babs = b - ((uint8_t)((-bnegative) & b) << 1); ge_precomp_0(t); cmov(t, &k25519Precomp[pos][0], equal(babs, 1)); cmov(t, &k25519Precomp[pos][1], equal(babs, 2)); cmov(t, &k25519Precomp[pos][2], equal(babs, 3)); cmov(t, &k25519Precomp[pos][3], equal(babs, 4)); cmov(t, &k25519Precomp[pos][4], equal(babs, 5)); cmov(t, &k25519Precomp[pos][5], equal(babs, 6)); cmov(t, &k25519Precomp[pos][6], equal(babs, 7)); cmov(t, &k25519Precomp[pos][7], equal(babs, 8)); fe_copy_ll(&minust.yplusx, &t->yminusx); fe_copy_ll(&minust.yminusx, &t->yplusx); // NOTE: the input table is canonical, but types don't encode it fe tmp; fe_carry(&tmp, &t->xy2d); fe_neg(&minust.xy2d, &tmp); cmov(t, &minust, bnegative); } // h = a * B // where a = a[0]+256*a[1]+...+256^31 a[31] // B is the Ed25519 base point (x,4/5) with x positive. // // Preconditions: // a[31] <= 127 void x25519_ge_scalarmult_base(ge_p3 *h, const uint8_t *a) { signed char e[64]; signed char carry; ge_p1p1 r; ge_p2 s; ge_precomp t; int i; for (i = 0; i < 32; ++i) { e[2 * i + 0] = (a[i] >> 0) & 15; e[2 * i + 1] = (a[i] >> 4) & 15; } // each e[i] is between 0 and 15 // e[63] is between 0 and 7 carry = 0; for (i = 0; i < 63; ++i) { e[i] += carry; carry = e[i] + 8; carry >>= 4; e[i] -= carry << 4; } e[63] += carry; // each e[i] is between -8 and 8 ge_p3_0(h); for (i = 1; i < 64; i += 2) { table_select(&t, i / 2, e[i]); ge_madd(&r, h, &t); x25519_ge_p1p1_to_p3(h, &r); } ge_p3_dbl(&r, h); x25519_ge_p1p1_to_p2(&s, &r); ge_p2_dbl(&r, &s); x25519_ge_p1p1_to_p2(&s, &r); ge_p2_dbl(&r, &s); x25519_ge_p1p1_to_p2(&s, &r); ge_p2_dbl(&r, &s); x25519_ge_p1p1_to_p3(h, &r); for (i = 0; i < 64; i += 2) { table_select(&t, i / 2, e[i]); ge_madd(&r, h, &t); x25519_ge_p1p1_to_p3(h, &r); } } #endif static void cmov_cached(ge_cached *t, ge_cached *u, uint8_t b) { fe_cmov(&t->YplusX, &u->YplusX, b); fe_cmov(&t->YminusX, &u->YminusX, b); fe_cmov(&t->Z, &u->Z, b); fe_cmov(&t->T2d, &u->T2d, b); } // r = scalar * A. // where a = a[0]+256*a[1]+...+256^31 a[31]. void x25519_ge_scalarmult(ge_p2 *r, const uint8_t *scalar, const ge_p3 *A) { ge_p2 Ai_p2[8]; ge_cached Ai[16]; ge_p1p1 t; ge_cached_0(&Ai[0]); x25519_ge_p3_to_cached(&Ai[1], A); ge_p3_to_p2(&Ai_p2[1], A); unsigned i; for (i = 2; i < 16; i += 2) { ge_p2_dbl(&t, &Ai_p2[i / 2]); ge_p1p1_to_cached(&Ai[i], &t); if (i < 8) { x25519_ge_p1p1_to_p2(&Ai_p2[i], &t); } x25519_ge_add(&t, A, &Ai[i]); ge_p1p1_to_cached(&Ai[i + 1], &t); if (i < 7) { x25519_ge_p1p1_to_p2(&Ai_p2[i + 1], &t); } } ge_p2_0(r); ge_p3 u; for (i = 0; i < 256; i += 4) { ge_p2_dbl(&t, r); x25519_ge_p1p1_to_p2(r, &t); ge_p2_dbl(&t, r); x25519_ge_p1p1_to_p2(r, &t); ge_p2_dbl(&t, r); x25519_ge_p1p1_to_p2(r, &t); ge_p2_dbl(&t, r); x25519_ge_p1p1_to_p3(&u, &t); uint8_t index = scalar[31 - i/8]; index >>= 4 - (i & 4); index &= 0xf; unsigned j; ge_cached selected; ge_cached_0(&selected); for (j = 0; j < 16; j++) { cmov_cached(&selected, &Ai[j], equal(j, index)); } x25519_ge_add(&t, &u, &selected); x25519_ge_p1p1_to_p2(r, &t); } } static void slide(signed char *r, const uint8_t *a) { int i; int b; int k; for (i = 0; i < 256; ++i) { r[i] = 1 & (a[i >> 3] >> (i & 7)); } for (i = 0; i < 256; ++i) { if (r[i]) { for (b = 1; b <= 6 && i + b < 256; ++b) { if (r[i + b]) { if (r[i] + (r[i + b] << b) <= 15) { r[i] += r[i + b] << b; r[i + b] = 0; } else if (r[i] - (r[i + b] << b) >= -15) { r[i] -= r[i + b] << b; for (k = i + b; k < 256; ++k) { if (!r[k]) { r[k] = 1; break; } r[k] = 0; } } else { break; } } } } } } // r = a * A + b * B // where a = a[0]+256*a[1]+...+256^31 a[31]. // and b = b[0]+256*b[1]+...+256^31 b[31]. // B is the Ed25519 base point (x,4/5) with x positive. static void ge_double_scalarmult_vartime(ge_p2 *r, const uint8_t *a, const ge_p3 *A, const uint8_t *b) { signed char aslide[256]; signed char bslide[256]; ge_cached Ai[8]; // A,3A,5A,7A,9A,11A,13A,15A ge_p1p1 t; ge_p3 u; ge_p3 A2; int i; slide(aslide, a); slide(bslide, b); x25519_ge_p3_to_cached(&Ai[0], A); ge_p3_dbl(&t, A); x25519_ge_p1p1_to_p3(&A2, &t); x25519_ge_add(&t, &A2, &Ai[0]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[1], &u); x25519_ge_add(&t, &A2, &Ai[1]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[2], &u); x25519_ge_add(&t, &A2, &Ai[2]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[3], &u); x25519_ge_add(&t, &A2, &Ai[3]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[4], &u); x25519_ge_add(&t, &A2, &Ai[4]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[5], &u); x25519_ge_add(&t, &A2, &Ai[5]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[6], &u); x25519_ge_add(&t, &A2, &Ai[6]); x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_p3_to_cached(&Ai[7], &u); ge_p2_0(r); for (i = 255; i >= 0; --i) { if (aslide[i] || bslide[i]) { break; } } for (; i >= 0; --i) { ge_p2_dbl(&t, r); if (aslide[i] > 0) { x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_add(&t, &u, &Ai[aslide[i] / 2]); } else if (aslide[i] < 0) { x25519_ge_p1p1_to_p3(&u, &t); x25519_ge_sub(&t, &u, &Ai[(-aslide[i]) / 2]); } if (bslide[i] > 0) { x25519_ge_p1p1_to_p3(&u, &t); ge_madd(&t, &u, &Bi[bslide[i] / 2]); } else if (bslide[i] < 0) { x25519_ge_p1p1_to_p3(&u, &t); ge_msub(&t, &u, &Bi[(-bslide[i]) / 2]); } x25519_ge_p1p1_to_p2(r, &t); } } // int64_lshift21 returns |a << 21| but is defined when shifting bits into the // sign bit. This works around a language flaw in C. static inline int64_t int64_lshift21(int64_t a) { return (int64_t)((uint64_t)a << 21); } // The set of scalars is \Z/l // where l = 2^252 + 27742317777372353535851937790883648493. // Input: // s[0]+256*s[1]+...+256^63*s[63] = s // // Output: // s[0]+256*s[1]+...+256^31*s[31] = s mod l // where l = 2^252 + 27742317777372353535851937790883648493. // Overwrites s in place. void x25519_sc_reduce(uint8_t s[64]) { int64_t s0 = 2097151 & load_3(s); int64_t s1 = 2097151 & (load_4(s + 2) >> 5); int64_t s2 = 2097151 & (load_3(s + 5) >> 2); int64_t s3 = 2097151 & (load_4(s + 7) >> 7); int64_t s4 = 2097151 & (load_4(s + 10) >> 4); int64_t s5 = 2097151 & (load_3(s + 13) >> 1); int64_t s6 = 2097151 & (load_4(s + 15) >> 6); int64_t s7 = 2097151 & (load_3(s + 18) >> 3); int64_t s8 = 2097151 & load_3(s + 21); int64_t s9 = 2097151 & (load_4(s + 23) >> 5); int64_t s10 = 2097151 & (load_3(s + 26) >> 2); int64_t s11 = 2097151 & (load_4(s + 28) >> 7); int64_t s12 = 2097151 & (load_4(s + 31) >> 4); int64_t s13 = 2097151 & (load_3(s + 34) >> 1); int64_t s14 = 2097151 & (load_4(s + 36) >> 6); int64_t s15 = 2097151 & (load_3(s + 39) >> 3); int64_t s16 = 2097151 & load_3(s + 42); int64_t s17 = 2097151 & (load_4(s + 44) >> 5); int64_t s18 = 2097151 & (load_3(s + 47) >> 2); int64_t s19 = 2097151 & (load_4(s + 49) >> 7); int64_t s20 = 2097151 & (load_4(s + 52) >> 4); int64_t s21 = 2097151 & (load_3(s + 55) >> 1); int64_t s22 = 2097151 & (load_4(s + 57) >> 6); int64_t s23 = (load_4(s + 60) >> 3); int64_t carry0; int64_t carry1; int64_t carry2; int64_t carry3; int64_t carry4; int64_t carry5; int64_t carry6; int64_t carry7; int64_t carry8; int64_t carry9; int64_t carry10; int64_t carry11; int64_t carry12; int64_t carry13; int64_t carry14; int64_t carry15; int64_t carry16; s11 += s23 * 666643; s12 += s23 * 470296; s13 += s23 * 654183; s14 -= s23 * 997805; s15 += s23 * 136657; s16 -= s23 * 683901; s23 = 0; s10 += s22 * 666643; s11 += s22 * 470296; s12 += s22 * 654183; s13 -= s22 * 997805; s14 += s22 * 136657; s15 -= s22 * 683901; s22 = 0; s9 += s21 * 666643; s10 += s21 * 470296; s11 += s21 * 654183; s12 -= s21 * 997805; s13 += s21 * 136657; s14 -= s21 * 683901; s21 = 0; s8 += s20 * 666643; s9 += s20 * 470296; s10 += s20 * 654183; s11 -= s20 * 997805; s12 += s20 * 136657; s13 -= s20 * 683901; s20 = 0; s7 += s19 * 666643; s8 += s19 * 470296; s9 += s19 * 654183; s10 -= s19 * 997805; s11 += s19 * 136657; s12 -= s19 * 683901; s19 = 0; s6 += s18 * 666643; s7 += s18 * 470296; s8 += s18 * 654183; s9 -= s18 * 997805; s10 += s18 * 136657; s11 -= s18 * 683901; s18 = 0; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= int64_lshift21(carry12); carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= int64_lshift21(carry14); carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= int64_lshift21(carry16); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= int64_lshift21(carry11); carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= int64_lshift21(carry13); carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= int64_lshift21(carry15); s5 += s17 * 666643; s6 += s17 * 470296; s7 += s17 * 654183; s8 -= s17 * 997805; s9 += s17 * 136657; s10 -= s17 * 683901; s17 = 0; s4 += s16 * 666643; s5 += s16 * 470296; s6 += s16 * 654183; s7 -= s16 * 997805; s8 += s16 * 136657; s9 -= s16 * 683901; s16 = 0; s3 += s15 * 666643; s4 += s15 * 470296; s5 += s15 * 654183; s6 -= s15 * 997805; s7 += s15 * 136657; s8 -= s15 * 683901; s15 = 0; s2 += s14 * 666643; s3 += s14 * 470296; s4 += s14 * 654183; s5 -= s14 * 997805; s6 += s14 * 136657; s7 -= s14 * 683901; s14 = 0; s1 += s13 * 666643; s2 += s13 * 470296; s3 += s13 * 654183; s4 -= s13 * 997805; s5 += s13 * 136657; s6 -= s13 * 683901; s13 = 0; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= int64_lshift21(carry0); carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= int64_lshift21(carry2); carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= int64_lshift21(carry4); carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= int64_lshift21(carry1); carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= int64_lshift21(carry3); carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= int64_lshift21(carry5); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= int64_lshift21(carry11); s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= int64_lshift21(carry0); carry1 = s1 >> 21; s2 += carry1; s1 -= int64_lshift21(carry1); carry2 = s2 >> 21; s3 += carry2; s2 -= int64_lshift21(carry2); carry3 = s3 >> 21; s4 += carry3; s3 -= int64_lshift21(carry3); carry4 = s4 >> 21; s5 += carry4; s4 -= int64_lshift21(carry4); carry5 = s5 >> 21; s6 += carry5; s5 -= int64_lshift21(carry5); carry6 = s6 >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry7 = s7 >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry8 = s8 >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry9 = s9 >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry10 = s10 >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); carry11 = s11 >> 21; s12 += carry11; s11 -= int64_lshift21(carry11); s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= int64_lshift21(carry0); carry1 = s1 >> 21; s2 += carry1; s1 -= int64_lshift21(carry1); carry2 = s2 >> 21; s3 += carry2; s2 -= int64_lshift21(carry2); carry3 = s3 >> 21; s4 += carry3; s3 -= int64_lshift21(carry3); carry4 = s4 >> 21; s5 += carry4; s4 -= int64_lshift21(carry4); carry5 = s5 >> 21; s6 += carry5; s5 -= int64_lshift21(carry5); carry6 = s6 >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry7 = s7 >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry8 = s8 >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry9 = s9 >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry10 = s10 >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); s[0] = s0 >> 0; s[1] = s0 >> 8; s[2] = (s0 >> 16) | (s1 << 5); s[3] = s1 >> 3; s[4] = s1 >> 11; s[5] = (s1 >> 19) | (s2 << 2); s[6] = s2 >> 6; s[7] = (s2 >> 14) | (s3 << 7); s[8] = s3 >> 1; s[9] = s3 >> 9; s[10] = (s3 >> 17) | (s4 << 4); s[11] = s4 >> 4; s[12] = s4 >> 12; s[13] = (s4 >> 20) | (s5 << 1); s[14] = s5 >> 7; s[15] = (s5 >> 15) | (s6 << 6); s[16] = s6 >> 2; s[17] = s6 >> 10; s[18] = (s6 >> 18) | (s7 << 3); s[19] = s7 >> 5; s[20] = s7 >> 13; s[21] = s8 >> 0; s[22] = s8 >> 8; s[23] = (s8 >> 16) | (s9 << 5); s[24] = s9 >> 3; s[25] = s9 >> 11; s[26] = (s9 >> 19) | (s10 << 2); s[27] = s10 >> 6; s[28] = (s10 >> 14) | (s11 << 7); s[29] = s11 >> 1; s[30] = s11 >> 9; s[31] = s11 >> 17; } // Input: // a[0]+256*a[1]+...+256^31*a[31] = a // b[0]+256*b[1]+...+256^31*b[31] = b // c[0]+256*c[1]+...+256^31*c[31] = c // // Output: // s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l // where l = 2^252 + 27742317777372353535851937790883648493. static void sc_muladd(uint8_t *s, const uint8_t *a, const uint8_t *b, const uint8_t *c) { int64_t a0 = 2097151 & load_3(a); int64_t a1 = 2097151 & (load_4(a + 2) >> 5); int64_t a2 = 2097151 & (load_3(a + 5) >> 2); int64_t a3 = 2097151 & (load_4(a + 7) >> 7); int64_t a4 = 2097151 & (load_4(a + 10) >> 4); int64_t a5 = 2097151 & (load_3(a + 13) >> 1); int64_t a6 = 2097151 & (load_4(a + 15) >> 6); int64_t a7 = 2097151 & (load_3(a + 18) >> 3); int64_t a8 = 2097151 & load_3(a + 21); int64_t a9 = 2097151 & (load_4(a + 23) >> 5); int64_t a10 = 2097151 & (load_3(a + 26) >> 2); int64_t a11 = (load_4(a + 28) >> 7); int64_t b0 = 2097151 & load_3(b); int64_t b1 = 2097151 & (load_4(b + 2) >> 5); int64_t b2 = 2097151 & (load_3(b + 5) >> 2); int64_t b3 = 2097151 & (load_4(b + 7) >> 7); int64_t b4 = 2097151 & (load_4(b + 10) >> 4); int64_t b5 = 2097151 & (load_3(b + 13) >> 1); int64_t b6 = 2097151 & (load_4(b + 15) >> 6); int64_t b7 = 2097151 & (load_3(b + 18) >> 3); int64_t b8 = 2097151 & load_3(b + 21); int64_t b9 = 2097151 & (load_4(b + 23) >> 5); int64_t b10 = 2097151 & (load_3(b + 26) >> 2); int64_t b11 = (load_4(b + 28) >> 7); int64_t c0 = 2097151 & load_3(c); int64_t c1 = 2097151 & (load_4(c + 2) >> 5); int64_t c2 = 2097151 & (load_3(c + 5) >> 2); int64_t c3 = 2097151 & (load_4(c + 7) >> 7); int64_t c4 = 2097151 & (load_4(c + 10) >> 4); int64_t c5 = 2097151 & (load_3(c + 13) >> 1); int64_t c6 = 2097151 & (load_4(c + 15) >> 6); int64_t c7 = 2097151 & (load_3(c + 18) >> 3); int64_t c8 = 2097151 & load_3(c + 21); int64_t c9 = 2097151 & (load_4(c + 23) >> 5); int64_t c10 = 2097151 & (load_3(c + 26) >> 2); int64_t c11 = (load_4(c + 28) >> 7); int64_t s0; int64_t s1; int64_t s2; int64_t s3; int64_t s4; int64_t s5; int64_t s6; int64_t s7; int64_t s8; int64_t s9; int64_t s10; int64_t s11; int64_t s12; int64_t s13; int64_t s14; int64_t s15; int64_t s16; int64_t s17; int64_t s18; int64_t s19; int64_t s20; int64_t s21; int64_t s22; int64_t s23; int64_t carry0; int64_t carry1; int64_t carry2; int64_t carry3; int64_t carry4; int64_t carry5; int64_t carry6; int64_t carry7; int64_t carry8; int64_t carry9; int64_t carry10; int64_t carry11; int64_t carry12; int64_t carry13; int64_t carry14; int64_t carry15; int64_t carry16; int64_t carry17; int64_t carry18; int64_t carry19; int64_t carry20; int64_t carry21; int64_t carry22; s0 = c0 + a0 * b0; s1 = c1 + a0 * b1 + a1 * b0; s2 = c2 + a0 * b2 + a1 * b1 + a2 * b0; s3 = c3 + a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0; s4 = c4 + a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0; s5 = c5 + a0 * b5 + a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 + a5 * b0; s6 = c6 + a0 * b6 + a1 * b5 + a2 * b4 + a3 * b3 + a4 * b2 + a5 * b1 + a6 * b0; s7 = c7 + a0 * b7 + a1 * b6 + a2 * b5 + a3 * b4 + a4 * b3 + a5 * b2 + a6 * b1 + a7 * b0; s8 = c8 + a0 * b8 + a1 * b7 + a2 * b6 + a3 * b5 + a4 * b4 + a5 * b3 + a6 * b2 + a7 * b1 + a8 * b0; s9 = c9 + a0 * b9 + a1 * b8 + a2 * b7 + a3 * b6 + a4 * b5 + a5 * b4 + a6 * b3 + a7 * b2 + a8 * b1 + a9 * b0; s10 = c10 + a0 * b10 + a1 * b9 + a2 * b8 + a3 * b7 + a4 * b6 + a5 * b5 + a6 * b4 + a7 * b3 + a8 * b2 + a9 * b1 + a10 * b0; s11 = c11 + a0 * b11 + a1 * b10 + a2 * b9 + a3 * b8 + a4 * b7 + a5 * b6 + a6 * b5 + a7 * b4 + a8 * b3 + a9 * b2 + a10 * b1 + a11 * b0; s12 = a1 * b11 + a2 * b10 + a3 * b9 + a4 * b8 + a5 * b7 + a6 * b6 + a7 * b5 + a8 * b4 + a9 * b3 + a10 * b2 + a11 * b1; s13 = a2 * b11 + a3 * b10 + a4 * b9 + a5 * b8 + a6 * b7 + a7 * b6 + a8 * b5 + a9 * b4 + a10 * b3 + a11 * b2; s14 = a3 * b11 + a4 * b10 + a5 * b9 + a6 * b8 + a7 * b7 + a8 * b6 + a9 * b5 + a10 * b4 + a11 * b3; s15 = a4 * b11 + a5 * b10 + a6 * b9 + a7 * b8 + a8 * b7 + a9 * b6 + a10 * b5 + a11 * b4; s16 = a5 * b11 + a6 * b10 + a7 * b9 + a8 * b8 + a9 * b7 + a10 * b6 + a11 * b5; s17 = a6 * b11 + a7 * b10 + a8 * b9 + a9 * b8 + a10 * b7 + a11 * b6; s18 = a7 * b11 + a8 * b10 + a9 * b9 + a10 * b8 + a11 * b7; s19 = a8 * b11 + a9 * b10 + a10 * b9 + a11 * b8; s20 = a9 * b11 + a10 * b10 + a11 * b9; s21 = a10 * b11 + a11 * b10; s22 = a11 * b11; s23 = 0; carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= int64_lshift21(carry0); carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= int64_lshift21(carry2); carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= int64_lshift21(carry4); carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= int64_lshift21(carry12); carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= int64_lshift21(carry14); carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= int64_lshift21(carry16); carry18 = (s18 + (1 << 20)) >> 21; s19 += carry18; s18 -= int64_lshift21(carry18); carry20 = (s20 + (1 << 20)) >> 21; s21 += carry20; s20 -= int64_lshift21(carry20); carry22 = (s22 + (1 << 20)) >> 21; s23 += carry22; s22 -= int64_lshift21(carry22); carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= int64_lshift21(carry1); carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= int64_lshift21(carry3); carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= int64_lshift21(carry5); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= int64_lshift21(carry11); carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= int64_lshift21(carry13); carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= int64_lshift21(carry15); carry17 = (s17 + (1 << 20)) >> 21; s18 += carry17; s17 -= int64_lshift21(carry17); carry19 = (s19 + (1 << 20)) >> 21; s20 += carry19; s19 -= int64_lshift21(carry19); carry21 = (s21 + (1 << 20)) >> 21; s22 += carry21; s21 -= int64_lshift21(carry21); s11 += s23 * 666643; s12 += s23 * 470296; s13 += s23 * 654183; s14 -= s23 * 997805; s15 += s23 * 136657; s16 -= s23 * 683901; s23 = 0; s10 += s22 * 666643; s11 += s22 * 470296; s12 += s22 * 654183; s13 -= s22 * 997805; s14 += s22 * 136657; s15 -= s22 * 683901; s22 = 0; s9 += s21 * 666643; s10 += s21 * 470296; s11 += s21 * 654183; s12 -= s21 * 997805; s13 += s21 * 136657; s14 -= s21 * 683901; s21 = 0; s8 += s20 * 666643; s9 += s20 * 470296; s10 += s20 * 654183; s11 -= s20 * 997805; s12 += s20 * 136657; s13 -= s20 * 683901; s20 = 0; s7 += s19 * 666643; s8 += s19 * 470296; s9 += s19 * 654183; s10 -= s19 * 997805; s11 += s19 * 136657; s12 -= s19 * 683901; s19 = 0; s6 += s18 * 666643; s7 += s18 * 470296; s8 += s18 * 654183; s9 -= s18 * 997805; s10 += s18 * 136657; s11 -= s18 * 683901; s18 = 0; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= int64_lshift21(carry12); carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= int64_lshift21(carry14); carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= int64_lshift21(carry16); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= int64_lshift21(carry11); carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= int64_lshift21(carry13); carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= int64_lshift21(carry15); s5 += s17 * 666643; s6 += s17 * 470296; s7 += s17 * 654183; s8 -= s17 * 997805; s9 += s17 * 136657; s10 -= s17 * 683901; s17 = 0; s4 += s16 * 666643; s5 += s16 * 470296; s6 += s16 * 654183; s7 -= s16 * 997805; s8 += s16 * 136657; s9 -= s16 * 683901; s16 = 0; s3 += s15 * 666643; s4 += s15 * 470296; s5 += s15 * 654183; s6 -= s15 * 997805; s7 += s15 * 136657; s8 -= s15 * 683901; s15 = 0; s2 += s14 * 666643; s3 += s14 * 470296; s4 += s14 * 654183; s5 -= s14 * 997805; s6 += s14 * 136657; s7 -= s14 * 683901; s14 = 0; s1 += s13 * 666643; s2 += s13 * 470296; s3 += s13 * 654183; s4 -= s13 * 997805; s5 += s13 * 136657; s6 -= s13 * 683901; s13 = 0; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= int64_lshift21(carry0); carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= int64_lshift21(carry2); carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= int64_lshift21(carry4); carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= int64_lshift21(carry1); carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= int64_lshift21(carry3); carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= int64_lshift21(carry5); carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= int64_lshift21(carry11); s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= int64_lshift21(carry0); carry1 = s1 >> 21; s2 += carry1; s1 -= int64_lshift21(carry1); carry2 = s2 >> 21; s3 += carry2; s2 -= int64_lshift21(carry2); carry3 = s3 >> 21; s4 += carry3; s3 -= int64_lshift21(carry3); carry4 = s4 >> 21; s5 += carry4; s4 -= int64_lshift21(carry4); carry5 = s5 >> 21; s6 += carry5; s5 -= int64_lshift21(carry5); carry6 = s6 >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry7 = s7 >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry8 = s8 >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry9 = s9 >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry10 = s10 >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); carry11 = s11 >> 21; s12 += carry11; s11 -= int64_lshift21(carry11); s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= int64_lshift21(carry0); carry1 = s1 >> 21; s2 += carry1; s1 -= int64_lshift21(carry1); carry2 = s2 >> 21; s3 += carry2; s2 -= int64_lshift21(carry2); carry3 = s3 >> 21; s4 += carry3; s3 -= int64_lshift21(carry3); carry4 = s4 >> 21; s5 += carry4; s4 -= int64_lshift21(carry4); carry5 = s5 >> 21; s6 += carry5; s5 -= int64_lshift21(carry5); carry6 = s6 >> 21; s7 += carry6; s6 -= int64_lshift21(carry6); carry7 = s7 >> 21; s8 += carry7; s7 -= int64_lshift21(carry7); carry8 = s8 >> 21; s9 += carry8; s8 -= int64_lshift21(carry8); carry9 = s9 >> 21; s10 += carry9; s9 -= int64_lshift21(carry9); carry10 = s10 >> 21; s11 += carry10; s10 -= int64_lshift21(carry10); s[0] = s0 >> 0; s[1] = s0 >> 8; s[2] = (s0 >> 16) | (s1 << 5); s[3] = s1 >> 3; s[4] = s1 >> 11; s[5] = (s1 >> 19) | (s2 << 2); s[6] = s2 >> 6; s[7] = (s2 >> 14) | (s3 << 7); s[8] = s3 >> 1; s[9] = s3 >> 9; s[10] = (s3 >> 17) | (s4 << 4); s[11] = s4 >> 4; s[12] = s4 >> 12; s[13] = (s4 >> 20) | (s5 << 1); s[14] = s5 >> 7; s[15] = (s5 >> 15) | (s6 << 6); s[16] = s6 >> 2; s[17] = s6 >> 10; s[18] = (s6 >> 18) | (s7 << 3); s[19] = s7 >> 5; s[20] = s7 >> 13; s[21] = s8 >> 0; s[22] = s8 >> 8; s[23] = (s8 >> 16) | (s9 << 5); s[24] = s9 >> 3; s[25] = s9 >> 11; s[26] = (s9 >> 19) | (s10 << 2); s[27] = s10 >> 6; s[28] = (s10 >> 14) | (s11 << 7); s[29] = s11 >> 1; s[30] = s11 >> 9; s[31] = s11 >> 17; } void ED25519_keypair(uint8_t out_public_key[32], uint8_t out_private_key[64]) { uint8_t seed[32]; RAND_bytes(seed, 32); ED25519_keypair_from_seed(out_public_key, out_private_key, seed); } int ED25519_sign(uint8_t out_sig[64], const uint8_t *message, size_t message_len, const uint8_t private_key[64]) { // NOTE: The documentation on this function says that it returns zero on // allocation failure. While that can't happen with the current // implementation, we want to reserve the ability to allocate in this // implementation in the future. uint8_t az[SHA512_DIGEST_LENGTH]; SHA512(private_key, 32, az); az[0] &= 248; az[31] &= 63; az[31] |= 64; SHA512_CTX hash_ctx; SHA512_Init(&hash_ctx); SHA512_Update(&hash_ctx, az + 32, 32); SHA512_Update(&hash_ctx, message, message_len); uint8_t nonce[SHA512_DIGEST_LENGTH]; SHA512_Final(nonce, &hash_ctx); x25519_sc_reduce(nonce); ge_p3 R; x25519_ge_scalarmult_base(&R, nonce); ge_p3_tobytes(out_sig, &R); SHA512_Init(&hash_ctx); SHA512_Update(&hash_ctx, out_sig, 32); SHA512_Update(&hash_ctx, private_key + 32, 32); SHA512_Update(&hash_ctx, message, message_len); uint8_t hram[SHA512_DIGEST_LENGTH]; SHA512_Final(hram, &hash_ctx); x25519_sc_reduce(hram); sc_muladd(out_sig + 32, hram, az, nonce); return 1; } int ED25519_verify(const uint8_t *message, size_t message_len, const uint8_t signature[64], const uint8_t public_key[32]) { ge_p3 A; if ((signature[63] & 224) != 0 || !x25519_ge_frombytes_vartime(&A, public_key)) { return 0; } fe_loose t; fe_neg(&t, &A.X); fe_carry(&A.X, &t); fe_neg(&t, &A.T); fe_carry(&A.T, &t); uint8_t pkcopy[32]; OPENSSL_memcpy(pkcopy, public_key, 32); uint8_t rcopy[32]; OPENSSL_memcpy(rcopy, signature, 32); union { uint64_t u64[4]; uint8_t u8[32]; } scopy; OPENSSL_memcpy(&scopy.u8[0], signature + 32, 32); // https://tools.ietf.org/html/rfc8032#section-5.1.7 requires that s be in // the range [0, order) in order to prevent signature malleability. // kOrder is the order of Curve25519 in little-endian form. static const uint64_t kOrder[4] = { UINT64_C(0x5812631a5cf5d3ed), UINT64_C(0x14def9dea2f79cd6), 0, UINT64_C(0x1000000000000000), }; for (size_t i = 3;; i--) { if (scopy.u64[i] > kOrder[i]) { return 0; } else if (scopy.u64[i] < kOrder[i]) { break; } else if (i == 0) { return 0; } } SHA512_CTX hash_ctx; SHA512_Init(&hash_ctx); SHA512_Update(&hash_ctx, signature, 32); SHA512_Update(&hash_ctx, public_key, 32); SHA512_Update(&hash_ctx, message, message_len); uint8_t h[SHA512_DIGEST_LENGTH]; SHA512_Final(h, &hash_ctx); x25519_sc_reduce(h); ge_p2 R; ge_double_scalarmult_vartime(&R, h, &A, scopy.u8); uint8_t rcheck[32]; x25519_ge_tobytes(rcheck, &R); return CRYPTO_memcmp(rcheck, rcopy, sizeof(rcheck)) == 0; } void ED25519_keypair_from_seed(uint8_t out_public_key[32], uint8_t out_private_key[64], const uint8_t seed[32]) { uint8_t az[SHA512_DIGEST_LENGTH]; SHA512(seed, 32, az); az[0] &= 248; az[31] &= 127; az[31] |= 64; ge_p3 A; x25519_ge_scalarmult_base(&A, az); ge_p3_tobytes(out_public_key, &A); OPENSSL_memcpy(out_private_key, seed, 32); OPENSSL_memcpy(out_private_key + 32, out_public_key, 32); } static void x25519_scalar_mult_generic(uint8_t out[32], const uint8_t scalar[32], const uint8_t point[32]) { fe x1, x2, z2, x3, z3, tmp0, tmp1; fe_loose x2l, z2l, x3l, tmp0l, tmp1l; uint8_t e[32]; OPENSSL_memcpy(e, scalar, 32); e[0] &= 248; e[31] &= 127; e[31] |= 64; // The following implementation was transcribed to Coq and proven to // correspond to unary scalar multiplication in affine coordinates given that // x1 != 0 is the x coordinate of some point on the curve. It was also checked // in Coq that doing a ladderstep with x1 = x3 = 0 gives z2' = z3' = 0, and z2 // = z3 = 0 gives z2' = z3' = 0. The statement was quantified over the // underlying field, so it applies to Curve25519 itself and the quadratic // twist of Curve25519. It was not proven in Coq that prime-field arithmetic // correctly simulates extension-field arithmetic on prime-field values. // The decoding of the byte array representation of e was not considered. // Specification of Montgomery curves in affine coordinates: // // Proof that these form a group that is isomorphic to a Weierstrass curve: // // Coq transcription and correctness proof of the loop (where scalarbits=255): // // // preconditions: 0 <= e < 2^255 (not necessarily e < order), fe_invert(0) = 0 fe_frombytes(&x1, point); fe_1(&x2); fe_0(&z2); fe_copy(&x3, &x1); fe_1(&z3); unsigned swap = 0; int pos; for (pos = 254; pos >= 0; --pos) { // loop invariant as of right before the test, for the case where x1 != 0: // pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 is nonzero // let r := e >> (pos+1) in the following equalities of projective points: // to_xz (r*P) === if swap then (x3, z3) else (x2, z2) // to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3) // x1 is the nonzero x coordinate of the nonzero point (r*P-(r+1)*P) unsigned b = 1 & (e[pos / 8] >> (pos & 7)); swap ^= b; fe_cswap(&x2, &x3, swap); fe_cswap(&z2, &z3, swap); swap = b; // Coq transcription of ladderstep formula (called from transcribed loop): // // // x1 != 0 // x1 = 0 fe_sub(&tmp0l, &x3, &z3); fe_sub(&tmp1l, &x2, &z2); fe_add(&x2l, &x2, &z2); fe_add(&z2l, &x3, &z3); fe_mul_tll(&z3, &tmp0l, &x2l); fe_mul_tll(&z2, &z2l, &tmp1l); fe_sq_tl(&tmp0, &tmp1l); fe_sq_tl(&tmp1, &x2l); fe_add(&x3l, &z3, &z2); fe_sub(&z2l, &z3, &z2); fe_mul_ttt(&x2, &tmp1, &tmp0); fe_sub(&tmp1l, &tmp1, &tmp0); fe_sq_tl(&z2, &z2l); fe_mul121666(&z3, &tmp1l); fe_sq_tl(&x3, &x3l); fe_add(&tmp0l, &tmp0, &z3); fe_mul_ttt(&z3, &x1, &z2); fe_mul_tll(&z2, &tmp1l, &tmp0l); } // here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) else (x2, z2) fe_cswap(&x2, &x3, swap); fe_cswap(&z2, &z3, swap); fe_invert(&z2, &z2); fe_mul_ttt(&x2, &x2, &z2); fe_tobytes(out, &x2); } static void x25519_scalar_mult(uint8_t out[32], const uint8_t scalar[32], const uint8_t point[32]) { #if defined(BORINGSSL_X25519_NEON) if (CRYPTO_is_NEON_capable()) { x25519_NEON(out, scalar, point); return; } #endif x25519_scalar_mult_generic(out, scalar, point); } void X25519_keypair(uint8_t out_public_value[32], uint8_t out_private_key[32]) { RAND_bytes(out_private_key, 32); // All X25519 implementations should decode scalars correctly (see // https://tools.ietf.org/html/rfc7748#section-5). However, if an // implementation doesn't then it might interoperate with random keys a // fraction of the time because they'll, randomly, happen to be correctly // formed. // // Thus we do the opposite of the masking here to make sure that our private // keys are never correctly masked and so, hopefully, any incorrect // implementations are deterministically broken. // // This does not affect security because, although we're throwing away // entropy, a valid implementation of scalarmult should throw away the exact // same bits anyway. out_private_key[0] |= ~248; out_private_key[31] &= ~64; out_private_key[31] |= ~127; X25519_public_from_private(out_public_value, out_private_key); } int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32], const uint8_t peer_public_value[32]) { static const uint8_t kZeros[32] = {0}; x25519_scalar_mult(out_shared_key, private_key, peer_public_value); // The all-zero output results when the input is a point of small order. return CRYPTO_memcmp(kZeros, out_shared_key, 32) != 0; } void X25519_public_from_private(uint8_t out_public_value[32], const uint8_t private_key[32]) { #if defined(BORINGSSL_X25519_NEON) if (CRYPTO_is_NEON_capable()) { static const uint8_t kMongomeryBasePoint[32] = {9}; x25519_NEON(out_public_value, private_key, kMongomeryBasePoint); return; } #endif uint8_t e[32]; OPENSSL_memcpy(e, private_key, 32); e[0] &= 248; e[31] &= 127; e[31] |= 64; ge_p3 A; x25519_ge_scalarmult_base(&A, e); // We only need the u-coordinate of the curve25519 point. The map is // u=(y+1)/(1-y). Since y=Y/Z, this gives u=(Z+Y)/(Z-Y). fe_loose zplusy, zminusy; fe zminusy_inv; fe_add(&zplusy, &A.Z, &A.Y); fe_sub(&zminusy, &A.Z, &A.Y); fe_loose_invert(&zminusy_inv, &zminusy); fe_mul_tlt(&zminusy_inv, &zplusy, &zminusy_inv); fe_tobytes(out_public_value, &zminusy_inv); }