//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This provides a class for OpenMP runtime code generation. // //===----------------------------------------------------------------------===// #include "CGCXXABI.h" #include "CGCleanup.h" #include "CGOpenMPRuntime.h" #include "CodeGenFunction.h" #include "clang/AST/Decl.h" #include "clang/AST/StmtOpenMP.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Value.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include using namespace clang; using namespace CodeGen; namespace { /// \brief Base class for handling code generation inside OpenMP regions. class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo { public: /// \brief Kinds of OpenMP regions used in codegen. enum CGOpenMPRegionKind { /// \brief Region with outlined function for standalone 'parallel' /// directive. ParallelOutlinedRegion, /// \brief Region with outlined function for standalone 'task' directive. TaskOutlinedRegion, /// \brief Region for constructs that do not require function outlining, /// like 'for', 'sections', 'atomic' etc. directives. InlinedRegion, /// \brief Region with outlined function for standalone 'target' directive. TargetRegion, }; CGOpenMPRegionInfo(const CapturedStmt &CS, const CGOpenMPRegionKind RegionKind, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel) : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {} CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel) : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {} /// \brief Get a variable or parameter for storing global thread id /// inside OpenMP construct. virtual const VarDecl *getThreadIDVariable() const = 0; /// \brief Emit the captured statement body. void EmitBody(CodeGenFunction &CGF, const Stmt *S) override; /// \brief Get an LValue for the current ThreadID variable. /// \return LValue for thread id variable. This LValue always has type int32*. virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF); virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {} CGOpenMPRegionKind getRegionKind() const { return RegionKind; } OpenMPDirectiveKind getDirectiveKind() const { return Kind; } bool hasCancel() const { return HasCancel; } static bool classof(const CGCapturedStmtInfo *Info) { return Info->getKind() == CR_OpenMP; } ~CGOpenMPRegionInfo() override = default; protected: CGOpenMPRegionKind RegionKind; RegionCodeGenTy CodeGen; OpenMPDirectiveKind Kind; bool HasCancel; }; /// \brief API for captured statement code generation in OpenMP constructs. class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo { public: CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel) : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind, HasCancel), ThreadIDVar(ThreadIDVar) { assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); } /// \brief Get a variable or parameter for storing global thread id /// inside OpenMP construct. const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } /// \brief Get the name of the capture helper. StringRef getHelperName() const override { return ".omp_outlined."; } static bool classof(const CGCapturedStmtInfo *Info) { return CGOpenMPRegionInfo::classof(Info) && cast(Info)->getRegionKind() == ParallelOutlinedRegion; } private: /// \brief A variable or parameter storing global thread id for OpenMP /// constructs. const VarDecl *ThreadIDVar; }; /// \brief API for captured statement code generation in OpenMP constructs. class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo { public: class UntiedTaskActionTy final : public PrePostActionTy { bool Untied; const VarDecl *PartIDVar; const RegionCodeGenTy UntiedCodeGen; llvm::SwitchInst *UntiedSwitch = nullptr; public: UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar, const RegionCodeGenTy &UntiedCodeGen) : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {} void Enter(CodeGenFunction &CGF) override { if (Untied) { // Emit task switching point. auto PartIdLVal = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(PartIDVar), PartIDVar->getType()->castAs()); auto *Res = CGF.EmitLoadOfScalar(PartIdLVal, SourceLocation()); auto *DoneBB = CGF.createBasicBlock(".untied.done."); UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB); CGF.EmitBlock(DoneBB); CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); UntiedSwitch->addCase(CGF.Builder.getInt32(0), CGF.Builder.GetInsertBlock()); emitUntiedSwitch(CGF); } } void emitUntiedSwitch(CodeGenFunction &CGF) const { if (Untied) { auto PartIdLVal = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(PartIDVar), PartIDVar->getType()->castAs()); CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), PartIdLVal); UntiedCodeGen(CGF); CodeGenFunction::JumpDest CurPoint = CGF.getJumpDestInCurrentScope(".untied.next."); CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), CGF.Builder.GetInsertBlock()); CGF.EmitBranchThroughCleanup(CurPoint); CGF.EmitBlock(CurPoint.getBlock()); } } unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); } }; CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel, const UntiedTaskActionTy &Action) : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel), ThreadIDVar(ThreadIDVar), Action(Action) { assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); } /// \brief Get a variable or parameter for storing global thread id /// inside OpenMP construct. const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } /// \brief Get an LValue for the current ThreadID variable. LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override; /// \brief Get the name of the capture helper. StringRef getHelperName() const override { return ".omp_outlined."; } void emitUntiedSwitch(CodeGenFunction &CGF) override { Action.emitUntiedSwitch(CGF); } static bool classof(const CGCapturedStmtInfo *Info) { return CGOpenMPRegionInfo::classof(Info) && cast(Info)->getRegionKind() == TaskOutlinedRegion; } private: /// \brief A variable or parameter storing global thread id for OpenMP /// constructs. const VarDecl *ThreadIDVar; /// Action for emitting code for untied tasks. const UntiedTaskActionTy &Action; }; /// \brief API for inlined captured statement code generation in OpenMP /// constructs. class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo { public: CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel) : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel), OldCSI(OldCSI), OuterRegionInfo(dyn_cast_or_null(OldCSI)) {} // \brief Retrieve the value of the context parameter. llvm::Value *getContextValue() const override { if (OuterRegionInfo) return OuterRegionInfo->getContextValue(); llvm_unreachable("No context value for inlined OpenMP region"); } void setContextValue(llvm::Value *V) override { if (OuterRegionInfo) { OuterRegionInfo->setContextValue(V); return; } llvm_unreachable("No context value for inlined OpenMP region"); } /// \brief Lookup the captured field decl for a variable. const FieldDecl *lookup(const VarDecl *VD) const override { if (OuterRegionInfo) return OuterRegionInfo->lookup(VD); // If there is no outer outlined region,no need to lookup in a list of // captured variables, we can use the original one. return nullptr; } FieldDecl *getThisFieldDecl() const override { if (OuterRegionInfo) return OuterRegionInfo->getThisFieldDecl(); return nullptr; } /// \brief Get a variable or parameter for storing global thread id /// inside OpenMP construct. const VarDecl *getThreadIDVariable() const override { if (OuterRegionInfo) return OuterRegionInfo->getThreadIDVariable(); return nullptr; } /// \brief Get the name of the capture helper. StringRef getHelperName() const override { if (auto *OuterRegionInfo = getOldCSI()) return OuterRegionInfo->getHelperName(); llvm_unreachable("No helper name for inlined OpenMP construct"); } void emitUntiedSwitch(CodeGenFunction &CGF) override { if (OuterRegionInfo) OuterRegionInfo->emitUntiedSwitch(CGF); } CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; } static bool classof(const CGCapturedStmtInfo *Info) { return CGOpenMPRegionInfo::classof(Info) && cast(Info)->getRegionKind() == InlinedRegion; } ~CGOpenMPInlinedRegionInfo() override = default; private: /// \brief CodeGen info about outer OpenMP region. CodeGenFunction::CGCapturedStmtInfo *OldCSI; CGOpenMPRegionInfo *OuterRegionInfo; }; /// \brief API for captured statement code generation in OpenMP target /// constructs. For this captures, implicit parameters are used instead of the /// captured fields. The name of the target region has to be unique in a given /// application so it is provided by the client, because only the client has /// the information to generate that. class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo { public: CGOpenMPTargetRegionInfo(const CapturedStmt &CS, const RegionCodeGenTy &CodeGen, StringRef HelperName) : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target, /*HasCancel=*/false), HelperName(HelperName) {} /// \brief This is unused for target regions because each starts executing /// with a single thread. const VarDecl *getThreadIDVariable() const override { return nullptr; } /// \brief Get the name of the capture helper. StringRef getHelperName() const override { return HelperName; } static bool classof(const CGCapturedStmtInfo *Info) { return CGOpenMPRegionInfo::classof(Info) && cast(Info)->getRegionKind() == TargetRegion; } private: StringRef HelperName; }; static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) { llvm_unreachable("No codegen for expressions"); } /// \brief API for generation of expressions captured in a innermost OpenMP /// region. class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo { public: CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS) : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen, OMPD_unknown, /*HasCancel=*/false), PrivScope(CGF) { // Make sure the globals captured in the provided statement are local by // using the privatization logic. We assume the same variable is not // captured more than once. for (auto &C : CS.captures()) { if (!C.capturesVariable() && !C.capturesVariableByCopy()) continue; const VarDecl *VD = C.getCapturedVar(); if (VD->isLocalVarDeclOrParm()) continue; DeclRefExpr DRE(const_cast(VD), /*RefersToEnclosingVariableOrCapture=*/false, VD->getType().getNonReferenceType(), VK_LValue, SourceLocation()); PrivScope.addPrivate(VD, [&CGF, &DRE]() -> Address { return CGF.EmitLValue(&DRE).getAddress(); }); } (void)PrivScope.Privatize(); } /// \brief Lookup the captured field decl for a variable. const FieldDecl *lookup(const VarDecl *VD) const override { if (auto *FD = CGOpenMPInlinedRegionInfo::lookup(VD)) return FD; return nullptr; } /// \brief Emit the captured statement body. void EmitBody(CodeGenFunction &CGF, const Stmt *S) override { llvm_unreachable("No body for expressions"); } /// \brief Get a variable or parameter for storing global thread id /// inside OpenMP construct. const VarDecl *getThreadIDVariable() const override { llvm_unreachable("No thread id for expressions"); } /// \brief Get the name of the capture helper. StringRef getHelperName() const override { llvm_unreachable("No helper name for expressions"); } static bool classof(const CGCapturedStmtInfo *Info) { return false; } private: /// Private scope to capture global variables. CodeGenFunction::OMPPrivateScope PrivScope; }; /// \brief RAII for emitting code of OpenMP constructs. class InlinedOpenMPRegionRAII { CodeGenFunction &CGF; llvm::DenseMap LambdaCaptureFields; FieldDecl *LambdaThisCaptureField = nullptr; public: /// \brief Constructs region for combined constructs. /// \param CodeGen Code generation sequence for combined directives. Includes /// a list of functions used for code generation of implicitly inlined /// regions. InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, bool HasCancel) : CGF(CGF) { // Start emission for the construct. CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo( CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel); std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); LambdaThisCaptureField = CGF.LambdaThisCaptureField; CGF.LambdaThisCaptureField = nullptr; } ~InlinedOpenMPRegionRAII() { // Restore original CapturedStmtInfo only if we're done with code emission. auto *OldCSI = cast(CGF.CapturedStmtInfo)->getOldCSI(); delete CGF.CapturedStmtInfo; CGF.CapturedStmtInfo = OldCSI; std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); CGF.LambdaThisCaptureField = LambdaThisCaptureField; } }; /// \brief Values for bit flags used in the ident_t to describe the fields. /// All enumeric elements are named and described in accordance with the code /// from http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h enum OpenMPLocationFlags { /// \brief Use trampoline for internal microtask. OMP_IDENT_IMD = 0x01, /// \brief Use c-style ident structure. OMP_IDENT_KMPC = 0x02, /// \brief Atomic reduction option for kmpc_reduce. OMP_ATOMIC_REDUCE = 0x10, /// \brief Explicit 'barrier' directive. OMP_IDENT_BARRIER_EXPL = 0x20, /// \brief Implicit barrier in code. OMP_IDENT_BARRIER_IMPL = 0x40, /// \brief Implicit barrier in 'for' directive. OMP_IDENT_BARRIER_IMPL_FOR = 0x40, /// \brief Implicit barrier in 'sections' directive. OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0, /// \brief Implicit barrier in 'single' directive. OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140 }; /// \brief Describes ident structure that describes a source location. /// All descriptions are taken from /// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h /// Original structure: /// typedef struct ident { /// kmp_int32 reserved_1; /**< might be used in Fortran; /// see above */ /// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; /// KMP_IDENT_KMPC identifies this union /// member */ /// kmp_int32 reserved_2; /**< not really used in Fortran any more; /// see above */ ///#if USE_ITT_BUILD /// /* but currently used for storing /// region-specific ITT */ /// /* contextual information. */ ///#endif /* USE_ITT_BUILD */ /// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for /// C++ */ /// char const *psource; /**< String describing the source location. /// The string is composed of semi-colon separated // fields which describe the source file, /// the function and a pair of line numbers that /// delimit the construct. /// */ /// } ident_t; enum IdentFieldIndex { /// \brief might be used in Fortran IdentField_Reserved_1, /// \brief OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member. IdentField_Flags, /// \brief Not really used in Fortran any more IdentField_Reserved_2, /// \brief Source[4] in Fortran, do not use for C++ IdentField_Reserved_3, /// \brief String describing the source location. The string is composed of /// semi-colon separated fields which describe the source file, the function /// and a pair of line numbers that delimit the construct. IdentField_PSource }; /// \brief Schedule types for 'omp for' loops (these enumerators are taken from /// the enum sched_type in kmp.h). enum OpenMPSchedType { /// \brief Lower bound for default (unordered) versions. OMP_sch_lower = 32, OMP_sch_static_chunked = 33, OMP_sch_static = 34, OMP_sch_dynamic_chunked = 35, OMP_sch_guided_chunked = 36, OMP_sch_runtime = 37, OMP_sch_auto = 38, /// static with chunk adjustment (e.g., simd) OMP_sch_static_balanced_chunked = 45, /// \brief Lower bound for 'ordered' versions. OMP_ord_lower = 64, OMP_ord_static_chunked = 65, OMP_ord_static = 66, OMP_ord_dynamic_chunked = 67, OMP_ord_guided_chunked = 68, OMP_ord_runtime = 69, OMP_ord_auto = 70, OMP_sch_default = OMP_sch_static, /// \brief dist_schedule types OMP_dist_sch_static_chunked = 91, OMP_dist_sch_static = 92, /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. /// Set if the monotonic schedule modifier was present. OMP_sch_modifier_monotonic = (1 << 29), /// Set if the nonmonotonic schedule modifier was present. OMP_sch_modifier_nonmonotonic = (1 << 30), }; enum OpenMPRTLFunction { /// \brief Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, /// kmpc_micro microtask, ...); OMPRTL__kmpc_fork_call, /// \brief Call to void *__kmpc_threadprivate_cached(ident_t *loc, /// kmp_int32 global_tid, void *data, size_t size, void ***cache); OMPRTL__kmpc_threadprivate_cached, /// \brief Call to void __kmpc_threadprivate_register( ident_t *, /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor); OMPRTL__kmpc_threadprivate_register, // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc); OMPRTL__kmpc_global_thread_num, // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, // kmp_critical_name *crit); OMPRTL__kmpc_critical, // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 // global_tid, kmp_critical_name *crit, uintptr_t hint); OMPRTL__kmpc_critical_with_hint, // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, // kmp_critical_name *crit); OMPRTL__kmpc_end_critical, // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32 // global_tid); OMPRTL__kmpc_cancel_barrier, // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid); OMPRTL__kmpc_barrier, // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); OMPRTL__kmpc_for_static_fini, // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 // global_tid); OMPRTL__kmpc_serialized_parallel, // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 // global_tid); OMPRTL__kmpc_end_serialized_parallel, // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, // kmp_int32 num_threads); OMPRTL__kmpc_push_num_threads, // Call to void __kmpc_flush(ident_t *loc); OMPRTL__kmpc_flush, // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid); OMPRTL__kmpc_master, // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid); OMPRTL__kmpc_end_master, // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid, // int end_part); OMPRTL__kmpc_omp_taskyield, // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid); OMPRTL__kmpc_single, // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid); OMPRTL__kmpc_end_single, // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, // kmp_routine_entry_t *task_entry); OMPRTL__kmpc_omp_task_alloc, // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t * // new_task); OMPRTL__kmpc_omp_task, // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), // kmp_int32 didit); OMPRTL__kmpc_copyprivate, // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck); OMPRTL__kmpc_reduce, // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name // *lck); OMPRTL__kmpc_reduce_nowait, // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, // kmp_critical_name *lck); OMPRTL__kmpc_end_reduce, // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, // kmp_critical_name *lck); OMPRTL__kmpc_end_reduce_nowait, // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, // kmp_task_t * new_task); OMPRTL__kmpc_omp_task_begin_if0, // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, // kmp_task_t * new_task); OMPRTL__kmpc_omp_task_complete_if0, // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid); OMPRTL__kmpc_ordered, // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid); OMPRTL__kmpc_end_ordered, // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 // global_tid); OMPRTL__kmpc_omp_taskwait, // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid); OMPRTL__kmpc_taskgroup, // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid); OMPRTL__kmpc_end_taskgroup, // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, // int proc_bind); OMPRTL__kmpc_push_proc_bind, // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list); OMPRTL__kmpc_omp_task_with_deps, // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); OMPRTL__kmpc_omp_wait_deps, // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 // global_tid, kmp_int32 cncl_kind); OMPRTL__kmpc_cancellationpoint, // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, // kmp_int32 cncl_kind); OMPRTL__kmpc_cancel, // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, // kmp_int32 num_teams, kmp_int32 thread_limit); OMPRTL__kmpc_push_num_teams, // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro // microtask, ...); OMPRTL__kmpc_fork_teams, // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int // sched, kmp_uint64 grainsize, void *task_dup); OMPRTL__kmpc_taskloop, // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32 // num_dims, struct kmp_dim *dims); OMPRTL__kmpc_doacross_init, // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); OMPRTL__kmpc_doacross_fini, // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64 // *vec); OMPRTL__kmpc_doacross_post, // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64 // *vec); OMPRTL__kmpc_doacross_wait, // // Offloading related calls // // Call to int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t // *arg_types); OMPRTL__tgt_target, // Call to int32_t __tgt_target_teams(int32_t device_id, void *host_ptr, // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes, // int32_t *arg_types, int32_t num_teams, int32_t thread_limit); OMPRTL__tgt_target_teams, // Call to void __tgt_register_lib(__tgt_bin_desc *desc); OMPRTL__tgt_register_lib, // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc); OMPRTL__tgt_unregister_lib, // Call to void __tgt_target_data_begin(int32_t device_id, int32_t arg_num, // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); OMPRTL__tgt_target_data_begin, // Call to void __tgt_target_data_end(int32_t device_id, int32_t arg_num, // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); OMPRTL__tgt_target_data_end, // Call to void __tgt_target_data_update(int32_t device_id, int32_t arg_num, // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); OMPRTL__tgt_target_data_update, }; /// A basic class for pre|post-action for advanced codegen sequence for OpenMP /// region. class CleanupTy final : public EHScopeStack::Cleanup { PrePostActionTy *Action; public: explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {} void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { if (!CGF.HaveInsertPoint()) return; Action->Exit(CGF); } }; } // anonymous namespace void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const { CodeGenFunction::RunCleanupsScope Scope(CGF); if (PrePostAction) { CGF.EHStack.pushCleanup(NormalAndEHCleanup, PrePostAction); Callback(CodeGen, CGF, *PrePostAction); } else { PrePostActionTy Action; Callback(CodeGen, CGF, Action); } } LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) { return CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(getThreadIDVariable()), getThreadIDVariable()->getType()->castAs()); } void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) { if (!CGF.HaveInsertPoint()) return; // 1.2.2 OpenMP Language Terminology // Structured block - An executable statement with a single entry at the // top and a single exit at the bottom. // The point of exit cannot be a branch out of the structured block. // longjmp() and throw() must not violate the entry/exit criteria. CGF.EHStack.pushTerminate(); CodeGen(CGF); CGF.EHStack.popTerminate(); } LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue( CodeGenFunction &CGF) { return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()), getThreadIDVariable()->getType(), AlignmentSource::Decl); } CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM) : CGM(CGM), OffloadEntriesInfoManager(CGM) { IdentTy = llvm::StructType::create( "ident_t", CGM.Int32Ty /* reserved_1 */, CGM.Int32Ty /* flags */, CGM.Int32Ty /* reserved_2 */, CGM.Int32Ty /* reserved_3 */, CGM.Int8PtrTy /* psource */, nullptr); KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8); loadOffloadInfoMetadata(); } void CGOpenMPRuntime::clear() { InternalVars.clear(); } static llvm::Function * emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty, const Expr *CombinerInitializer, const VarDecl *In, const VarDecl *Out, bool IsCombiner) { // void .omp_combiner.(Ty *in, Ty *out); auto &C = CGM.getContext(); QualType PtrTy = C.getPointerType(Ty).withRestrict(); FunctionArgList Args; ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(), /*Id=*/nullptr, PtrTy); ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(), /*Id=*/nullptr, PtrTy); Args.push_back(&OmpOutParm); Args.push_back(&OmpInParm); auto &FnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *FnTy = CGM.getTypes().GetFunctionType(FnInfo); auto *Fn = llvm::Function::Create( FnTy, llvm::GlobalValue::InternalLinkage, IsCombiner ? ".omp_combiner." : ".omp_initializer.", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, FnInfo); Fn->addFnAttr(llvm::Attribute::AlwaysInline); CodeGenFunction CGF(CGM); // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions. // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions. CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args); CodeGenFunction::OMPPrivateScope Scope(CGF); Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm); Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() -> Address { return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs()) .getAddress(); }); Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm); Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() -> Address { return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs()) .getAddress(); }); (void)Scope.Privatize(); CGF.EmitIgnoredExpr(CombinerInitializer); Scope.ForceCleanup(); CGF.FinishFunction(); return Fn; } void CGOpenMPRuntime::emitUserDefinedReduction( CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) { if (UDRMap.count(D) > 0) return; auto &C = CGM.getContext(); if (!In || !Out) { In = &C.Idents.get("omp_in"); Out = &C.Idents.get("omp_out"); } llvm::Function *Combiner = emitCombinerOrInitializer( CGM, D->getType(), D->getCombiner(), cast(D->lookup(In).front()), cast(D->lookup(Out).front()), /*IsCombiner=*/true); llvm::Function *Initializer = nullptr; if (auto *Init = D->getInitializer()) { if (!Priv || !Orig) { Priv = &C.Idents.get("omp_priv"); Orig = &C.Idents.get("omp_orig"); } Initializer = emitCombinerOrInitializer( CGM, D->getType(), Init, cast(D->lookup(Orig).front()), cast(D->lookup(Priv).front()), /*IsCombiner=*/false); } UDRMap.insert(std::make_pair(D, std::make_pair(Combiner, Initializer))); if (CGF) { auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn); Decls.second.push_back(D); } } std::pair CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) { auto I = UDRMap.find(D); if (I != UDRMap.end()) return I->second; emitUserDefinedReduction(/*CGF=*/nullptr, D); return UDRMap.lookup(D); } // Layout information for ident_t. static CharUnits getIdentAlign(CodeGenModule &CGM) { return CGM.getPointerAlign(); } static CharUnits getIdentSize(CodeGenModule &CGM) { assert((4 * CGM.getPointerSize()).isMultipleOf(CGM.getPointerAlign())); return CharUnits::fromQuantity(16) + CGM.getPointerSize(); } static CharUnits getOffsetOfIdentField(IdentFieldIndex Field) { // All the fields except the last are i32, so this works beautifully. return unsigned(Field) * CharUnits::fromQuantity(4); } static Address createIdentFieldGEP(CodeGenFunction &CGF, Address Addr, IdentFieldIndex Field, const llvm::Twine &Name = "") { auto Offset = getOffsetOfIdentField(Field); return CGF.Builder.CreateStructGEP(Addr, Field, Offset, Name); } llvm::Value *CGOpenMPRuntime::emitParallelOrTeamsOutlinedFunction( const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { assert(ThreadIDVar->getType()->isPointerType() && "thread id variable must be of type kmp_int32 *"); const CapturedStmt *CS = cast(D.getAssociatedStmt()); CodeGenFunction CGF(CGM, true); bool HasCancel = false; if (auto *OPD = dyn_cast(&D)) HasCancel = OPD->hasCancel(); else if (auto *OPSD = dyn_cast(&D)) HasCancel = OPSD->hasCancel(); else if (auto *OPFD = dyn_cast(&D)) HasCancel = OPFD->hasCancel(); CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind, HasCancel); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); return CGF.GenerateOpenMPCapturedStmtFunction(*CS); } llvm::Value *CGOpenMPRuntime::emitTaskOutlinedFunction( const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, const VarDecl *PartIDVar, const VarDecl *TaskTVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, bool Tied, unsigned &NumberOfParts) { auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF, PrePostActionTy &) { auto *ThreadID = getThreadID(CGF, D.getLocStart()); auto *UpLoc = emitUpdateLocation(CGF, D.getLocStart()); llvm::Value *TaskArgs[] = { UpLoc, ThreadID, CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar), TaskTVar->getType()->castAs()) .getPointer()}; CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs); }; CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar, UntiedCodeGen); CodeGen.setAction(Action); assert(!ThreadIDVar->getType()->isPointerType() && "thread id variable must be of type kmp_int32 for tasks"); auto *CS = cast(D.getAssociatedStmt()); auto *TD = dyn_cast(&D); CodeGenFunction CGF(CGM, true); CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind, TD ? TD->hasCancel() : false, Action); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); auto *Res = CGF.GenerateCapturedStmtFunction(*CS); if (!Tied) NumberOfParts = Action.getNumberOfParts(); return Res; } Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) { CharUnits Align = getIdentAlign(CGM); llvm::Value *Entry = OpenMPDefaultLocMap.lookup(Flags); if (!Entry) { if (!DefaultOpenMPPSource) { // Initialize default location for psource field of ident_t structure of // all ident_t objects. Format is ";file;function;line;column;;". // Taken from // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp_str.c DefaultOpenMPPSource = CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer(); DefaultOpenMPPSource = llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy); } auto DefaultOpenMPLocation = new llvm::GlobalVariable( CGM.getModule(), IdentTy, /*isConstant*/ true, llvm::GlobalValue::PrivateLinkage, /*Initializer*/ nullptr); DefaultOpenMPLocation->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); DefaultOpenMPLocation->setAlignment(Align.getQuantity()); llvm::Constant *Zero = llvm::ConstantInt::get(CGM.Int32Ty, 0, true); llvm::Constant *Values[] = {Zero, llvm::ConstantInt::get(CGM.Int32Ty, Flags), Zero, Zero, DefaultOpenMPPSource}; llvm::Constant *Init = llvm::ConstantStruct::get(IdentTy, Values); DefaultOpenMPLocation->setInitializer(Init); OpenMPDefaultLocMap[Flags] = Entry = DefaultOpenMPLocation; } return Address(Entry, Align); } llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF, SourceLocation Loc, unsigned Flags) { Flags |= OMP_IDENT_KMPC; // If no debug info is generated - return global default location. if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo || Loc.isInvalid()) return getOrCreateDefaultLocation(Flags).getPointer(); assert(CGF.CurFn && "No function in current CodeGenFunction."); Address LocValue = Address::invalid(); auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); if (I != OpenMPLocThreadIDMap.end()) LocValue = Address(I->second.DebugLoc, getIdentAlign(CGF.CGM)); // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if // GetOpenMPThreadID was called before this routine. if (!LocValue.isValid()) { // Generate "ident_t .kmpc_loc.addr;" Address AI = CGF.CreateTempAlloca(IdentTy, getIdentAlign(CGF.CGM), ".kmpc_loc.addr"); auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); Elem.second.DebugLoc = AI.getPointer(); LocValue = AI; CGBuilderTy::InsertPointGuard IPG(CGF.Builder); CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt); CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags), CGM.getSize(getIdentSize(CGF.CGM))); } // char **psource = &.kmpc_loc_.addr.psource; Address PSource = createIdentFieldGEP(CGF, LocValue, IdentField_PSource); auto OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding()); if (OMPDebugLoc == nullptr) { SmallString<128> Buffer2; llvm::raw_svector_ostream OS2(Buffer2); // Build debug location PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc); OS2 << ";" << PLoc.getFilename() << ";"; if (const FunctionDecl *FD = dyn_cast_or_null(CGF.CurFuncDecl)) { OS2 << FD->getQualifiedNameAsString(); } OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;"; OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str()); OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc; } // *psource = ";;;;;;"; CGF.Builder.CreateStore(OMPDebugLoc, PSource); // Our callers always pass this to a runtime function, so for // convenience, go ahead and return a naked pointer. return LocValue.getPointer(); } llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF, SourceLocation Loc) { assert(CGF.CurFn && "No function in current CodeGenFunction."); llvm::Value *ThreadID = nullptr; // Check whether we've already cached a load of the thread id in this // function. auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); if (I != OpenMPLocThreadIDMap.end()) { ThreadID = I->second.ThreadID; if (ThreadID != nullptr) return ThreadID; } if (auto *OMPRegionInfo = dyn_cast_or_null(CGF.CapturedStmtInfo)) { if (OMPRegionInfo->getThreadIDVariable()) { // Check if this an outlined function with thread id passed as argument. auto LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF); ThreadID = CGF.EmitLoadOfLValue(LVal, Loc).getScalarVal(); // If value loaded in entry block, cache it and use it everywhere in // function. if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) { auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); Elem.second.ThreadID = ThreadID; } return ThreadID; } } // This is not an outlined function region - need to call __kmpc_int32 // kmpc_global_thread_num(ident_t *loc). // Generate thread id value and cache this value for use across the // function. CGBuilderTy::InsertPointGuard IPG(CGF.Builder); CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt); ThreadID = CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num), emitUpdateLocation(CGF, Loc)); auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); Elem.second.ThreadID = ThreadID; return ThreadID; } void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) { assert(CGF.CurFn && "No function in current CodeGenFunction."); if (OpenMPLocThreadIDMap.count(CGF.CurFn)) OpenMPLocThreadIDMap.erase(CGF.CurFn); if (FunctionUDRMap.count(CGF.CurFn) > 0) { for(auto *D : FunctionUDRMap[CGF.CurFn]) { UDRMap.erase(D); } FunctionUDRMap.erase(CGF.CurFn); } } llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() { if (!IdentTy) { } return llvm::PointerType::getUnqual(IdentTy); } llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() { if (!Kmpc_MicroTy) { // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...) llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty), llvm::PointerType::getUnqual(CGM.Int32Ty)}; Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true); } return llvm::PointerType::getUnqual(Kmpc_MicroTy); } llvm::Constant * CGOpenMPRuntime::createRuntimeFunction(unsigned Function) { llvm::Constant *RTLFn = nullptr; switch (static_cast(Function)) { case OMPRTL__kmpc_fork_call: { // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro // microtask, ...); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, getKmpc_MicroPointerTy()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call"); break; } case OMPRTL__kmpc_global_thread_num: { // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc); llvm::Type *TypeParams[] = {getIdentTyPointerTy()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num"); break; } case OMPRTL__kmpc_threadprivate_cached: { // Build void *__kmpc_threadprivate_cached(ident_t *loc, // kmp_int32 global_tid, void *data, size_t size, void ***cache); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.SizeTy, CGM.VoidPtrTy->getPointerTo()->getPointerTo()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached"); break; } case OMPRTL__kmpc_critical: { // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, // kmp_critical_name *crit); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), CGM.Int32Ty, llvm::PointerType::getUnqual(KmpCriticalNameTy)}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical"); break; } case OMPRTL__kmpc_critical_with_hint: { // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid, // kmp_critical_name *crit, uintptr_t hint); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, llvm::PointerType::getUnqual(KmpCriticalNameTy), CGM.IntPtrTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint"); break; } case OMPRTL__kmpc_threadprivate_register: { // Build void __kmpc_threadprivate_register(ident_t *, void *data, // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor); // typedef void *(*kmpc_ctor)(void *); auto KmpcCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, /*isVarArg*/ false)->getPointerTo(); // typedef void *(*kmpc_cctor)(void *, void *); llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; auto KmpcCopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs, /*isVarArg*/ false)->getPointerTo(); // typedef void (*kmpc_dtor)(void *); auto KmpcDtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false) ->getPointerTo(); llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy, KmpcCopyCtorTy, KmpcDtorTy}; auto FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register"); break; } case OMPRTL__kmpc_end_critical: { // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, // kmp_critical_name *crit); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), CGM.Int32Ty, llvm::PointerType::getUnqual(KmpCriticalNameTy)}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical"); break; } case OMPRTL__kmpc_cancel_barrier: { // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32 // global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier"); break; } case OMPRTL__kmpc_barrier: { // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier"); break; } case OMPRTL__kmpc_for_static_fini: { // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini"); break; } case OMPRTL__kmpc_push_num_threads: { // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, // kmp_int32 num_threads) llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads"); break; } case OMPRTL__kmpc_serialized_parallel: { // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 // global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel"); break; } case OMPRTL__kmpc_end_serialized_parallel: { // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 // global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel"); break; } case OMPRTL__kmpc_flush: { // Build void __kmpc_flush(ident_t *loc); llvm::Type *TypeParams[] = {getIdentTyPointerTy()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush"); break; } case OMPRTL__kmpc_master: { // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master"); break; } case OMPRTL__kmpc_end_master: { // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master"); break; } case OMPRTL__kmpc_omp_taskyield: { // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid, // int end_part); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield"); break; } case OMPRTL__kmpc_single: { // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single"); break; } case OMPRTL__kmpc_end_single: { // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single"); break; } case OMPRTL__kmpc_omp_task_alloc: { // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, // kmp_routine_entry_t *task_entry); assert(KmpRoutineEntryPtrTy != nullptr && "Type kmp_routine_entry_t must be created."); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy}; // Return void * and then cast to particular kmp_task_t type. llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc"); break; } case OMPRTL__kmpc_omp_task: { // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t // *new_task); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task"); break; } case OMPRTL__kmpc_copyprivate: { // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), // kmp_int32 didit); llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; auto *CpyFnTy = llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy, CGM.VoidPtrTy, CpyFnTy->getPointerTo(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate"); break; } case OMPRTL__kmpc_reduce: { // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck); llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams, /*isVarArg=*/false); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, CGM.VoidPtrTy, ReduceFnTy->getPointerTo(), llvm::PointerType::getUnqual(KmpCriticalNameTy)}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce"); break; } case OMPRTL__kmpc_reduce_nowait: { // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name // *lck); llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams, /*isVarArg=*/false); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, CGM.VoidPtrTy, ReduceFnTy->getPointerTo(), llvm::PointerType::getUnqual(KmpCriticalNameTy)}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait"); break; } case OMPRTL__kmpc_end_reduce: { // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, // kmp_critical_name *lck); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), CGM.Int32Ty, llvm::PointerType::getUnqual(KmpCriticalNameTy)}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce"); break; } case OMPRTL__kmpc_end_reduce_nowait: { // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, // kmp_critical_name *lck); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), CGM.Int32Ty, llvm::PointerType::getUnqual(KmpCriticalNameTy)}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait"); break; } case OMPRTL__kmpc_omp_task_begin_if0: { // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t // *new_task); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0"); break; } case OMPRTL__kmpc_omp_task_complete_if0: { // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t // *new_task); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_complete_if0"); break; } case OMPRTL__kmpc_ordered: { // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered"); break; } case OMPRTL__kmpc_end_ordered: { // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered"); break; } case OMPRTL__kmpc_omp_taskwait: { // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait"); break; } case OMPRTL__kmpc_taskgroup: { // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup"); break; } case OMPRTL__kmpc_end_taskgroup: { // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup"); break; } case OMPRTL__kmpc_push_proc_bind: { // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, // int proc_bind) llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind"); break; } case OMPRTL__kmpc_omp_task_with_deps: { // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps"); break; } case OMPRTL__kmpc_omp_wait_deps: { // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, // kmp_depend_info_t *noalias_dep_list); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps"); break; } case OMPRTL__kmpc_cancellationpoint: { // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 // global_tid, kmp_int32 cncl_kind) llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint"); break; } case OMPRTL__kmpc_cancel: { // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, // kmp_int32 cncl_kind) llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel"); break; } case OMPRTL__kmpc_push_num_teams: { // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid, // kmp_int32 num_teams, kmp_int32 num_threads) llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams"); break; } case OMPRTL__kmpc_fork_teams: { // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro // microtask, ...); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, getKmpc_MicroPointerTy()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams"); break; } case OMPRTL__kmpc_taskloop: { // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int // sched, kmp_uint64 grainsize, void *task_dup); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.IntTy, CGM.VoidPtrTy, CGM.IntTy, CGM.Int64Ty->getPointerTo(), CGM.Int64Ty->getPointerTo(), CGM.Int64Ty, CGM.IntTy, CGM.IntTy, CGM.Int64Ty, CGM.VoidPtrTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop"); break; } case OMPRTL__kmpc_doacross_init: { // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32 // num_dims, struct kmp_dim *dims); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.VoidPtrTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init"); break; } case OMPRTL__kmpc_doacross_fini: { // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini"); break; } case OMPRTL__kmpc_doacross_post: { // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64 // *vec); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int64Ty->getPointerTo()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post"); break; } case OMPRTL__kmpc_doacross_wait: { // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64 // *vec); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int64Ty->getPointerTo()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait"); break; } case OMPRTL__tgt_target: { // Build int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t // *arg_types); llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrPtrTy, CGM.VoidPtrPtrTy, CGM.SizeTy->getPointerTo(), CGM.Int32Ty->getPointerTo()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target"); break; } case OMPRTL__tgt_target_teams: { // Build int32_t __tgt_target_teams(int32_t device_id, void *host_ptr, // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes, // int32_t *arg_types, int32_t num_teams, int32_t thread_limit); llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrPtrTy, CGM.VoidPtrPtrTy, CGM.SizeTy->getPointerTo(), CGM.Int32Ty->getPointerTo(), CGM.Int32Ty, CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams"); break; } case OMPRTL__tgt_register_lib: { // Build void __tgt_register_lib(__tgt_bin_desc *desc); QualType ParamTy = CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy()); llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib"); break; } case OMPRTL__tgt_unregister_lib: { // Build void __tgt_unregister_lib(__tgt_bin_desc *desc); QualType ParamTy = CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy()); llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib"); break; } case OMPRTL__tgt_target_data_begin: { // Build void __tgt_target_data_begin(int32_t device_id, int32_t arg_num, // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int32Ty, CGM.VoidPtrPtrTy, CGM.VoidPtrPtrTy, CGM.SizeTy->getPointerTo(), CGM.Int32Ty->getPointerTo()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin"); break; } case OMPRTL__tgt_target_data_end: { // Build void __tgt_target_data_end(int32_t device_id, int32_t arg_num, // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int32Ty, CGM.VoidPtrPtrTy, CGM.VoidPtrPtrTy, CGM.SizeTy->getPointerTo(), CGM.Int32Ty->getPointerTo()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end"); break; } case OMPRTL__tgt_target_data_update: { // Build void __tgt_target_data_update(int32_t device_id, int32_t arg_num, // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int32Ty, CGM.VoidPtrPtrTy, CGM.VoidPtrPtrTy, CGM.SizeTy->getPointerTo(), CGM.Int32Ty->getPointerTo()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update"); break; } } assert(RTLFn && "Unable to find OpenMP runtime function"); return RTLFn; } llvm::Constant *CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4" : "__kmpc_for_static_init_4u") : (IVSigned ? "__kmpc_for_static_init_8" : "__kmpc_for_static_init_8u"); auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; auto PtrTy = llvm::PointerType::getUnqual(ITy); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc CGM.Int32Ty, // tid CGM.Int32Ty, // schedtype llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter PtrTy, // p_lower PtrTy, // p_upper PtrTy, // p_stride ITy, // incr ITy // chunk }; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); return CGM.CreateRuntimeFunction(FnTy, Name); } llvm::Constant *CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u") : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u"); auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc CGM.Int32Ty, // tid CGM.Int32Ty, // schedtype ITy, // lower ITy, // upper ITy, // stride ITy // chunk }; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); return CGM.CreateRuntimeFunction(FnTy, Name); } llvm::Constant *CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u") : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u"); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc CGM.Int32Ty, // tid }; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); return CGM.CreateRuntimeFunction(FnTy, Name); } llvm::Constant *CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u") : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u"); auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; auto PtrTy = llvm::PointerType::getUnqual(ITy); llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc CGM.Int32Ty, // tid llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter PtrTy, // p_lower PtrTy, // p_upper PtrTy // p_stride }; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); return CGM.CreateRuntimeFunction(FnTy, Name); } llvm::Constant * CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) { assert(!CGM.getLangOpts().OpenMPUseTLS || !CGM.getContext().getTargetInfo().isTLSSupported()); // Lookup the entry, lazily creating it if necessary. return getOrCreateInternalVariable(CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)) + ".cache."); } Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, SourceLocation Loc) { if (CGM.getLangOpts().OpenMPUseTLS && CGM.getContext().getTargetInfo().isTLSSupported()) return VDAddr; auto VarTy = VDAddr.getElementType(); llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy), CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)), getOrCreateThreadPrivateCache(VD)}; return Address(CGF.EmitRuntimeCall( createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args), VDAddr.getAlignment()); } void CGOpenMPRuntime::emitThreadPrivateVarInit( CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor, llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) { // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime // library. auto OMPLoc = emitUpdateLocation(CGF, Loc); CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num), OMPLoc); // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor) // to register constructor/destructor for variable. llvm::Value *Args[] = {OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy), Ctor, CopyCtor, Dtor}; CGF.EmitRuntimeCall( createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args); } llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition( const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit, CodeGenFunction *CGF) { if (CGM.getLangOpts().OpenMPUseTLS && CGM.getContext().getTargetInfo().isTLSSupported()) return nullptr; VD = VD->getDefinition(CGM.getContext()); if (VD && ThreadPrivateWithDefinition.count(VD) == 0) { ThreadPrivateWithDefinition.insert(VD); QualType ASTTy = VD->getType(); llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr; auto Init = VD->getAnyInitializer(); if (CGM.getLangOpts().CPlusPlus && PerformInit) { // Generate function that re-emits the declaration's initializer into the // threadprivate copy of the variable VD CodeGenFunction CtorCGF(CGM); FunctionArgList Args; ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr, CGM.getContext().VoidPtrTy); Args.push_back(&Dst); auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( CGM.getContext().VoidPtrTy, Args); auto FTy = CGM.getTypes().GetFunctionType(FI); auto Fn = CGM.CreateGlobalInitOrDestructFunction( FTy, ".__kmpc_global_ctor_.", FI, Loc); CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI, Args, SourceLocation()); auto ArgVal = CtorCGF.EmitLoadOfScalar( CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation()); Address Arg = Address(ArgVal, VDAddr.getAlignment()); Arg = CtorCGF.Builder.CreateElementBitCast(Arg, CtorCGF.ConvertTypeForMem(ASTTy)); CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(), /*IsInitializer=*/true); ArgVal = CtorCGF.EmitLoadOfScalar( CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation()); CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue); CtorCGF.FinishFunction(); Ctor = Fn; } if (VD->getType().isDestructedType() != QualType::DK_none) { // Generate function that emits destructor call for the threadprivate copy // of the variable VD CodeGenFunction DtorCGF(CGM); FunctionArgList Args; ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr, CGM.getContext().VoidPtrTy); Args.push_back(&Dst); auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( CGM.getContext().VoidTy, Args); auto FTy = CGM.getTypes().GetFunctionType(FI); auto Fn = CGM.CreateGlobalInitOrDestructFunction( FTy, ".__kmpc_global_dtor_.", FI, Loc); auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF); DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args, SourceLocation()); // Create a scope with an artificial location for the body of this function. auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF); auto ArgVal = DtorCGF.EmitLoadOfScalar( DtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation()); DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()), DtorCGF.needsEHCleanup(ASTTy.isDestructedType())); DtorCGF.FinishFunction(); Dtor = Fn; } // Do not emit init function if it is not required. if (!Ctor && !Dtor) return nullptr; llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; auto CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs, /*isVarArg=*/false)->getPointerTo(); // Copying constructor for the threadprivate variable. // Must be NULL - reserved by runtime, but currently it requires that this // parameter is always NULL. Otherwise it fires assertion. CopyCtor = llvm::Constant::getNullValue(CopyCtorTy); if (Ctor == nullptr) { auto CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, /*isVarArg=*/false)->getPointerTo(); Ctor = llvm::Constant::getNullValue(CtorTy); } if (Dtor == nullptr) { auto DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg=*/false)->getPointerTo(); Dtor = llvm::Constant::getNullValue(DtorTy); } if (!CGF) { auto InitFunctionTy = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false); auto InitFunction = CGM.CreateGlobalInitOrDestructFunction( InitFunctionTy, ".__omp_threadprivate_init_.", CGM.getTypes().arrangeNullaryFunction()); CodeGenFunction InitCGF(CGM); FunctionArgList ArgList; InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction, CGM.getTypes().arrangeNullaryFunction(), ArgList, Loc); emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); InitCGF.FinishFunction(); return InitFunction; } emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); } return nullptr; } /// \brief Emits code for OpenMP 'if' clause using specified \a CodeGen /// function. Here is the logic: /// if (Cond) { /// ThenGen(); /// } else { /// ElseGen(); /// } static void emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond, const RegionCodeGenTy &ThenGen, const RegionCodeGenTy &ElseGen) { CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange()); // If the condition constant folds and can be elided, try to avoid emitting // the condition and the dead arm of the if/else. bool CondConstant; if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) { if (CondConstant) ThenGen(CGF); else ElseGen(CGF); return; } // Otherwise, the condition did not fold, or we couldn't elide it. Just // emit the conditional branch. auto ThenBlock = CGF.createBasicBlock("omp_if.then"); auto ElseBlock = CGF.createBasicBlock("omp_if.else"); auto ContBlock = CGF.createBasicBlock("omp_if.end"); CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0); // Emit the 'then' code. CGF.EmitBlock(ThenBlock); ThenGen(CGF); CGF.EmitBranch(ContBlock); // Emit the 'else' code if present. // There is no need to emit line number for unconditional branch. (void)ApplyDebugLocation::CreateEmpty(CGF); CGF.EmitBlock(ElseBlock); ElseGen(CGF); // There is no need to emit line number for unconditional branch. (void)ApplyDebugLocation::CreateEmpty(CGF); CGF.EmitBranch(ContBlock); // Emit the continuation block for code after the if. CGF.EmitBlock(ContBlock, /*IsFinished=*/true); } void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn, ArrayRef CapturedVars, const Expr *IfCond) { if (!CGF.HaveInsertPoint()) return; auto *RTLoc = emitUpdateLocation(CGF, Loc); auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF, PrePostActionTy &) { // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn); auto &RT = CGF.CGM.getOpenMPRuntime(); llvm::Value *Args[] = { RTLoc, CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())}; llvm::SmallVector RealArgs; RealArgs.append(std::begin(Args), std::end(Args)); RealArgs.append(CapturedVars.begin(), CapturedVars.end()); auto RTLFn = RT.createRuntimeFunction(OMPRTL__kmpc_fork_call); CGF.EmitRuntimeCall(RTLFn, RealArgs); }; auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF, PrePostActionTy &) { auto &RT = CGF.CGM.getOpenMPRuntime(); auto ThreadID = RT.getThreadID(CGF, Loc); // Build calls: // __kmpc_serialized_parallel(&Loc, GTid); llvm::Value *Args[] = {RTLoc, ThreadID}; CGF.EmitRuntimeCall( RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args); // OutlinedFn(>id, &zero, CapturedStruct); auto ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc); Address ZeroAddr = CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4), /*Name*/ ".zero.addr"); CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); llvm::SmallVector OutlinedFnArgs; OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); OutlinedFnArgs.push_back(ZeroAddr.getPointer()); OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs); // __kmpc_end_serialized_parallel(&Loc, GTid); llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID}; CGF.EmitRuntimeCall( RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel), EndArgs); }; if (IfCond) emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen); else { RegionCodeGenTy ThenRCG(ThenGen); ThenRCG(CGF); } } // If we're inside an (outlined) parallel region, use the region info's // thread-ID variable (it is passed in a first argument of the outlined function // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in // regular serial code region, get thread ID by calling kmp_int32 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and // return the address of that temp. Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF, SourceLocation Loc) { if (auto *OMPRegionInfo = dyn_cast_or_null(CGF.CapturedStmtInfo)) if (OMPRegionInfo->getThreadIDVariable()) return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(); auto ThreadID = getThreadID(CGF, Loc); auto Int32Ty = CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true); auto ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp."); CGF.EmitStoreOfScalar(ThreadID, CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty)); return ThreadIDTemp; } llvm::Constant * CGOpenMPRuntime::getOrCreateInternalVariable(llvm::Type *Ty, const llvm::Twine &Name) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); Out << Name; auto RuntimeName = Out.str(); auto &Elem = *InternalVars.insert(std::make_pair(RuntimeName, nullptr)).first; if (Elem.second) { assert(Elem.second->getType()->getPointerElementType() == Ty && "OMP internal variable has different type than requested"); return &*Elem.second; } return Elem.second = new llvm::GlobalVariable( CGM.getModule(), Ty, /*IsConstant*/ false, llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty), Elem.first()); } llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) { llvm::Twine Name(".gomp_critical_user_", CriticalName); return getOrCreateInternalVariable(KmpCriticalNameTy, Name.concat(".var")); } namespace { /// Common pre(post)-action for different OpenMP constructs. class CommonActionTy final : public PrePostActionTy { llvm::Value *EnterCallee; ArrayRef EnterArgs; llvm::Value *ExitCallee; ArrayRef ExitArgs; bool Conditional; llvm::BasicBlock *ContBlock = nullptr; public: CommonActionTy(llvm::Value *EnterCallee, ArrayRef EnterArgs, llvm::Value *ExitCallee, ArrayRef ExitArgs, bool Conditional = false) : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), ExitArgs(ExitArgs), Conditional(Conditional) {} void Enter(CodeGenFunction &CGF) override { llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); if (Conditional) { llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); ContBlock = CGF.createBasicBlock("omp_if.end"); // Generate the branch (If-stmt) CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); CGF.EmitBlock(ThenBlock); } } void Done(CodeGenFunction &CGF) { // Emit the rest of blocks/branches CGF.EmitBranch(ContBlock); CGF.EmitBlock(ContBlock, true); } void Exit(CodeGenFunction &CGF) override { CGF.EmitRuntimeCall(ExitCallee, ExitArgs); } }; } // anonymous namespace void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF, StringRef CriticalName, const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, const Expr *Hint) { // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]); // CriticalOpGen(); // __kmpc_end_critical(ident_t *, gtid, Lock); // Prepare arguments and build a call to __kmpc_critical if (!CGF.HaveInsertPoint()) return; llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), getCriticalRegionLock(CriticalName)}; llvm::SmallVector EnterArgs(std::begin(Args), std::end(Args)); if (Hint) { EnterArgs.push_back(CGF.Builder.CreateIntCast( CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false)); } CommonActionTy Action( createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint : OMPRTL__kmpc_critical), EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args); CriticalOpGen.setAction(Action); emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen); } void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF, const RegionCodeGenTy &MasterOpGen, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; // if(__kmpc_master(ident_t *, gtid)) { // MasterOpGen(); // __kmpc_end_master(ident_t *, gtid); // } // Prepare arguments and build a call to __kmpc_master llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args, createRuntimeFunction(OMPRTL__kmpc_end_master), Args, /*Conditional=*/true); MasterOpGen.setAction(Action); emitInlinedDirective(CGF, OMPD_master, MasterOpGen); Action.Done(CGF); } void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; // Build call __kmpc_omp_taskyield(loc, thread_id, 0); llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)}; CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args); if (auto *Region = dyn_cast_or_null(CGF.CapturedStmtInfo)) Region->emitUntiedSwitch(CGF); } void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; // __kmpc_taskgroup(ident_t *, gtid); // TaskgroupOpGen(); // __kmpc_end_taskgroup(ident_t *, gtid); // Prepare arguments and build a call to __kmpc_taskgroup llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args, createRuntimeFunction(OMPRTL__kmpc_end_taskgroup), Args); TaskgroupOpGen.setAction(Action); emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen); } /// Given an array of pointers to variables, project the address of a /// given variable. static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array, unsigned Index, const VarDecl *Var) { // Pull out the pointer to the variable. Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index, CGF.getPointerSize()); llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr); Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var)); Addr = CGF.Builder.CreateElementBitCast( Addr, CGF.ConvertTypeForMem(Var->getType())); return Addr; } static llvm::Value *emitCopyprivateCopyFunction( CodeGenModule &CGM, llvm::Type *ArgsType, ArrayRef CopyprivateVars, ArrayRef DestExprs, ArrayRef SrcExprs, ArrayRef AssignmentOps) { auto &C = CGM.getContext(); // void copy_func(void *LHSArg, void *RHSArg); FunctionArgList Args; ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr, C.VoidPtrTy); ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr, C.VoidPtrTy); Args.push_back(&LHSArg); Args.push_back(&RHSArg); auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, ".omp.copyprivate.copy_func", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); // Dest = (void*[n])(LHSArg); // Src = (void*[n])(RHSArg); Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), ArgsType), CGF.getPointerAlign()); Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), ArgsType), CGF.getPointerAlign()); // *(Type0*)Dst[0] = *(Type0*)Src[0]; // *(Type1*)Dst[1] = *(Type1*)Src[1]; // ... // *(Typen*)Dst[n] = *(Typen*)Src[n]; for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) { auto DestVar = cast(cast(DestExprs[I])->getDecl()); Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar); auto SrcVar = cast(cast(SrcExprs[I])->getDecl()); Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar); auto *VD = cast(CopyprivateVars[I])->getDecl(); QualType Type = VD->getType(); CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]); } CGF.FinishFunction(); return Fn; } void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen, SourceLocation Loc, ArrayRef CopyprivateVars, ArrayRef SrcExprs, ArrayRef DstExprs, ArrayRef AssignmentOps) { if (!CGF.HaveInsertPoint()) return; assert(CopyprivateVars.size() == SrcExprs.size() && CopyprivateVars.size() == DstExprs.size() && CopyprivateVars.size() == AssignmentOps.size()); auto &C = CGM.getContext(); // int32 did_it = 0; // if(__kmpc_single(ident_t *, gtid)) { // SingleOpGen(); // __kmpc_end_single(ident_t *, gtid); // did_it = 1; // } // call __kmpc_copyprivate(ident_t *, gtid, , , // , did_it); Address DidIt = Address::invalid(); if (!CopyprivateVars.empty()) { // int32 did_it = 0; auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it"); CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt); } // Prepare arguments and build a call to __kmpc_single llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args, createRuntimeFunction(OMPRTL__kmpc_end_single), Args, /*Conditional=*/true); SingleOpGen.setAction(Action); emitInlinedDirective(CGF, OMPD_single, SingleOpGen); if (DidIt.isValid()) { // did_it = 1; CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt); } Action.Done(CGF); // call __kmpc_copyprivate(ident_t *, gtid, , , // , did_it); if (DidIt.isValid()) { llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size()); auto CopyprivateArrayTy = C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal, /*IndexTypeQuals=*/0); // Create a list of all private variables for copyprivate. Address CopyprivateList = CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list"); for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) { Address Elem = CGF.Builder.CreateConstArrayGEP( CopyprivateList, I, CGF.getPointerSize()); CGF.Builder.CreateStore( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy), Elem); } // Build function that copies private values from single region to all other // threads in the corresponding parallel region. auto *CpyFn = emitCopyprivateCopyFunction( CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(), CopyprivateVars, SrcExprs, DstExprs, AssignmentOps); auto *BufSize = CGF.getTypeSize(CopyprivateArrayTy); Address CL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList, CGF.VoidPtrTy); auto *DidItVal = CGF.Builder.CreateLoad(DidIt); llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), // ident_t * getThreadID(CGF, Loc), // i32 BufSize, // size_t CL.getPointer(), // void * CpyFn, // void (*) (void *, void *) DidItVal // i32 did_it }; CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args); } } void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF, const RegionCodeGenTy &OrderedOpGen, SourceLocation Loc, bool IsThreads) { if (!CGF.HaveInsertPoint()) return; // __kmpc_ordered(ident_t *, gtid); // OrderedOpGen(); // __kmpc_end_ordered(ident_t *, gtid); // Prepare arguments and build a call to __kmpc_ordered if (IsThreads) { llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args, createRuntimeFunction(OMPRTL__kmpc_end_ordered), Args); OrderedOpGen.setAction(Action); emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); return; } emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); } void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind Kind, bool EmitChecks, bool ForceSimpleCall) { if (!CGF.HaveInsertPoint()) return; // Build call __kmpc_cancel_barrier(loc, thread_id); // Build call __kmpc_barrier(loc, thread_id); unsigned Flags; if (Kind == OMPD_for) Flags = OMP_IDENT_BARRIER_IMPL_FOR; else if (Kind == OMPD_sections) Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS; else if (Kind == OMPD_single) Flags = OMP_IDENT_BARRIER_IMPL_SINGLE; else if (Kind == OMPD_barrier) Flags = OMP_IDENT_BARRIER_EXPL; else Flags = OMP_IDENT_BARRIER_IMPL; // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc, // thread_id); llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), getThreadID(CGF, Loc)}; if (auto *OMPRegionInfo = dyn_cast_or_null(CGF.CapturedStmtInfo)) { if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) { auto *Result = CGF.EmitRuntimeCall( createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args); if (EmitChecks) { // if (__kmpc_cancel_barrier()) { // exit from construct; // } auto *ExitBB = CGF.createBasicBlock(".cancel.exit"); auto *ContBB = CGF.createBasicBlock(".cancel.continue"); auto *Cmp = CGF.Builder.CreateIsNotNull(Result); CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); CGF.EmitBlock(ExitBB); // exit from construct; auto CancelDestination = CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); CGF.EmitBranchThroughCleanup(CancelDestination); CGF.EmitBlock(ContBB, /*IsFinished=*/true); } return; } } CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args); } /// \brief Map the OpenMP loop schedule to the runtime enumeration. static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind, bool Chunked, bool Ordered) { switch (ScheduleKind) { case OMPC_SCHEDULE_static: return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked) : (Ordered ? OMP_ord_static : OMP_sch_static); case OMPC_SCHEDULE_dynamic: return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked; case OMPC_SCHEDULE_guided: return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked; case OMPC_SCHEDULE_runtime: return Ordered ? OMP_ord_runtime : OMP_sch_runtime; case OMPC_SCHEDULE_auto: return Ordered ? OMP_ord_auto : OMP_sch_auto; case OMPC_SCHEDULE_unknown: assert(!Chunked && "chunk was specified but schedule kind not known"); return Ordered ? OMP_ord_static : OMP_sch_static; } llvm_unreachable("Unexpected runtime schedule"); } /// \brief Map the OpenMP distribute schedule to the runtime enumeration. static OpenMPSchedType getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) { // only static is allowed for dist_schedule return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static; } bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind, bool Chunked) const { auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false); return Schedule == OMP_sch_static; } bool CGOpenMPRuntime::isStaticNonchunked( OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const { auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked); return Schedule == OMP_dist_sch_static; } bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const { auto Schedule = getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false); assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here"); return Schedule != OMP_sch_static; } static int addMonoNonMonoModifier(OpenMPSchedType Schedule, OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2) { int Modifier = 0; switch (M1) { case OMPC_SCHEDULE_MODIFIER_monotonic: Modifier = OMP_sch_modifier_monotonic; break; case OMPC_SCHEDULE_MODIFIER_nonmonotonic: Modifier = OMP_sch_modifier_nonmonotonic; break; case OMPC_SCHEDULE_MODIFIER_simd: if (Schedule == OMP_sch_static_chunked) Schedule = OMP_sch_static_balanced_chunked; break; case OMPC_SCHEDULE_MODIFIER_last: case OMPC_SCHEDULE_MODIFIER_unknown: break; } switch (M2) { case OMPC_SCHEDULE_MODIFIER_monotonic: Modifier = OMP_sch_modifier_monotonic; break; case OMPC_SCHEDULE_MODIFIER_nonmonotonic: Modifier = OMP_sch_modifier_nonmonotonic; break; case OMPC_SCHEDULE_MODIFIER_simd: if (Schedule == OMP_sch_static_chunked) Schedule = OMP_sch_static_balanced_chunked; break; case OMPC_SCHEDULE_MODIFIER_last: case OMPC_SCHEDULE_MODIFIER_unknown: break; } return Schedule | Modifier; } void CGOpenMPRuntime::emitForDispatchInit(CodeGenFunction &CGF, SourceLocation Loc, const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, bool Ordered, llvm::Value *UB, llvm::Value *Chunk) { if (!CGF.HaveInsertPoint()) return; OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind.Schedule, Chunk != nullptr, Ordered); assert(Ordered || (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked && Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked && Schedule != OMP_sch_static_balanced_chunked)); // Call __kmpc_dispatch_init( // ident_t *loc, kmp_int32 tid, kmp_int32 schedule, // kmp_int[32|64] lower, kmp_int[32|64] upper, // kmp_int[32|64] stride, kmp_int[32|64] chunk); // If the Chunk was not specified in the clause - use default value 1. if (Chunk == nullptr) Chunk = CGF.Builder.getIntN(IVSize, 1); llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), CGF.Builder.getInt32(addMonoNonMonoModifier( Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type CGF.Builder.getIntN(IVSize, 0), // Lower UB, // Upper CGF.Builder.getIntN(IVSize, 1), // Stride Chunk // Chunk }; CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args); } static void emitForStaticInitCall( CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId, llvm::Constant *ForStaticInitFunction, OpenMPSchedType Schedule, OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, unsigned IVSize, bool Ordered, Address IL, Address LB, Address UB, Address ST, llvm::Value *Chunk) { if (!CGF.HaveInsertPoint()) return; assert(!Ordered); assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static || Schedule == OMP_dist_sch_static_chunked); // Call __kmpc_for_static_init( // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype, // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower, // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride, // kmp_int[32|64] incr, kmp_int[32|64] chunk); if (Chunk == nullptr) { assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static || Schedule == OMP_dist_sch_static) && "expected static non-chunked schedule"); // If the Chunk was not specified in the clause - use default value 1. Chunk = CGF.Builder.getIntN(IVSize, 1); } else { assert((Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static_balanced_chunked || Schedule == OMP_ord_static_chunked || Schedule == OMP_dist_sch_static_chunked) && "expected static chunked schedule"); } llvm::Value *Args[] = { UpdateLocation, ThreadId, CGF.Builder.getInt32(addMonoNonMonoModifier( Schedule, M1, M2)), // Schedule type IL.getPointer(), // &isLastIter LB.getPointer(), // &LB UB.getPointer(), // &UB ST.getPointer(), // &Stride CGF.Builder.getIntN(IVSize, 1), // Incr Chunk // Chunk }; CGF.EmitRuntimeCall(ForStaticInitFunction, Args); } void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF, SourceLocation Loc, const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, bool Ordered, Address IL, Address LB, Address UB, Address ST, llvm::Value *Chunk) { OpenMPSchedType ScheduleNum = getRuntimeSchedule(ScheduleKind.Schedule, Chunk != nullptr, Ordered); auto *UpdatedLocation = emitUpdateLocation(CGF, Loc); auto *ThreadId = getThreadID(CGF, Loc); auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned); emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, IVSize, Ordered, IL, LB, UB, ST, Chunk); } void CGOpenMPRuntime::emitDistributeStaticInit( CodeGenFunction &CGF, SourceLocation Loc, OpenMPDistScheduleClauseKind SchedKind, unsigned IVSize, bool IVSigned, bool Ordered, Address IL, Address LB, Address UB, Address ST, llvm::Value *Chunk) { OpenMPSchedType ScheduleNum = getRuntimeSchedule(SchedKind, Chunk != nullptr); auto *UpdatedLocation = emitUpdateLocation(CGF, Loc); auto *ThreadId = getThreadID(CGF, Loc); auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned); emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown, OMPC_SCHEDULE_MODIFIER_unknown, IVSize, Ordered, IL, LB, UB, ST, Chunk); } void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid); llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini), Args); } void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF, SourceLocation Loc, unsigned IVSize, bool IVSigned) { if (!CGF.HaveInsertPoint()) return; // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid); llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args); } llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF, SourceLocation Loc, unsigned IVSize, bool IVSigned, Address IL, Address LB, Address UB, Address ST) { // Call __kmpc_dispatch_next( // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter, // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper, // kmp_int[32|64] *p_stride); llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), IL.getPointer(), // &isLastIter LB.getPointer(), // &Lower UB.getPointer(), // &Upper ST.getPointer() // &Stride }; llvm::Value *Call = CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args); return CGF.EmitScalarConversion( Call, CGF.getContext().getIntTypeForBitwidth(32, /* Signed */ true), CGF.getContext().BoolTy, Loc); } void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF, llvm::Value *NumThreads, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads) llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)}; CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads), Args); } void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF, OpenMPProcBindClauseKind ProcBind, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; // Constants for proc bind value accepted by the runtime. enum ProcBindTy { ProcBindFalse = 0, ProcBindTrue, ProcBindMaster, ProcBindClose, ProcBindSpread, ProcBindIntel, ProcBindDefault } RuntimeProcBind; switch (ProcBind) { case OMPC_PROC_BIND_master: RuntimeProcBind = ProcBindMaster; break; case OMPC_PROC_BIND_close: RuntimeProcBind = ProcBindClose; break; case OMPC_PROC_BIND_spread: RuntimeProcBind = ProcBindSpread; break; case OMPC_PROC_BIND_unknown: llvm_unreachable("Unsupported proc_bind value."); } // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind) llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)}; CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args); } void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; // Build call void __kmpc_flush(ident_t *loc) CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush), emitUpdateLocation(CGF, Loc)); } namespace { /// \brief Indexes of fields for type kmp_task_t. enum KmpTaskTFields { /// \brief List of shared variables. KmpTaskTShareds, /// \brief Task routine. KmpTaskTRoutine, /// \brief Partition id for the untied tasks. KmpTaskTPartId, /// Function with call of destructors for private variables. Data1, /// Task priority. Data2, /// (Taskloops only) Lower bound. KmpTaskTLowerBound, /// (Taskloops only) Upper bound. KmpTaskTUpperBound, /// (Taskloops only) Stride. KmpTaskTStride, /// (Taskloops only) Is last iteration flag. KmpTaskTLastIter, }; } // anonymous namespace bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const { // FIXME: Add other entries type when they become supported. return OffloadEntriesTargetRegion.empty(); } /// \brief Initialize target region entry. void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned LineNum, unsigned Order) { assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is " "only required for the device " "code generation."); OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr); ++OffloadingEntriesNum; } void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned LineNum, llvm::Constant *Addr, llvm::Constant *ID) { // If we are emitting code for a target, the entry is already initialized, // only has to be registered. if (CGM.getLangOpts().OpenMPIsDevice) { assert(hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) && "Entry must exist."); auto &Entry = OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum]; assert(Entry.isValid() && "Entry not initialized!"); Entry.setAddress(Addr); Entry.setID(ID); return; } else { OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum++, Addr, ID); OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry; } } bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo( unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned LineNum) const { auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID); if (PerDevice == OffloadEntriesTargetRegion.end()) return false; auto PerFile = PerDevice->second.find(FileID); if (PerFile == PerDevice->second.end()) return false; auto PerParentName = PerFile->second.find(ParentName); if (PerParentName == PerFile->second.end()) return false; auto PerLine = PerParentName->second.find(LineNum); if (PerLine == PerParentName->second.end()) return false; // Fail if this entry is already registered. if (PerLine->second.getAddress() || PerLine->second.getID()) return false; return true; } void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo( const OffloadTargetRegionEntryInfoActTy &Action) { // Scan all target region entries and perform the provided action. for (auto &D : OffloadEntriesTargetRegion) for (auto &F : D.second) for (auto &P : F.second) for (auto &L : P.second) Action(D.first, F.first, P.first(), L.first, L.second); } /// \brief Create a Ctor/Dtor-like function whose body is emitted through /// \a Codegen. This is used to emit the two functions that register and /// unregister the descriptor of the current compilation unit. static llvm::Function * createOffloadingBinaryDescriptorFunction(CodeGenModule &CGM, StringRef Name, const RegionCodeGenTy &Codegen) { auto &C = CGM.getContext(); FunctionArgList Args; ImplicitParamDecl DummyPtr(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr, C.VoidPtrTy); Args.push_back(&DummyPtr); CodeGenFunction CGF(CGM); GlobalDecl(); auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto FTy = CGM.getTypes().GetFunctionType(FI); auto *Fn = CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, SourceLocation()); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FI, Args, SourceLocation()); Codegen(CGF); CGF.FinishFunction(); return Fn; } llvm::Function * CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() { // If we don't have entries or if we are emitting code for the device, we // don't need to do anything. if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty()) return nullptr; auto &M = CGM.getModule(); auto &C = CGM.getContext(); // Get list of devices we care about auto &Devices = CGM.getLangOpts().OMPTargetTriples; // We should be creating an offloading descriptor only if there are devices // specified. assert(!Devices.empty() && "No OpenMP offloading devices??"); // Create the external variables that will point to the begin and end of the // host entries section. These will be defined by the linker. auto *OffloadEntryTy = CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy()); llvm::GlobalVariable *HostEntriesBegin = new llvm::GlobalVariable( M, OffloadEntryTy, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr, ".omp_offloading.entries_begin"); llvm::GlobalVariable *HostEntriesEnd = new llvm::GlobalVariable( M, OffloadEntryTy, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr, ".omp_offloading.entries_end"); // Create all device images llvm::SmallVector DeviceImagesEntires; auto *DeviceImageTy = cast( CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy())); for (unsigned i = 0; i < Devices.size(); ++i) { StringRef T = Devices[i].getTriple(); auto *ImgBegin = new llvm::GlobalVariable( M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr, Twine(".omp_offloading.img_start.") + Twine(T)); auto *ImgEnd = new llvm::GlobalVariable( M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr, Twine(".omp_offloading.img_end.") + Twine(T)); llvm::Constant *Dev = llvm::ConstantStruct::get(DeviceImageTy, ImgBegin, ImgEnd, HostEntriesBegin, HostEntriesEnd, nullptr); DeviceImagesEntires.push_back(Dev); } // Create device images global array. llvm::ArrayType *DeviceImagesInitTy = llvm::ArrayType::get(DeviceImageTy, DeviceImagesEntires.size()); llvm::Constant *DeviceImagesInit = llvm::ConstantArray::get(DeviceImagesInitTy, DeviceImagesEntires); llvm::GlobalVariable *DeviceImages = new llvm::GlobalVariable( M, DeviceImagesInitTy, /*isConstant=*/true, llvm::GlobalValue::InternalLinkage, DeviceImagesInit, ".omp_offloading.device_images"); DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); // This is a Zero array to be used in the creation of the constant expressions llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty), llvm::Constant::getNullValue(CGM.Int32Ty)}; // Create the target region descriptor. auto *BinaryDescriptorTy = cast( CGM.getTypes().ConvertTypeForMem(getTgtBinaryDescriptorQTy())); llvm::Constant *TargetRegionsDescriptorInit = llvm::ConstantStruct::get( BinaryDescriptorTy, llvm::ConstantInt::get(CGM.Int32Ty, Devices.size()), llvm::ConstantExpr::getGetElementPtr(DeviceImagesInitTy, DeviceImages, Index), HostEntriesBegin, HostEntriesEnd, nullptr); auto *Desc = new llvm::GlobalVariable( M, BinaryDescriptorTy, /*isConstant=*/true, llvm::GlobalValue::InternalLinkage, TargetRegionsDescriptorInit, ".omp_offloading.descriptor"); // Emit code to register or unregister the descriptor at execution // startup or closing, respectively. // Create a variable to drive the registration and unregistration of the // descriptor, so we can reuse the logic that emits Ctors and Dtors. auto *IdentInfo = &C.Idents.get(".omp_offloading.reg_unreg_var"); ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(), SourceLocation(), IdentInfo, C.CharTy); auto *UnRegFn = createOffloadingBinaryDescriptorFunction( CGM, ".omp_offloading.descriptor_unreg", [&](CodeGenFunction &CGF, PrePostActionTy &) { CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_unregister_lib), Desc); }); auto *RegFn = createOffloadingBinaryDescriptorFunction( CGM, ".omp_offloading.descriptor_reg", [&](CodeGenFunction &CGF, PrePostActionTy &) { CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_register_lib), Desc); CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc); }); return RegFn; } void CGOpenMPRuntime::createOffloadEntry(llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size) { StringRef Name = Addr->getName(); auto *TgtOffloadEntryType = cast( CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy())); llvm::LLVMContext &C = CGM.getModule().getContext(); llvm::Module &M = CGM.getModule(); // Make sure the address has the right type. llvm::Constant *AddrPtr = llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy); // Create constant string with the name. llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name); llvm::GlobalVariable *Str = new llvm::GlobalVariable(M, StrPtrInit->getType(), /*isConstant=*/true, llvm::GlobalValue::InternalLinkage, StrPtrInit, ".omp_offloading.entry_name"); Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); llvm::Constant *StrPtr = llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy); // Create the entry struct. llvm::Constant *EntryInit = llvm::ConstantStruct::get( TgtOffloadEntryType, AddrPtr, StrPtr, llvm::ConstantInt::get(CGM.SizeTy, Size), nullptr); llvm::GlobalVariable *Entry = new llvm::GlobalVariable( M, TgtOffloadEntryType, true, llvm::GlobalValue::ExternalLinkage, EntryInit, ".omp_offloading.entry"); // The entry has to be created in the section the linker expects it to be. Entry->setSection(".omp_offloading.entries"); // We can't have any padding between symbols, so we need to have 1-byte // alignment. Entry->setAlignment(1); } void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() { // Emit the offloading entries and metadata so that the device codegen side // can // easily figure out what to emit. The produced metadata looks like this: // // !omp_offload.info = !{!1, ...} // // Right now we only generate metadata for function that contain target // regions. // If we do not have entries, we dont need to do anything. if (OffloadEntriesInfoManager.empty()) return; llvm::Module &M = CGM.getModule(); llvm::LLVMContext &C = M.getContext(); SmallVector OrderedEntries(OffloadEntriesInfoManager.size()); // Create the offloading info metadata node. llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info"); // Auxiliar methods to create metadata values and strings. auto getMDInt = [&](unsigned v) { return llvm::ConstantAsMetadata::get( llvm::ConstantInt::get(llvm::Type::getInt32Ty(C), v)); }; auto getMDString = [&](StringRef v) { return llvm::MDString::get(C, v); }; // Create function that emits metadata for each target region entry; auto &&TargetRegionMetadataEmitter = [&]( unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned Line, OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) { llvm::SmallVector Ops; // Generate metadata for target regions. Each entry of this metadata // contains: // - Entry 0 -> Kind of this type of metadata (0). // - Entry 1 -> Device ID of the file where the entry was identified. // - Entry 2 -> File ID of the file where the entry was identified. // - Entry 3 -> Mangled name of the function where the entry was identified. // - Entry 4 -> Line in the file where the entry was identified. // - Entry 5 -> Order the entry was created. // The first element of the metadata node is the kind. Ops.push_back(getMDInt(E.getKind())); Ops.push_back(getMDInt(DeviceID)); Ops.push_back(getMDInt(FileID)); Ops.push_back(getMDString(ParentName)); Ops.push_back(getMDInt(Line)); Ops.push_back(getMDInt(E.getOrder())); // Save this entry in the right position of the ordered entries array. OrderedEntries[E.getOrder()] = &E; // Add metadata to the named metadata node. MD->addOperand(llvm::MDNode::get(C, Ops)); }; OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo( TargetRegionMetadataEmitter); for (auto *E : OrderedEntries) { assert(E && "All ordered entries must exist!"); if (auto *CE = dyn_cast( E)) { assert(CE->getID() && CE->getAddress() && "Entry ID and Addr are invalid!"); createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0); } else llvm_unreachable("Unsupported entry kind."); } } /// \brief Loads all the offload entries information from the host IR /// metadata. void CGOpenMPRuntime::loadOffloadInfoMetadata() { // If we are in target mode, load the metadata from the host IR. This code has // to match the metadaata creation in createOffloadEntriesAndInfoMetadata(). if (!CGM.getLangOpts().OpenMPIsDevice) return; if (CGM.getLangOpts().OMPHostIRFile.empty()) return; auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile); if (Buf.getError()) return; llvm::LLVMContext C; auto ME = llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C); if (ME.getError()) return; llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info"); if (!MD) return; for (auto I : MD->operands()) { llvm::MDNode *MN = cast(I); auto getMDInt = [&](unsigned Idx) { llvm::ConstantAsMetadata *V = cast(MN->getOperand(Idx)); return cast(V->getValue())->getZExtValue(); }; auto getMDString = [&](unsigned Idx) { llvm::MDString *V = cast(MN->getOperand(Idx)); return V->getString(); }; switch (getMDInt(0)) { default: llvm_unreachable("Unexpected metadata!"); break; case OffloadEntriesInfoManagerTy::OffloadEntryInfo:: OFFLOAD_ENTRY_INFO_TARGET_REGION: OffloadEntriesInfoManager.initializeTargetRegionEntryInfo( /*DeviceID=*/getMDInt(1), /*FileID=*/getMDInt(2), /*ParentName=*/getMDString(3), /*Line=*/getMDInt(4), /*Order=*/getMDInt(5)); break; } } } void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) { if (!KmpRoutineEntryPtrTy) { // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type. auto &C = CGM.getContext(); QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy}; FunctionProtoType::ExtProtoInfo EPI; KmpRoutineEntryPtrQTy = C.getPointerType( C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI)); KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy); } } static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC, QualType FieldTy) { auto *Field = FieldDecl::Create( C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy, C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()), /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit); Field->setAccess(AS_public); DC->addDecl(Field); return Field; } QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() { // Make sure the type of the entry is already created. This is the type we // have to create: // struct __tgt_offload_entry{ // void *addr; // Pointer to the offload entry info. // // (function or global) // char *name; // Name of the function or global. // size_t size; // Size of the entry info (0 if it a function). // }; if (TgtOffloadEntryQTy.isNull()) { ASTContext &C = CGM.getContext(); auto *RD = C.buildImplicitRecord("__tgt_offload_entry"); RD->startDefinition(); addFieldToRecordDecl(C, RD, C.VoidPtrTy); addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy)); addFieldToRecordDecl(C, RD, C.getSizeType()); RD->completeDefinition(); TgtOffloadEntryQTy = C.getRecordType(RD); } return TgtOffloadEntryQTy; } QualType CGOpenMPRuntime::getTgtDeviceImageQTy() { // These are the types we need to build: // struct __tgt_device_image{ // void *ImageStart; // Pointer to the target code start. // void *ImageEnd; // Pointer to the target code end. // // We also add the host entries to the device image, as it may be useful // // for the target runtime to have access to that information. // __tgt_offload_entry *EntriesBegin; // Begin of the table with all // // the entries. // __tgt_offload_entry *EntriesEnd; // End of the table with all the // // entries (non inclusive). // }; if (TgtDeviceImageQTy.isNull()) { ASTContext &C = CGM.getContext(); auto *RD = C.buildImplicitRecord("__tgt_device_image"); RD->startDefinition(); addFieldToRecordDecl(C, RD, C.VoidPtrTy); addFieldToRecordDecl(C, RD, C.VoidPtrTy); addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); RD->completeDefinition(); TgtDeviceImageQTy = C.getRecordType(RD); } return TgtDeviceImageQTy; } QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() { // struct __tgt_bin_desc{ // int32_t NumDevices; // Number of devices supported. // __tgt_device_image *DeviceImages; // Arrays of device images // // (one per device). // __tgt_offload_entry *EntriesBegin; // Begin of the table with all the // // entries. // __tgt_offload_entry *EntriesEnd; // End of the table with all the // // entries (non inclusive). // }; if (TgtBinaryDescriptorQTy.isNull()) { ASTContext &C = CGM.getContext(); auto *RD = C.buildImplicitRecord("__tgt_bin_desc"); RD->startDefinition(); addFieldToRecordDecl( C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy())); addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); RD->completeDefinition(); TgtBinaryDescriptorQTy = C.getRecordType(RD); } return TgtBinaryDescriptorQTy; } namespace { struct PrivateHelpersTy { PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy, const VarDecl *PrivateElemInit) : Original(Original), PrivateCopy(PrivateCopy), PrivateElemInit(PrivateElemInit) {} const VarDecl *Original; const VarDecl *PrivateCopy; const VarDecl *PrivateElemInit; }; typedef std::pair PrivateDataTy; } // anonymous namespace static RecordDecl * createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef Privates) { if (!Privates.empty()) { auto &C = CGM.getContext(); // Build struct .kmp_privates_t. { // /* private vars */ // }; auto *RD = C.buildImplicitRecord(".kmp_privates.t"); RD->startDefinition(); for (auto &&Pair : Privates) { auto *VD = Pair.second.Original; auto Type = VD->getType(); Type = Type.getNonReferenceType(); auto *FD = addFieldToRecordDecl(C, RD, Type); if (VD->hasAttrs()) { for (specific_attr_iterator I(VD->getAttrs().begin()), E(VD->getAttrs().end()); I != E; ++I) FD->addAttr(*I); } } RD->completeDefinition(); return RD; } return nullptr; } static RecordDecl * createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind, QualType KmpInt32Ty, QualType KmpRoutineEntryPointerQTy) { auto &C = CGM.getContext(); // Build struct kmp_task_t { // void * shareds; // kmp_routine_entry_t routine; // kmp_int32 part_id; // kmp_cmplrdata_t data1; // kmp_cmplrdata_t data2; // For taskloops additional fields: // kmp_uint64 lb; // kmp_uint64 ub; // kmp_int64 st; // kmp_int32 liter; // }; auto *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union); UD->startDefinition(); addFieldToRecordDecl(C, UD, KmpInt32Ty); addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy); UD->completeDefinition(); QualType KmpCmplrdataTy = C.getRecordType(UD); auto *RD = C.buildImplicitRecord("kmp_task_t"); RD->startDefinition(); addFieldToRecordDecl(C, RD, C.VoidPtrTy); addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy); addFieldToRecordDecl(C, RD, KmpInt32Ty); addFieldToRecordDecl(C, RD, KmpCmplrdataTy); addFieldToRecordDecl(C, RD, KmpCmplrdataTy); if (isOpenMPTaskLoopDirective(Kind)) { QualType KmpUInt64Ty = CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0); QualType KmpInt64Ty = CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); addFieldToRecordDecl(C, RD, KmpUInt64Ty); addFieldToRecordDecl(C, RD, KmpUInt64Ty); addFieldToRecordDecl(C, RD, KmpInt64Ty); addFieldToRecordDecl(C, RD, KmpInt32Ty); } RD->completeDefinition(); return RD; } static RecordDecl * createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy, ArrayRef Privates) { auto &C = CGM.getContext(); // Build struct kmp_task_t_with_privates { // kmp_task_t task_data; // .kmp_privates_t. privates; // }; auto *RD = C.buildImplicitRecord("kmp_task_t_with_privates"); RD->startDefinition(); addFieldToRecordDecl(C, RD, KmpTaskTQTy); if (auto *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) { addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD)); } RD->completeDefinition(); return RD; } /// \brief Emit a proxy function which accepts kmp_task_t as the second /// argument. /// \code /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) { /// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt, /// For taskloops: /// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, /// tt->shareds); /// return 0; /// } /// \endcode static llvm::Value * emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc, OpenMPDirectiveKind Kind, QualType KmpInt32Ty, QualType KmpTaskTWithPrivatesPtrQTy, QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy, QualType SharedsPtrTy, llvm::Value *TaskFunction, llvm::Value *TaskPrivatesMap) { auto &C = CGM.getContext(); FunctionArgList Args; ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty); ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy.withRestrict()); Args.push_back(&GtidArg); Args.push_back(&TaskTypeArg); auto &TaskEntryFnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); auto *TaskEntryTy = CGM.getTypes().GetFunctionType(TaskEntryFnInfo); auto *TaskEntry = llvm::Function::Create(TaskEntryTy, llvm::GlobalValue::InternalLinkage, ".omp_task_entry.", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskEntry, TaskEntryFnInfo); CodeGenFunction CGF(CGM); CGF.disableDebugInfo(); CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args); // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map, // tt, // For taskloops: // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, // tt->task_data.shareds); auto *GtidParam = CGF.EmitLoadOfScalar( CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc); LValue TDBase = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(&TaskTypeArg), KmpTaskTWithPrivatesPtrQTy->castAs()); auto *KmpTaskTWithPrivatesQTyRD = cast(KmpTaskTWithPrivatesQTy->getAsTagDecl()); LValue Base = CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); auto *KmpTaskTQTyRD = cast(KmpTaskTQTy->getAsTagDecl()); auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); auto PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI); auto *PartidParam = PartIdLVal.getPointer(); auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds); auto SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI); auto *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfLValue(SharedsLVal, Loc).getScalarVal(), CGF.ConvertTypeForMem(SharedsPtrTy)); auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1); llvm::Value *PrivatesParam; if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) { auto PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI); PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( PrivatesLVal.getPointer(), CGF.VoidPtrTy); } else PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam, TaskPrivatesMap, CGF.Builder .CreatePointerBitCastOrAddrSpaceCast( TDBase.getAddress(), CGF.VoidPtrTy) .getPointer()}; SmallVector CallArgs(std::begin(CommonArgs), std::end(CommonArgs)); if (isOpenMPTaskLoopDirective(Kind)) { auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound); auto LBLVal = CGF.EmitLValueForField(Base, *LBFI); auto *LBParam = CGF.EmitLoadOfLValue(LBLVal, Loc).getScalarVal(); auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound); auto UBLVal = CGF.EmitLValueForField(Base, *UBFI); auto *UBParam = CGF.EmitLoadOfLValue(UBLVal, Loc).getScalarVal(); auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride); auto StLVal = CGF.EmitLValueForField(Base, *StFI); auto *StParam = CGF.EmitLoadOfLValue(StLVal, Loc).getScalarVal(); auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); auto LILVal = CGF.EmitLValueForField(Base, *LIFI); auto *LIParam = CGF.EmitLoadOfLValue(LILVal, Loc).getScalarVal(); CallArgs.push_back(LBParam); CallArgs.push_back(UBParam); CallArgs.push_back(StParam); CallArgs.push_back(LIParam); } CallArgs.push_back(SharedsParam); CGF.EmitCallOrInvoke(TaskFunction, CallArgs); CGF.EmitStoreThroughLValue( RValue::get(CGF.Builder.getInt32(/*C=*/0)), CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty)); CGF.FinishFunction(); return TaskEntry; } static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM, SourceLocation Loc, QualType KmpInt32Ty, QualType KmpTaskTWithPrivatesPtrQTy, QualType KmpTaskTWithPrivatesQTy) { auto &C = CGM.getContext(); FunctionArgList Args; ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty); ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy.withRestrict()); Args.push_back(&GtidArg); Args.push_back(&TaskTypeArg); FunctionType::ExtInfo Info; auto &DestructorFnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); auto *DestructorFnTy = CGM.getTypes().GetFunctionType(DestructorFnInfo); auto *DestructorFn = llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage, ".omp_task_destructor.", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*D=*/nullptr, DestructorFn, DestructorFnInfo); CodeGenFunction CGF(CGM); CGF.disableDebugInfo(); CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo, Args); LValue Base = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(&TaskTypeArg), KmpTaskTWithPrivatesPtrQTy->castAs()); auto *KmpTaskTWithPrivatesQTyRD = cast(KmpTaskTWithPrivatesQTy->getAsTagDecl()); auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); Base = CGF.EmitLValueForField(Base, *FI); for (auto *Field : cast(FI->getType()->getAsTagDecl())->fields()) { if (auto DtorKind = Field->getType().isDestructedType()) { auto FieldLValue = CGF.EmitLValueForField(Base, Field); CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType()); } } CGF.FinishFunction(); return DestructorFn; } /// \brief Emit a privates mapping function for correct handling of private and /// firstprivate variables. /// \code /// void .omp_task_privates_map.(const .privates. *noalias privs, /// **noalias priv1,..., **noalias privn) { /// *priv1 = &.privates.priv1; /// ...; /// *privn = &.privates.privn; /// } /// \endcode static llvm::Value * emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc, ArrayRef PrivateVars, ArrayRef FirstprivateVars, ArrayRef LastprivateVars, QualType PrivatesQTy, ArrayRef Privates) { auto &C = CGM.getContext(); FunctionArgList Args; ImplicitParamDecl TaskPrivatesArg( C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.getPointerType(PrivatesQTy).withConst().withRestrict()); Args.push_back(&TaskPrivatesArg); llvm::DenseMap PrivateVarsPos; unsigned Counter = 1; for (auto *E: PrivateVars) { Args.push_back(ImplicitParamDecl::Create( C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType())) .withConst() .withRestrict())); auto *VD = cast(cast(E)->getDecl()); PrivateVarsPos[VD] = Counter; ++Counter; } for (auto *E : FirstprivateVars) { Args.push_back(ImplicitParamDecl::Create( C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType())) .withConst() .withRestrict())); auto *VD = cast(cast(E)->getDecl()); PrivateVarsPos[VD] = Counter; ++Counter; } for (auto *E: LastprivateVars) { Args.push_back(ImplicitParamDecl::Create( C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType())) .withConst() .withRestrict())); auto *VD = cast(cast(E)->getDecl()); PrivateVarsPos[VD] = Counter; ++Counter; } auto &TaskPrivatesMapFnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *TaskPrivatesMapTy = CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo); auto *TaskPrivatesMap = llvm::Function::Create( TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, ".omp_task_privates_map.", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskPrivatesMap, TaskPrivatesMapFnInfo); TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline); CodeGenFunction CGF(CGM); CGF.disableDebugInfo(); CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap, TaskPrivatesMapFnInfo, Args); // *privi = &.privates.privi; LValue Base = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(&TaskPrivatesArg), TaskPrivatesArg.getType()->castAs()); auto *PrivatesQTyRD = cast(PrivatesQTy->getAsTagDecl()); Counter = 0; for (auto *Field : PrivatesQTyRD->fields()) { auto FieldLVal = CGF.EmitLValueForField(Base, Field); auto *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]]; auto RefLVal = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); auto RefLoadLVal = CGF.EmitLoadOfPointerLValue( RefLVal.getAddress(), RefLVal.getType()->castAs()); CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal); ++Counter; } CGF.FinishFunction(); return TaskPrivatesMap; } static int array_pod_sort_comparator(const PrivateDataTy *P1, const PrivateDataTy *P2) { return P1->first < P2->first ? 1 : (P2->first < P1->first ? -1 : 0); } /// Emit initialization for private variables in task-based directives. static void emitPrivatesInit(CodeGenFunction &CGF, const OMPExecutableDirective &D, Address KmpTaskSharedsPtr, LValue TDBase, const RecordDecl *KmpTaskTWithPrivatesQTyRD, QualType SharedsTy, QualType SharedsPtrTy, const OMPTaskDataTy &Data, ArrayRef Privates, bool ForDup) { auto &C = CGF.getContext(); auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI); LValue SrcBase; if (!Data.FirstprivateVars.empty()) { SrcBase = CGF.MakeAddrLValue( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)), SharedsTy); } CodeGenFunction::CGCapturedStmtInfo CapturesInfo( cast(*D.getAssociatedStmt())); FI = cast(FI->getType()->getAsTagDecl())->field_begin(); for (auto &&Pair : Privates) { auto *VD = Pair.second.PrivateCopy; auto *Init = VD->getAnyInitializer(); if (Init && (!ForDup || (isa(Init) && !CGF.isTrivialInitializer(Init)))) { LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI); if (auto *Elem = Pair.second.PrivateElemInit) { auto *OriginalVD = Pair.second.Original; auto *SharedField = CapturesInfo.lookup(OriginalVD); auto SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField); SharedRefLValue = CGF.MakeAddrLValue( Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)), SharedRefLValue.getType(), AlignmentSource::Decl); QualType Type = OriginalVD->getType(); if (Type->isArrayType()) { // Initialize firstprivate array. if (!isa(Init) || CGF.isTrivialInitializer(Init)) { // Perform simple memcpy. CGF.EmitAggregateAssign(PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type); } else { // Initialize firstprivate array using element-by-element // intialization. CGF.EmitOMPAggregateAssign( PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type, [&CGF, Elem, Init, &CapturesInfo](Address DestElement, Address SrcElement) { // Clean up any temporaries needed by the initialization. CodeGenFunction::OMPPrivateScope InitScope(CGF); InitScope.addPrivate( Elem, [SrcElement]() -> Address { return SrcElement; }); (void)InitScope.Privatize(); // Emit initialization for single element. CodeGenFunction::CGCapturedStmtRAII CapInfoRAII( CGF, &CapturesInfo); CGF.EmitAnyExprToMem(Init, DestElement, Init->getType().getQualifiers(), /*IsInitializer=*/false); }); } } else { CodeGenFunction::OMPPrivateScope InitScope(CGF); InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address { return SharedRefLValue.getAddress(); }); (void)InitScope.Privatize(); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo); CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false); } } else CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false); } ++FI; } } /// Check if duplication function is required for taskloops. static bool checkInitIsRequired(CodeGenFunction &CGF, ArrayRef Privates) { bool InitRequired = false; for (auto &&Pair : Privates) { auto *VD = Pair.second.PrivateCopy; auto *Init = VD->getAnyInitializer(); InitRequired = InitRequired || (Init && isa(Init) && !CGF.isTrivialInitializer(Init)); } return InitRequired; } /// Emit task_dup function (for initialization of /// private/firstprivate/lastprivate vars and last_iter flag) /// \code /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int /// lastpriv) { /// // setup lastprivate flag /// task_dst->last = lastpriv; /// // could be constructor calls here... /// } /// \endcode static llvm::Value * emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc, const OMPExecutableDirective &D, QualType KmpTaskTWithPrivatesPtrQTy, const RecordDecl *KmpTaskTWithPrivatesQTyRD, const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy, QualType SharedsPtrTy, const OMPTaskDataTy &Data, ArrayRef Privates, bool WithLastIter) { auto &C = CGM.getContext(); FunctionArgList Args; ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy); ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy); ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy); Args.push_back(&DstArg); Args.push_back(&SrcArg); Args.push_back(&LastprivArg); auto &TaskDupFnInfo = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo); auto *TaskDup = llvm::Function::Create(TaskDupTy, llvm::GlobalValue::InternalLinkage, ".omp_task_dup.", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskDup, TaskDupFnInfo); CodeGenFunction CGF(CGM); CGF.disableDebugInfo(); CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args); LValue TDBase = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(&DstArg), KmpTaskTWithPrivatesPtrQTy->castAs()); // task_dst->liter = lastpriv; if (WithLastIter) { auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); LValue Base = CGF.EmitLValueForField( TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); LValue LILVal = CGF.EmitLValueForField(Base, *LIFI); llvm::Value *Lastpriv = CGF.EmitLoadOfScalar( CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc); CGF.EmitStoreOfScalar(Lastpriv, LILVal); } // Emit initial values for private copies (if any). assert(!Privates.empty()); Address KmpTaskSharedsPtr = Address::invalid(); if (!Data.FirstprivateVars.empty()) { LValue TDBase = CGF.EmitLoadOfPointerLValue( CGF.GetAddrOfLocalVar(&SrcArg), KmpTaskTWithPrivatesPtrQTy->castAs()); LValue Base = CGF.EmitLValueForField( TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); KmpTaskSharedsPtr = Address( CGF.EmitLoadOfScalar(CGF.EmitLValueForField( Base, *std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds)), Loc), CGF.getNaturalTypeAlignment(SharedsTy)); } emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD, SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true); CGF.FinishFunction(); return TaskDup; } /// Checks if destructor function is required to be generated. /// \return true if cleanups are required, false otherwise. static bool checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) { bool NeedsCleanup = false; auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); auto *PrivateRD = cast(FI->getType()->getAsTagDecl()); for (auto *FD : PrivateRD->fields()) { NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType(); if (NeedsCleanup) break; } return NeedsCleanup; } CGOpenMPRuntime::TaskResultTy CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc, const OMPExecutableDirective &D, llvm::Value *TaskFunction, QualType SharedsTy, Address Shareds, const OMPTaskDataTy &Data) { auto &C = CGM.getContext(); llvm::SmallVector Privates; // Aggregate privates and sort them by the alignment. auto I = Data.PrivateCopies.begin(); for (auto *E : Data.PrivateVars) { auto *VD = cast(cast(E)->getDecl()); Privates.push_back(std::make_pair( C.getDeclAlign(VD), PrivateHelpersTy(VD, cast(cast(*I)->getDecl()), /*PrivateElemInit=*/nullptr))); ++I; } I = Data.FirstprivateCopies.begin(); auto IElemInitRef = Data.FirstprivateInits.begin(); for (auto *E : Data.FirstprivateVars) { auto *VD = cast(cast(E)->getDecl()); Privates.push_back(std::make_pair( C.getDeclAlign(VD), PrivateHelpersTy( VD, cast(cast(*I)->getDecl()), cast(cast(*IElemInitRef)->getDecl())))); ++I; ++IElemInitRef; } I = Data.LastprivateCopies.begin(); for (auto *E : Data.LastprivateVars) { auto *VD = cast(cast(E)->getDecl()); Privates.push_back(std::make_pair( C.getDeclAlign(VD), PrivateHelpersTy(VD, cast(cast(*I)->getDecl()), /*PrivateElemInit=*/nullptr))); ++I; } llvm::array_pod_sort(Privates.begin(), Privates.end(), array_pod_sort_comparator); auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); // Build type kmp_routine_entry_t (if not built yet). emitKmpRoutineEntryT(KmpInt32Ty); // Build type kmp_task_t (if not built yet). if (KmpTaskTQTy.isNull()) { KmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl( CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy)); } auto *KmpTaskTQTyRD = cast(KmpTaskTQTy->getAsTagDecl()); // Build particular struct kmp_task_t for the given task. auto *KmpTaskTWithPrivatesQTyRD = createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates); auto KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD); QualType KmpTaskTWithPrivatesPtrQTy = C.getPointerType(KmpTaskTWithPrivatesQTy); auto *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy); auto *KmpTaskTWithPrivatesPtrTy = KmpTaskTWithPrivatesTy->getPointerTo(); auto *KmpTaskTWithPrivatesTySize = CGF.getTypeSize(KmpTaskTWithPrivatesQTy); QualType SharedsPtrTy = C.getPointerType(SharedsTy); // Emit initial values for private copies (if any). llvm::Value *TaskPrivatesMap = nullptr; auto *TaskPrivatesMapTy = std::next(cast(TaskFunction)->getArgumentList().begin(), 3) ->getType(); if (!Privates.empty()) { auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); TaskPrivatesMap = emitTaskPrivateMappingFunction( CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars, FI->getType(), Privates); TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( TaskPrivatesMap, TaskPrivatesMapTy); } else { TaskPrivatesMap = llvm::ConstantPointerNull::get( cast(TaskPrivatesMapTy)); } // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid, // kmp_task_t *tt); auto *TaskEntry = emitProxyTaskFunction( CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction, TaskPrivatesMap); // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, // kmp_routine_entry_t *task_entry); // Task flags. Format is taken from // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h, // description of kmp_tasking_flags struct. enum { TiedFlag = 0x1, FinalFlag = 0x2, DestructorsFlag = 0x8, PriorityFlag = 0x20 }; unsigned Flags = Data.Tied ? TiedFlag : 0; bool NeedsCleanup = false; if (!Privates.empty()) { NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD); if (NeedsCleanup) Flags = Flags | DestructorsFlag; } if (Data.Priority.getInt()) Flags = Flags | PriorityFlag; auto *TaskFlags = Data.Final.getPointer() ? CGF.Builder.CreateSelect(Data.Final.getPointer(), CGF.Builder.getInt32(FinalFlag), CGF.Builder.getInt32(/*C=*/0)) : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0); TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags)); auto *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy)); llvm::Value *AllocArgs[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize, SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( TaskEntry, KmpRoutineEntryPtrTy)}; auto *NewTask = CGF.EmitRuntimeCall( createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs); auto *NewTaskNewTaskTTy = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( NewTask, KmpTaskTWithPrivatesPtrTy); LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy, KmpTaskTWithPrivatesQTy); LValue TDBase = CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin()); // Fill the data in the resulting kmp_task_t record. // Copy shareds if there are any. Address KmpTaskSharedsPtr = Address::invalid(); if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) { KmpTaskSharedsPtr = Address(CGF.EmitLoadOfScalar( CGF.EmitLValueForField( TDBase, *std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds)), Loc), CGF.getNaturalTypeAlignment(SharedsTy)); CGF.EmitAggregateCopy(KmpTaskSharedsPtr, Shareds, SharedsTy); } // Emit initial values for private copies (if any). TaskResultTy Result; if (!Privates.empty()) { emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD, SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/false); if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) { Result.TaskDupFn = emitTaskDupFunction( CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD, KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates, /*WithLastIter=*/!Data.LastprivateVars.empty()); } } // Fields of union "kmp_cmplrdata_t" for destructors and priority. enum { Priority = 0, Destructors = 1 }; // Provide pointer to function with destructors for privates. auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1); auto *KmpCmplrdataUD = (*FI)->getType()->getAsUnionType()->getDecl(); if (NeedsCleanup) { llvm::Value *DestructorFn = emitDestructorsFunction( CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTy); LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI); LValue DestructorsLV = CGF.EmitLValueForField( Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors)); CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( DestructorFn, KmpRoutineEntryPtrTy), DestructorsLV); } // Set priority. if (Data.Priority.getInt()) { LValue Data2LV = CGF.EmitLValueForField( TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2)); LValue PriorityLV = CGF.EmitLValueForField( Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority)); CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV); } Result.NewTask = NewTask; Result.TaskEntry = TaskEntry; Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy; Result.TDBase = TDBase; Result.KmpTaskTQTyRD = KmpTaskTQTyRD; return Result; } void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc, const OMPExecutableDirective &D, llvm::Value *TaskFunction, QualType SharedsTy, Address Shareds, const Expr *IfCond, const OMPTaskDataTy &Data) { if (!CGF.HaveInsertPoint()) return; TaskResultTy Result = emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); llvm::Value *NewTask = Result.NewTask; llvm::Value *TaskEntry = Result.TaskEntry; llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy; LValue TDBase = Result.TDBase; RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD; auto &C = CGM.getContext(); // Process list of dependences. Address DependenciesArray = Address::invalid(); unsigned NumDependencies = Data.Dependences.size(); if (NumDependencies) { // Dependence kind for RTL. enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3 }; enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags }; RecordDecl *KmpDependInfoRD; QualType FlagsTy = C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false); llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy); if (KmpDependInfoTy.isNull()) { KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info"); KmpDependInfoRD->startDefinition(); addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType()); addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType()); addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy); KmpDependInfoRD->completeDefinition(); KmpDependInfoTy = C.getRecordType(KmpDependInfoRD); } else KmpDependInfoRD = cast(KmpDependInfoTy->getAsTagDecl()); CharUnits DependencySize = C.getTypeSizeInChars(KmpDependInfoTy); // Define type kmp_depend_info[]; QualType KmpDependInfoArrayTy = C.getConstantArrayType( KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), ArrayType::Normal, /*IndexTypeQuals=*/0); // kmp_depend_info[] deps; DependenciesArray = CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr"); for (unsigned i = 0; i < NumDependencies; ++i) { const Expr *E = Data.Dependences[i].second; auto Addr = CGF.EmitLValue(E); llvm::Value *Size; QualType Ty = E->getType(); if (auto *ASE = dyn_cast(E->IgnoreParenImpCasts())) { LValue UpAddrLVal = CGF.EmitOMPArraySectionExpr(ASE, /*LowerBound=*/false); llvm::Value *UpAddr = CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1); llvm::Value *LowIntPtr = CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy); llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy); Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr); } else Size = CGF.getTypeSize(Ty); auto Base = CGF.MakeAddrLValue( CGF.Builder.CreateConstArrayGEP(DependenciesArray, i, DependencySize), KmpDependInfoTy); // deps[i].base_addr = &; auto BaseAddrLVal = CGF.EmitLValueForField( Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); CGF.EmitStoreOfScalar( CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy), BaseAddrLVal); // deps[i].len = sizeof(); auto LenLVal = CGF.EmitLValueForField( Base, *std::next(KmpDependInfoRD->field_begin(), Len)); CGF.EmitStoreOfScalar(Size, LenLVal); // deps[i].flags = ; RTLDependenceKindTy DepKind; switch (Data.Dependences[i].first) { case OMPC_DEPEND_in: DepKind = DepIn; break; // Out and InOut dependencies must use the same code. case OMPC_DEPEND_out: case OMPC_DEPEND_inout: DepKind = DepInOut; break; case OMPC_DEPEND_source: case OMPC_DEPEND_sink: case OMPC_DEPEND_unknown: llvm_unreachable("Unknown task dependence type"); } auto FlagsLVal = CGF.EmitLValueForField( Base, *std::next(KmpDependInfoRD->field_begin(), Flags)); CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind), FlagsLVal); } DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.Builder.CreateStructGEP(DependenciesArray, 0, CharUnits::Zero()), CGF.VoidPtrTy); } // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc() // libcall. // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence // list is not empty auto *ThreadID = getThreadID(CGF, Loc); auto *UpLoc = emitUpdateLocation(CGF, Loc); llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask }; llvm::Value *DepTaskArgs[7]; if (NumDependencies) { DepTaskArgs[0] = UpLoc; DepTaskArgs[1] = ThreadID; DepTaskArgs[2] = NewTask; DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies); DepTaskArgs[4] = DependenciesArray.getPointer(); DepTaskArgs[5] = CGF.Builder.getInt32(0); DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); } auto &&ThenCodeGen = [this, Loc, &Data, TDBase, KmpTaskTQTyRD, NumDependencies, &TaskArgs, &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) { if (!Data.Tied) { auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); auto PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI); CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal); } if (NumDependencies) { CGF.EmitRuntimeCall( createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs); } else { CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs); } // Check if parent region is untied and build return for untied task; if (auto *Region = dyn_cast_or_null(CGF.CapturedStmtInfo)) Region->emitUntiedSwitch(CGF); }; llvm::Value *DepWaitTaskArgs[6]; if (NumDependencies) { DepWaitTaskArgs[0] = UpLoc; DepWaitTaskArgs[1] = ThreadID; DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies); DepWaitTaskArgs[3] = DependenciesArray.getPointer(); DepWaitTaskArgs[4] = CGF.Builder.getInt32(0); DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); } auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry, NumDependencies, &DepWaitTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) { auto &RT = CGF.CGM.getOpenMPRuntime(); CodeGenFunction::RunCleanupsScope LocalScope(CGF); // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info // is specified. if (NumDependencies) CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps), DepWaitTaskArgs); // Call proxy_task_entry(gtid, new_task); auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy]( CodeGenFunction &CGF, PrePostActionTy &Action) { Action.Enter(CGF); llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy}; CGF.EmitCallOrInvoke(TaskEntry, OutlinedFnArgs); }; // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, // kmp_task_t *new_task); // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, // kmp_task_t *new_task); RegionCodeGenTy RCG(CodeGen); CommonActionTy Action( RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs, RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs); RCG.setAction(Action); RCG(CGF); }; if (IfCond) emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen); else { RegionCodeGenTy ThenRCG(ThenCodeGen); ThenRCG(CGF); } } void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D, llvm::Value *TaskFunction, QualType SharedsTy, Address Shareds, const Expr *IfCond, const OMPTaskDataTy &Data) { if (!CGF.HaveInsertPoint()) return; TaskResultTy Result = emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc() // libcall. // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int // sched, kmp_uint64 grainsize, void *task_dup); llvm::Value *ThreadID = getThreadID(CGF, Loc); llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc); llvm::Value *IfVal; if (IfCond) { IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy, /*isSigned=*/true); } else IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1); LValue LBLVal = CGF.EmitLValueForField( Result.TDBase, *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound)); auto *LBVar = cast(cast(D.getLowerBoundVariable())->getDecl()); CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(), /*IsInitializer=*/true); LValue UBLVal = CGF.EmitLValueForField( Result.TDBase, *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound)); auto *UBVar = cast(cast(D.getUpperBoundVariable())->getDecl()); CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(), /*IsInitializer=*/true); LValue StLVal = CGF.EmitLValueForField( Result.TDBase, *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride)); auto *StVar = cast(cast(D.getStrideVariable())->getDecl()); CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(), /*IsInitializer=*/true); enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 }; llvm::Value *TaskArgs[] = { UpLoc, ThreadID, Result.NewTask, IfVal, LBLVal.getPointer(), UBLVal.getPointer(), CGF.EmitLoadOfScalar(StLVal, SourceLocation()), llvm::ConstantInt::getSigned(CGF.IntTy, Data.Nogroup ? 1 : 0), llvm::ConstantInt::getSigned( CGF.IntTy, Data.Schedule.getPointer() ? Data.Schedule.getInt() ? NumTasks : Grainsize : NoSchedule), Data.Schedule.getPointer() ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty, /*isSigned=*/false) : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0), Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Result.TaskDupFn, CGF.VoidPtrTy) : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)}; CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs); } /// \brief Emit reduction operation for each element of array (required for /// array sections) LHS op = RHS. /// \param Type Type of array. /// \param LHSVar Variable on the left side of the reduction operation /// (references element of array in original variable). /// \param RHSVar Variable on the right side of the reduction operation /// (references element of array in original variable). /// \param RedOpGen Generator of reduction operation with use of LHSVar and /// RHSVar. static void EmitOMPAggregateReduction( CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar, const VarDecl *RHSVar, const llvm::function_ref &RedOpGen, const Expr *XExpr = nullptr, const Expr *EExpr = nullptr, const Expr *UpExpr = nullptr) { // Perform element-by-element initialization. QualType ElementTy; Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar); Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar); // Drill down to the base element type on both arrays. auto ArrayTy = Type->getAsArrayTypeUnsafe(); auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr); auto RHSBegin = RHSAddr.getPointer(); auto LHSBegin = LHSAddr.getPointer(); // Cast from pointer to array type to pointer to single element. auto LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements); // The basic structure here is a while-do loop. auto BodyBB = CGF.createBasicBlock("omp.arraycpy.body"); auto DoneBB = CGF.createBasicBlock("omp.arraycpy.done"); auto IsEmpty = CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty"); CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); // Enter the loop body, making that address the current address. auto EntryBB = CGF.Builder.GetInsertBlock(); CGF.EmitBlock(BodyBB); CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI( RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast"); RHSElementPHI->addIncoming(RHSBegin, EntryBB); Address RHSElementCurrent = Address(RHSElementPHI, RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI( LHSBegin->getType(), 2, "omp.arraycpy.destElementPast"); LHSElementPHI->addIncoming(LHSBegin, EntryBB); Address LHSElementCurrent = Address(LHSElementPHI, LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); // Emit copy. CodeGenFunction::OMPPrivateScope Scope(CGF); Scope.addPrivate(LHSVar, [=]() -> Address { return LHSElementCurrent; }); Scope.addPrivate(RHSVar, [=]() -> Address { return RHSElementCurrent; }); Scope.Privatize(); RedOpGen(CGF, XExpr, EExpr, UpExpr); Scope.ForceCleanup(); // Shift the address forward by one element. auto LHSElementNext = CGF.Builder.CreateConstGEP1_32( LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); auto RHSElementNext = CGF.Builder.CreateConstGEP1_32( RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); // Check whether we've reached the end. auto Done = CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done"); CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock()); RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock()); // Done. CGF.EmitBlock(DoneBB, /*IsFinished=*/true); } /// Emit reduction combiner. If the combiner is a simple expression emit it as /// is, otherwise consider it as combiner of UDR decl and emit it as a call of /// UDR combiner function. static void emitReductionCombiner(CodeGenFunction &CGF, const Expr *ReductionOp) { if (auto *CE = dyn_cast(ReductionOp)) if (auto *OVE = dyn_cast(CE->getCallee())) if (auto *DRE = dyn_cast(OVE->getSourceExpr()->IgnoreImpCasts())) if (auto *DRD = dyn_cast(DRE->getDecl())) { std::pair Reduction = CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); RValue Func = RValue::get(Reduction.first); CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); CGF.EmitIgnoredExpr(ReductionOp); return; } CGF.EmitIgnoredExpr(ReductionOp); } static llvm::Value *emitReductionFunction(CodeGenModule &CGM, llvm::Type *ArgsType, ArrayRef Privates, ArrayRef LHSExprs, ArrayRef RHSExprs, ArrayRef ReductionOps) { auto &C = CGM.getContext(); // void reduction_func(void *LHSArg, void *RHSArg); FunctionArgList Args; ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr, C.VoidPtrTy); ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr, C.VoidPtrTy); Args.push_back(&LHSArg); Args.push_back(&RHSArg); auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, ".omp.reduction.reduction_func", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); // Dst = (void*[n])(LHSArg); // Src = (void*[n])(RHSArg); Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), ArgsType), CGF.getPointerAlign()); Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), ArgsType), CGF.getPointerAlign()); // ... // *(Type*)lhs[i] = RedOp(*(Type*)lhs[i], *(Type*)rhs[i]); // ... CodeGenFunction::OMPPrivateScope Scope(CGF); auto IPriv = Privates.begin(); unsigned Idx = 0; for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) { auto RHSVar = cast(cast(RHSExprs[I])->getDecl()); Scope.addPrivate(RHSVar, [&]() -> Address { return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar); }); auto LHSVar = cast(cast(LHSExprs[I])->getDecl()); Scope.addPrivate(LHSVar, [&]() -> Address { return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar); }); QualType PrivTy = (*IPriv)->getType(); if (PrivTy->isVariablyModifiedType()) { // Get array size and emit VLA type. ++Idx; Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx, CGF.getPointerSize()); llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem); auto *VLA = CGF.getContext().getAsVariableArrayType(PrivTy); auto *OVE = cast(VLA->getSizeExpr()); CodeGenFunction::OpaqueValueMapping OpaqueMap( CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy))); CGF.EmitVariablyModifiedType(PrivTy); } } Scope.Privatize(); IPriv = Privates.begin(); auto ILHS = LHSExprs.begin(); auto IRHS = RHSExprs.begin(); for (auto *E : ReductionOps) { if ((*IPriv)->getType()->isArrayType()) { // Emit reduction for array section. auto *LHSVar = cast(cast(*ILHS)->getDecl()); auto *RHSVar = cast(cast(*IRHS)->getDecl()); EmitOMPAggregateReduction( CGF, (*IPriv)->getType(), LHSVar, RHSVar, [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { emitReductionCombiner(CGF, E); }); } else // Emit reduction for array subscript or single variable. emitReductionCombiner(CGF, E); ++IPriv; ++ILHS; ++IRHS; } Scope.ForceCleanup(); CGF.FinishFunction(); return Fn; } static void emitSingleReductionCombiner(CodeGenFunction &CGF, const Expr *ReductionOp, const Expr *PrivateRef, const DeclRefExpr *LHS, const DeclRefExpr *RHS) { if (PrivateRef->getType()->isArrayType()) { // Emit reduction for array section. auto *LHSVar = cast(LHS->getDecl()); auto *RHSVar = cast(RHS->getDecl()); EmitOMPAggregateReduction( CGF, PrivateRef->getType(), LHSVar, RHSVar, [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { emitReductionCombiner(CGF, ReductionOp); }); } else // Emit reduction for array subscript or single variable. emitReductionCombiner(CGF, ReductionOp); } void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc, ArrayRef Privates, ArrayRef LHSExprs, ArrayRef RHSExprs, ArrayRef ReductionOps, bool WithNowait, bool SimpleReduction) { if (!CGF.HaveInsertPoint()) return; // Next code should be emitted for reduction: // // static kmp_critical_name lock = { 0 }; // // void reduce_func(void *lhs[], void *rhs[]) { // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]); // ... // *(Type-1*)lhs[-1] = ReductionOperation-1(*(Type-1*)lhs[-1], // *(Type-1*)rhs[-1]); // } // // ... // void *RedList[] = {&[0], ..., &[-1]}; // switch (__kmpc_reduce{_nowait}(, , , sizeof(RedList), // RedList, reduce_func, &)) { // case 1: // ... // [i] = RedOp(*[i], *[i]); // ... // __kmpc_end_reduce{_nowait}(, , &); // break; // case 2: // ... // Atomic([i] = RedOp(*[i], *[i])); // ... // [__kmpc_end_reduce(, , &);] // break; // default:; // } // // if SimpleReduction is true, only the next code is generated: // ... // [i] = RedOp(*[i], *[i]); // ... auto &C = CGM.getContext(); if (SimpleReduction) { CodeGenFunction::RunCleanupsScope Scope(CGF); auto IPriv = Privates.begin(); auto ILHS = LHSExprs.begin(); auto IRHS = RHSExprs.begin(); for (auto *E : ReductionOps) { emitSingleReductionCombiner(CGF, E, *IPriv, cast(*ILHS), cast(*IRHS)); ++IPriv; ++ILHS; ++IRHS; } return; } // 1. Build a list of reduction variables. // void *RedList[] = {[0], ..., [-1]}; auto Size = RHSExprs.size(); for (auto *E : Privates) { if (E->getType()->isVariablyModifiedType()) // Reserve place for array size. ++Size; } llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); QualType ReductionArrayTy = C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal, /*IndexTypeQuals=*/0); Address ReductionList = CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); auto IPriv = Privates.begin(); unsigned Idx = 0; for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize()); CGF.Builder.CreateStore( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy), Elem); if ((*IPriv)->getType()->isVariablyModifiedType()) { // Store array size. ++Idx; Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize()); llvm::Value *Size = CGF.Builder.CreateIntCast( CGF.getVLASize( CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) .first, CGF.SizeTy, /*isSigned=*/false); CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), Elem); } } // 2. Emit reduce_func(). auto *ReductionFn = emitReductionFunction( CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, LHSExprs, RHSExprs, ReductionOps); // 3. Create static kmp_critical_name lock = { 0 }; auto *Lock = getCriticalRegionLock(".reduction"); // 4. Build res = __kmpc_reduce{_nowait}(, , , sizeof(RedList), // RedList, reduce_func, &); auto *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE); auto *ThreadId = getThreadID(CGF, Loc); auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(ReductionList.getPointer(), CGF.VoidPtrTy); llvm::Value *Args[] = { IdentTLoc, // ident_t * ThreadId, // i32 CGF.Builder.getInt32(RHSExprs.size()), // i32 ReductionArrayTySize, // size_type sizeof(RedList) RL, // void *RedList ReductionFn, // void (*) (void *, void *) Lock // kmp_critical_name *& }; auto Res = CGF.EmitRuntimeCall( createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait : OMPRTL__kmpc_reduce), Args); // 5. Build switch(res) auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default"); auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2); // 6. Build case 1: // ... // [i] = RedOp(*[i], *[i]); // ... // __kmpc_end_reduce{_nowait}(, , &); // break; auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1"); SwInst->addCase(CGF.Builder.getInt32(1), Case1BB); CGF.EmitBlock(Case1BB); // Add emission of __kmpc_end_reduce{_nowait}(, , &); llvm::Value *EndArgs[] = { IdentTLoc, // ident_t * ThreadId, // i32 Lock // kmp_critical_name *& }; auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps]( CodeGenFunction &CGF, PrePostActionTy &Action) { auto IPriv = Privates.begin(); auto ILHS = LHSExprs.begin(); auto IRHS = RHSExprs.begin(); for (auto *E : ReductionOps) { emitSingleReductionCombiner(CGF, E, *IPriv, cast(*ILHS), cast(*IRHS)); ++IPriv; ++ILHS; ++IRHS; } }; RegionCodeGenTy RCG(CodeGen); CommonActionTy Action( nullptr, llvm::None, createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait : OMPRTL__kmpc_end_reduce), EndArgs); RCG.setAction(Action); RCG(CGF); CGF.EmitBranch(DefaultBB); // 7. Build case 2: // ... // Atomic([i] = RedOp(*[i], *[i])); // ... // break; auto *Case2BB = CGF.createBasicBlock(".omp.reduction.case2"); SwInst->addCase(CGF.Builder.getInt32(2), Case2BB); CGF.EmitBlock(Case2BB); auto &&AtomicCodeGen = [Loc, &Privates, &LHSExprs, &RHSExprs, &ReductionOps]( CodeGenFunction &CGF, PrePostActionTy &Action) { auto ILHS = LHSExprs.begin(); auto IRHS = RHSExprs.begin(); auto IPriv = Privates.begin(); for (auto *E : ReductionOps) { const Expr *XExpr = nullptr; const Expr *EExpr = nullptr; const Expr *UpExpr = nullptr; BinaryOperatorKind BO = BO_Comma; if (auto *BO = dyn_cast(E)) { if (BO->getOpcode() == BO_Assign) { XExpr = BO->getLHS(); UpExpr = BO->getRHS(); } } // Try to emit update expression as a simple atomic. auto *RHSExpr = UpExpr; if (RHSExpr) { // Analyze RHS part of the whole expression. if (auto *ACO = dyn_cast( RHSExpr->IgnoreParenImpCasts())) { // If this is a conditional operator, analyze its condition for // min/max reduction operator. RHSExpr = ACO->getCond(); } if (auto *BORHS = dyn_cast(RHSExpr->IgnoreParenImpCasts())) { EExpr = BORHS->getRHS(); BO = BORHS->getOpcode(); } } if (XExpr) { auto *VD = cast(cast(*ILHS)->getDecl()); auto &&AtomicRedGen = [BO, VD, IPriv, Loc](CodeGenFunction &CGF, const Expr *XExpr, const Expr *EExpr, const Expr *UpExpr) { LValue X = CGF.EmitLValue(XExpr); RValue E; if (EExpr) E = CGF.EmitAnyExpr(EExpr); CGF.EmitOMPAtomicSimpleUpdateExpr( X, E, BO, /*IsXLHSInRHSPart=*/true, llvm::AtomicOrdering::Monotonic, Loc, [&CGF, UpExpr, VD, IPriv, Loc](RValue XRValue) { CodeGenFunction::OMPPrivateScope PrivateScope(CGF); PrivateScope.addPrivate( VD, [&CGF, VD, XRValue, Loc]() -> Address { Address LHSTemp = CGF.CreateMemTemp(VD->getType()); CGF.emitOMPSimpleStore( CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue, VD->getType().getNonReferenceType(), Loc); return LHSTemp; }); (void)PrivateScope.Privatize(); return CGF.EmitAnyExpr(UpExpr); }); }; if ((*IPriv)->getType()->isArrayType()) { // Emit atomic reduction for array section. auto *RHSVar = cast(cast(*IRHS)->getDecl()); EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar, AtomicRedGen, XExpr, EExpr, UpExpr); } else // Emit atomic reduction for array subscript or single variable. AtomicRedGen(CGF, XExpr, EExpr, UpExpr); } else { // Emit as a critical region. auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { auto &RT = CGF.CGM.getOpenMPRuntime(); RT.emitCriticalRegion( CGF, ".atomic_reduction", [=](CodeGenFunction &CGF, PrePostActionTy &Action) { Action.Enter(CGF); emitReductionCombiner(CGF, E); }, Loc); }; if ((*IPriv)->getType()->isArrayType()) { auto *LHSVar = cast(cast(*ILHS)->getDecl()); auto *RHSVar = cast(cast(*IRHS)->getDecl()); EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar, CritRedGen); } else CritRedGen(CGF, nullptr, nullptr, nullptr); } ++ILHS; ++IRHS; ++IPriv; } }; RegionCodeGenTy AtomicRCG(AtomicCodeGen); if (!WithNowait) { // Add emission of __kmpc_end_reduce(, , &); llvm::Value *EndArgs[] = { IdentTLoc, // ident_t * ThreadId, // i32 Lock // kmp_critical_name *& }; CommonActionTy Action(nullptr, llvm::None, createRuntimeFunction(OMPRTL__kmpc_end_reduce), EndArgs); AtomicRCG.setAction(Action); AtomicRCG(CGF); } else AtomicRCG(CGF); CGF.EmitBranch(DefaultBB); CGF.EmitBlock(DefaultBB, /*IsFinished=*/true); } void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 // global_tid); llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; // Ignore return result until untied tasks are supported. CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args); if (auto *Region = dyn_cast_or_null(CGF.CapturedStmtInfo)) Region->emitUntiedSwitch(CGF); } void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF, OpenMPDirectiveKind InnerKind, const RegionCodeGenTy &CodeGen, bool HasCancel) { if (!CGF.HaveInsertPoint()) return; InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel); CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr); } namespace { enum RTCancelKind { CancelNoreq = 0, CancelParallel = 1, CancelLoop = 2, CancelSections = 3, CancelTaskgroup = 4 }; } // anonymous namespace static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) { RTCancelKind CancelKind = CancelNoreq; if (CancelRegion == OMPD_parallel) CancelKind = CancelParallel; else if (CancelRegion == OMPD_for) CancelKind = CancelLoop; else if (CancelRegion == OMPD_sections) CancelKind = CancelSections; else { assert(CancelRegion == OMPD_taskgroup); CancelKind = CancelTaskgroup; } return CancelKind; } void CGOpenMPRuntime::emitCancellationPointCall( CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind CancelRegion) { if (!CGF.HaveInsertPoint()) return; // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 // global_tid, kmp_int32 cncl_kind); if (auto *OMPRegionInfo = dyn_cast_or_null(CGF.CapturedStmtInfo)) { if (OMPRegionInfo->hasCancel()) { llvm::Value *Args[] = { emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; // Ignore return result until untied tasks are supported. auto *Result = CGF.EmitRuntimeCall( createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args); // if (__kmpc_cancellationpoint()) { // __kmpc_cancel_barrier(); // exit from construct; // } auto *ExitBB = CGF.createBasicBlock(".cancel.exit"); auto *ContBB = CGF.createBasicBlock(".cancel.continue"); auto *Cmp = CGF.Builder.CreateIsNotNull(Result); CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); CGF.EmitBlock(ExitBB); // __kmpc_cancel_barrier(); emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false); // exit from construct; auto CancelDest = CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); CGF.EmitBranchThroughCleanup(CancelDest); CGF.EmitBlock(ContBB, /*IsFinished=*/true); } } } void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc, const Expr *IfCond, OpenMPDirectiveKind CancelRegion) { if (!CGF.HaveInsertPoint()) return; // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, // kmp_int32 cncl_kind); if (auto *OMPRegionInfo = dyn_cast_or_null(CGF.CapturedStmtInfo)) { auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF, PrePostActionTy &) { auto &RT = CGF.CGM.getOpenMPRuntime(); llvm::Value *Args[] = { RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc), CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; // Ignore return result until untied tasks are supported. auto *Result = CGF.EmitRuntimeCall( RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args); // if (__kmpc_cancel()) { // __kmpc_cancel_barrier(); // exit from construct; // } auto *ExitBB = CGF.createBasicBlock(".cancel.exit"); auto *ContBB = CGF.createBasicBlock(".cancel.continue"); auto *Cmp = CGF.Builder.CreateIsNotNull(Result); CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); CGF.EmitBlock(ExitBB); // __kmpc_cancel_barrier(); RT.emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false); // exit from construct; auto CancelDest = CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); CGF.EmitBranchThroughCleanup(CancelDest); CGF.EmitBlock(ContBB, /*IsFinished=*/true); }; if (IfCond) emitOMPIfClause(CGF, IfCond, ThenGen, [](CodeGenFunction &, PrePostActionTy &) {}); else { RegionCodeGenTy ThenRCG(ThenGen); ThenRCG(CGF); } } } /// \brief Obtain information that uniquely identifies a target entry. This /// consists of the file and device IDs as well as line number associated with /// the relevant entry source location. static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc, unsigned &DeviceID, unsigned &FileID, unsigned &LineNum) { auto &SM = C.getSourceManager(); // The loc should be always valid and have a file ID (the user cannot use // #pragma directives in macros) assert(Loc.isValid() && "Source location is expected to be always valid."); assert(Loc.isFileID() && "Source location is expected to refer to a file."); PresumedLoc PLoc = SM.getPresumedLoc(Loc); assert(PLoc.isValid() && "Source location is expected to be always valid."); llvm::sys::fs::UniqueID ID; if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) llvm_unreachable("Source file with target region no longer exists!"); DeviceID = ID.getDevice(); FileID = ID.getFile(); LineNum = PLoc.getLine(); } void CGOpenMPRuntime::emitTargetOutlinedFunction( const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { assert(!ParentName.empty() && "Invalid target region parent name!"); emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); } void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper( const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { // Create a unique name for the entry function using the source location // information of the current target region. The name will be something like: // // __omp_offloading_DD_FFFF_PP_lBB // // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the // mangled name of the function that encloses the target region and BB is the // line number of the target region. unsigned DeviceID; unsigned FileID; unsigned Line; getTargetEntryUniqueInfo(CGM.getContext(), D.getLocStart(), DeviceID, FileID, Line); SmallString<64> EntryFnName; { llvm::raw_svector_ostream OS(EntryFnName); OS << "__omp_offloading" << llvm::format("_%x", DeviceID) << llvm::format("_%x_", FileID) << ParentName << "_l" << Line; } const CapturedStmt &CS = *cast(D.getAssociatedStmt()); CodeGenFunction CGF(CGM, true); CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS); // If this target outline function is not an offload entry, we don't need to // register it. if (!IsOffloadEntry) return; // The target region ID is used by the runtime library to identify the current // target region, so it only has to be unique and not necessarily point to // anything. It could be the pointer to the outlined function that implements // the target region, but we aren't using that so that the compiler doesn't // need to keep that, and could therefore inline the host function if proven // worthwhile during optimization. In the other hand, if emitting code for the // device, the ID has to be the function address so that it can retrieved from // the offloading entry and launched by the runtime library. We also mark the // outlined function to have external linkage in case we are emitting code for // the device, because these functions will be entry points to the device. if (CGM.getLangOpts().OpenMPIsDevice) { OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy); OutlinedFn->setLinkage(llvm::GlobalValue::ExternalLinkage); } else OutlinedFnID = new llvm::GlobalVariable( CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, llvm::Constant::getNullValue(CGM.Int8Ty), ".omp_offload.region_id"); // Register the information for the entry associated with this target region. OffloadEntriesInfoManager.registerTargetRegionEntryInfo( DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID); } /// discard all CompoundStmts intervening between two constructs static const Stmt *ignoreCompoundStmts(const Stmt *Body) { while (auto *CS = dyn_cast_or_null(Body)) Body = CS->body_front(); return Body; } /// \brief Emit the num_teams clause of an enclosed teams directive at the /// target region scope. If there is no teams directive associated with the /// target directive, or if there is no num_teams clause associated with the /// enclosed teams directive, return nullptr. static llvm::Value * emitNumTeamsClauseForTargetDirective(CGOpenMPRuntime &OMPRuntime, CodeGenFunction &CGF, const OMPExecutableDirective &D) { assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the " "teams directive expected to be " "emitted only for the host!"); // FIXME: For the moment we do not support combined directives with target and // teams, so we do not expect to get any num_teams clause in the provided // directive. Once we support that, this assertion can be replaced by the // actual emission of the clause expression. assert(D.getSingleClause() == nullptr && "Not expecting clause in directive."); // If the current target region has a teams region enclosed, we need to get // the number of teams to pass to the runtime function call. This is done // by generating the expression in a inlined region. This is required because // the expression is captured in the enclosing target environment when the // teams directive is not combined with target. const CapturedStmt &CS = *cast(D.getAssociatedStmt()); // FIXME: Accommodate other combined directives with teams when they become // available. if (auto *TeamsDir = dyn_cast_or_null( ignoreCompoundStmts(CS.getCapturedStmt()))) { if (auto *NTE = TeamsDir->getSingleClause()) { CGOpenMPInnerExprInfo CGInfo(CGF, CS); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); llvm::Value *NumTeams = CGF.EmitScalarExpr(NTE->getNumTeams()); return CGF.Builder.CreateIntCast(NumTeams, CGF.Int32Ty, /*IsSigned=*/true); } // If we have an enclosed teams directive but no num_teams clause we use // the default value 0. return CGF.Builder.getInt32(0); } // No teams associated with the directive. return nullptr; } /// \brief Emit the thread_limit clause of an enclosed teams directive at the /// target region scope. If there is no teams directive associated with the /// target directive, or if there is no thread_limit clause associated with the /// enclosed teams directive, return nullptr. static llvm::Value * emitThreadLimitClauseForTargetDirective(CGOpenMPRuntime &OMPRuntime, CodeGenFunction &CGF, const OMPExecutableDirective &D) { assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the " "teams directive expected to be " "emitted only for the host!"); // FIXME: For the moment we do not support combined directives with target and // teams, so we do not expect to get any thread_limit clause in the provided // directive. Once we support that, this assertion can be replaced by the // actual emission of the clause expression. assert(D.getSingleClause() == nullptr && "Not expecting clause in directive."); // If the current target region has a teams region enclosed, we need to get // the thread limit to pass to the runtime function call. This is done // by generating the expression in a inlined region. This is required because // the expression is captured in the enclosing target environment when the // teams directive is not combined with target. const CapturedStmt &CS = *cast(D.getAssociatedStmt()); // FIXME: Accommodate other combined directives with teams when they become // available. if (auto *TeamsDir = dyn_cast_or_null( ignoreCompoundStmts(CS.getCapturedStmt()))) { if (auto *TLE = TeamsDir->getSingleClause()) { CGOpenMPInnerExprInfo CGInfo(CGF, CS); CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); llvm::Value *ThreadLimit = CGF.EmitScalarExpr(TLE->getThreadLimit()); return CGF.Builder.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*IsSigned=*/true); } // If we have an enclosed teams directive but no thread_limit clause we use // the default value 0. return CGF.Builder.getInt32(0); } // No teams associated with the directive. return nullptr; } namespace { // \brief Utility to handle information from clauses associated with a given // construct that use mappable expressions (e.g. 'map' clause, 'to' clause). // It provides a convenient interface to obtain the information and generate // code for that information. class MappableExprsHandler { public: /// \brief Values for bit flags used to specify the mapping type for /// offloading. enum OpenMPOffloadMappingFlags { /// \brief Allocate memory on the device and move data from host to device. OMP_MAP_TO = 0x01, /// \brief Allocate memory on the device and move data from device to host. OMP_MAP_FROM = 0x02, /// \brief Always perform the requested mapping action on the element, even /// if it was already mapped before. OMP_MAP_ALWAYS = 0x04, /// \brief Delete the element from the device environment, ignoring the /// current reference count associated with the element. OMP_MAP_DELETE = 0x08, /// \brief The element being mapped is a pointer, therefore the pointee /// should be mapped as well. OMP_MAP_IS_PTR = 0x10, /// \brief This flags signals that an argument is the first one relating to /// a map/private clause expression. For some cases a single /// map/privatization results in multiple arguments passed to the runtime /// library. OMP_MAP_FIRST_REF = 0x20, /// \brief This flag signals that the reference being passed is a pointer to /// private data. OMP_MAP_PRIVATE_PTR = 0x80, /// \brief Pass the element to the device by value. OMP_MAP_PRIVATE_VAL = 0x100, }; typedef SmallVector MapValuesArrayTy; typedef SmallVector MapFlagsArrayTy; private: /// \brief Directive from where the map clauses were extracted. const OMPExecutableDirective &Directive; /// \brief Function the directive is being generated for. CodeGenFunction &CGF; /// \brief Set of all first private variables in the current directive. llvm::SmallPtrSet FirstPrivateDecls; llvm::Value *getExprTypeSize(const Expr *E) const { auto ExprTy = E->getType().getCanonicalType(); // Reference types are ignored for mapping purposes. if (auto *RefTy = ExprTy->getAs()) ExprTy = RefTy->getPointeeType().getCanonicalType(); // Given that an array section is considered a built-in type, we need to // do the calculation based on the length of the section instead of relying // on CGF.getTypeSize(E->getType()). if (const auto *OAE = dyn_cast(E)) { QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType( OAE->getBase()->IgnoreParenImpCasts()) .getCanonicalType(); // If there is no length associated with the expression, that means we // are using the whole length of the base. if (!OAE->getLength() && OAE->getColonLoc().isValid()) return CGF.getTypeSize(BaseTy); llvm::Value *ElemSize; if (auto *PTy = BaseTy->getAs()) ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType()); else { auto *ATy = cast(BaseTy.getTypePtr()); assert(ATy && "Expecting array type if not a pointer type."); ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType()); } // If we don't have a length at this point, that is because we have an // array section with a single element. if (!OAE->getLength()) return ElemSize; auto *LengthVal = CGF.EmitScalarExpr(OAE->getLength()); LengthVal = CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false); return CGF.Builder.CreateNUWMul(LengthVal, ElemSize); } return CGF.getTypeSize(ExprTy); } /// \brief Return the corresponding bits for a given map clause modifier. Add /// a flag marking the map as a pointer if requested. Add a flag marking the /// map as the first one of a series of maps that relate to the same map /// expression. unsigned getMapTypeBits(OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier, bool AddPtrFlag, bool AddIsFirstFlag) const { unsigned Bits = 0u; switch (MapType) { case OMPC_MAP_alloc: case OMPC_MAP_release: // alloc and release is the default behavior in the runtime library, i.e. // if we don't pass any bits alloc/release that is what the runtime is // going to do. Therefore, we don't need to signal anything for these two // type modifiers. break; case OMPC_MAP_to: Bits = OMP_MAP_TO; break; case OMPC_MAP_from: Bits = OMP_MAP_FROM; break; case OMPC_MAP_tofrom: Bits = OMP_MAP_TO | OMP_MAP_FROM; break; case OMPC_MAP_delete: Bits = OMP_MAP_DELETE; break; default: llvm_unreachable("Unexpected map type!"); break; } if (AddPtrFlag) Bits |= OMP_MAP_IS_PTR; if (AddIsFirstFlag) Bits |= OMP_MAP_FIRST_REF; if (MapTypeModifier == OMPC_MAP_always) Bits |= OMP_MAP_ALWAYS; return Bits; } /// \brief Return true if the provided expression is a final array section. A /// final array section, is one whose length can't be proved to be one. bool isFinalArraySectionExpression(const Expr *E) const { auto *OASE = dyn_cast(E); // It is not an array section and therefore not a unity-size one. if (!OASE) return false; // An array section with no colon always refer to a single element. if (OASE->getColonLoc().isInvalid()) return false; auto *Length = OASE->getLength(); // If we don't have a length we have to check if the array has size 1 // for this dimension. Also, we should always expect a length if the // base type is pointer. if (!Length) { auto BaseQTy = OMPArraySectionExpr::getBaseOriginalType( OASE->getBase()->IgnoreParenImpCasts()) .getCanonicalType(); if (auto *ATy = dyn_cast(BaseQTy.getTypePtr())) return ATy->getSize().getSExtValue() != 1; // If we don't have a constant dimension length, we have to consider // the current section as having any size, so it is not necessarily // unitary. If it happen to be unity size, that's user fault. return true; } // Check if the length evaluates to 1. llvm::APSInt ConstLength; if (!Length->EvaluateAsInt(ConstLength, CGF.getContext())) return true; // Can have more that size 1. return ConstLength.getSExtValue() != 1; } /// \brief Generate the base pointers, section pointers, sizes and map type /// bits for the provided map type, map modifier, and expression components. /// \a IsFirstComponent should be set to true if the provided set of /// components is the first associated with a capture. void generateInfoForComponentList( OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier, OMPClauseMappableExprCommon::MappableExprComponentListRef Components, MapValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types, bool IsFirstComponentList) const { // The following summarizes what has to be generated for each map and the // types bellow. The generated information is expressed in this order: // base pointer, section pointer, size, flags // (to add to the ones that come from the map type and modifier). // // double d; // int i[100]; // float *p; // // struct S1 { // int i; // float f[50]; // } // struct S2 { // int i; // float f[50]; // S1 s; // double *p; // struct S2 *ps; // } // S2 s; // S2 *ps; // // map(d) // &d, &d, sizeof(double), noflags // // map(i) // &i, &i, 100*sizeof(int), noflags // // map(i[1:23]) // &i(=&i[0]), &i[1], 23*sizeof(int), noflags // // map(p) // &p, &p, sizeof(float*), noflags // // map(p[1:24]) // p, &p[1], 24*sizeof(float), noflags // // map(s) // &s, &s, sizeof(S2), noflags // // map(s.i) // &s, &(s.i), sizeof(int), noflags // // map(s.s.f) // &s, &(s.i.f), 50*sizeof(int), noflags // // map(s.p) // &s, &(s.p), sizeof(double*), noflags // // map(s.p[:22], s.a s.b) // &s, &(s.p), sizeof(double*), noflags // &(s.p), &(s.p[0]), 22*sizeof(double), ptr_flag + extra_flag // // map(s.ps) // &s, &(s.ps), sizeof(S2*), noflags // // map(s.ps->s.i) // &s, &(s.ps), sizeof(S2*), noflags // &(s.ps), &(s.ps->s.i), sizeof(int), ptr_flag + extra_flag // // map(s.ps->ps) // &s, &(s.ps), sizeof(S2*), noflags // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag // // map(s.ps->ps->ps) // &s, &(s.ps), sizeof(S2*), noflags // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag // // map(s.ps->ps->s.f[:22]) // &s, &(s.ps), sizeof(S2*), noflags // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), ptr_flag + extra_flag // // map(ps) // &ps, &ps, sizeof(S2*), noflags // // map(ps->i) // ps, &(ps->i), sizeof(int), noflags // // map(ps->s.f) // ps, &(ps->s.f[0]), 50*sizeof(float), noflags // // map(ps->p) // ps, &(ps->p), sizeof(double*), noflags // // map(ps->p[:22]) // ps, &(ps->p), sizeof(double*), noflags // &(ps->p), &(ps->p[0]), 22*sizeof(double), ptr_flag + extra_flag // // map(ps->ps) // ps, &(ps->ps), sizeof(S2*), noflags // // map(ps->ps->s.i) // ps, &(ps->ps), sizeof(S2*), noflags // &(ps->ps), &(ps->ps->s.i), sizeof(int), ptr_flag + extra_flag // // map(ps->ps->ps) // ps, &(ps->ps), sizeof(S2*), noflags // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag // // map(ps->ps->ps->ps) // ps, &(ps->ps), sizeof(S2*), noflags // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag // // map(ps->ps->ps->s.f[:22]) // ps, &(ps->ps), sizeof(S2*), noflags // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), ptr_flag + // extra_flag // Track if the map information being generated is the first for a capture. bool IsCaptureFirstInfo = IsFirstComponentList; // Scan the components from the base to the complete expression. auto CI = Components.rbegin(); auto CE = Components.rend(); auto I = CI; // Track if the map information being generated is the first for a list of // components. bool IsExpressionFirstInfo = true; llvm::Value *BP = nullptr; if (auto *ME = dyn_cast(I->getAssociatedExpression())) { // The base is the 'this' pointer. The content of the pointer is going // to be the base of the field being mapped. BP = CGF.EmitScalarExpr(ME->getBase()); } else { // The base is the reference to the variable. // BP = &Var. BP = CGF.EmitLValue(cast(I->getAssociatedExpression())) .getPointer(); // If the variable is a pointer and is being dereferenced (i.e. is not // the last component), the base has to be the pointer itself, not its // reference. if (I->getAssociatedDeclaration()->getType()->isAnyPointerType() && std::next(I) != CE) { auto PtrAddr = CGF.MakeNaturalAlignAddrLValue( BP, I->getAssociatedDeclaration()->getType()); BP = CGF.EmitLoadOfPointerLValue(PtrAddr.getAddress(), I->getAssociatedDeclaration() ->getType() ->getAs()) .getPointer(); // We do not need to generate individual map information for the // pointer, it can be associated with the combined storage. ++I; } } for (; I != CE; ++I) { auto Next = std::next(I); // We need to generate the addresses and sizes if this is the last // component, if the component is a pointer or if it is an array section // whose length can't be proved to be one. If this is a pointer, it // becomes the base address for the following components. // A final array section, is one whose length can't be proved to be one. bool IsFinalArraySection = isFinalArraySectionExpression(I->getAssociatedExpression()); // Get information on whether the element is a pointer. Have to do a // special treatment for array sections given that they are built-in // types. const auto *OASE = dyn_cast(I->getAssociatedExpression()); bool IsPointer = (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE) .getCanonicalType() ->isAnyPointerType()) || I->getAssociatedExpression()->getType()->isAnyPointerType(); if (Next == CE || IsPointer || IsFinalArraySection) { // If this is not the last component, we expect the pointer to be // associated with an array expression or member expression. assert((Next == CE || isa(Next->getAssociatedExpression()) || isa(Next->getAssociatedExpression()) || isa(Next->getAssociatedExpression())) && "Unexpected expression"); // Save the base we are currently using. BasePointers.push_back(BP); auto *LB = CGF.EmitLValue(I->getAssociatedExpression()).getPointer(); auto *Size = getExprTypeSize(I->getAssociatedExpression()); Pointers.push_back(LB); Sizes.push_back(Size); // We need to add a pointer flag for each map that comes from the // same expression except for the first one. We also need to signal // this map is the first one that relates with the current capture // (there is a set of entries for each capture). Types.push_back(getMapTypeBits(MapType, MapTypeModifier, !IsExpressionFirstInfo, IsCaptureFirstInfo)); // If we have a final array section, we are done with this expression. if (IsFinalArraySection) break; // The pointer becomes the base for the next element. if (Next != CE) BP = LB; IsExpressionFirstInfo = false; IsCaptureFirstInfo = false; continue; } } } /// \brief Return the adjusted map modifiers if the declaration a capture /// refers to appears in a first-private clause. This is expected to be used /// only with directives that start with 'target'. unsigned adjustMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap, unsigned CurrentModifiers) { assert(Cap.capturesVariable() && "Expected capture by reference only!"); // A first private variable captured by reference will use only the // 'private ptr' and 'map to' flag. Return the right flags if the captured // declaration is known as first-private in this handler. if (FirstPrivateDecls.count(Cap.getCapturedVar())) return MappableExprsHandler::OMP_MAP_PRIVATE_PTR | MappableExprsHandler::OMP_MAP_TO; // We didn't modify anything. return CurrentModifiers; } public: MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF) : Directive(Dir), CGF(CGF) { // Extract firstprivate clause information. for (const auto *C : Dir.getClausesOfKind()) for (const auto *D : C->varlists()) FirstPrivateDecls.insert( cast(cast(D)->getDecl())->getCanonicalDecl()); } /// \brief Generate all the base pointers, section pointers, sizes and map /// types for the extracted mappable expressions. void generateAllInfo(MapValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types) const { BasePointers.clear(); Pointers.clear(); Sizes.clear(); Types.clear(); struct MapInfo { OMPClauseMappableExprCommon::MappableExprComponentListRef Components; OpenMPMapClauseKind MapType; OpenMPMapClauseKind MapTypeModifier; }; // We have to process the component lists that relate with the same // declaration in a single chunk so that we can generate the map flags // correctly. Therefore, we organize all lists in a map. llvm::DenseMap> Info; // Helper function to fill the information map for the different supported // clauses. auto &&InfoGen = [&Info](const ValueDecl *D, OMPClauseMappableExprCommon::MappableExprComponentListRef L, OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapModifier) { const ValueDecl *VD = D ? cast(D->getCanonicalDecl()) : nullptr; Info[VD].push_back({L, MapType, MapModifier}); }; for (auto *C : Directive.getClausesOfKind()) for (auto L : C->component_lists()) InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifier()); for (auto *C : Directive.getClausesOfKind()) for (auto L : C->component_lists()) InfoGen(L.first, L.second, OMPC_MAP_to, OMPC_MAP_unknown); for (auto *C : Directive.getClausesOfKind()) for (auto L : C->component_lists()) InfoGen(L.first, L.second, OMPC_MAP_from, OMPC_MAP_unknown); for (auto &M : Info) { // We need to know when we generate information for the first component // associated with a capture, because the mapping flags depend on it. bool IsFirstComponentList = true; for (MapInfo &L : M.second) { assert(!L.Components.empty() && "Not expecting declaration with no component lists."); generateInfoForComponentList(L.MapType, L.MapTypeModifier, L.Components, BasePointers, Pointers, Sizes, Types, IsFirstComponentList); IsFirstComponentList = false; } } } /// \brief Generate the base pointers, section pointers, sizes and map types /// associated to a given capture. void generateInfoForCapture(const CapturedStmt::Capture *Cap, MapValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types) const { assert(!Cap->capturesVariableArrayType() && "Not expecting to generate map info for a variable array type!"); BasePointers.clear(); Pointers.clear(); Sizes.clear(); Types.clear(); const ValueDecl *VD = Cap->capturesThis() ? nullptr : cast(Cap->getCapturedVar()->getCanonicalDecl()); // We need to know when we generating information for the first component // associated with a capture, because the mapping flags depend on it. bool IsFirstComponentList = true; for (auto *C : Directive.getClausesOfKind()) for (auto L : C->decl_component_lists(VD)) { assert(L.first == VD && "We got information for the wrong declaration??"); assert(!L.second.empty() && "Not expecting declaration with no component lists."); generateInfoForComponentList(C->getMapType(), C->getMapTypeModifier(), L.second, BasePointers, Pointers, Sizes, Types, IsFirstComponentList); IsFirstComponentList = false; } return; } /// \brief Generate the default map information for a given capture \a CI, /// record field declaration \a RI and captured value \a CV. void generateDefaultMapInfo( const CapturedStmt::Capture &CI, const FieldDecl &RI, llvm::Value *CV, MappableExprsHandler::MapValuesArrayTy &CurBasePointers, MappableExprsHandler::MapValuesArrayTy &CurPointers, MappableExprsHandler::MapValuesArrayTy &CurSizes, MappableExprsHandler::MapFlagsArrayTy &CurMapTypes) { // Do the default mapping. if (CI.capturesThis()) { CurBasePointers.push_back(CV); CurPointers.push_back(CV); const PointerType *PtrTy = cast(RI.getType().getTypePtr()); CurSizes.push_back(CGF.getTypeSize(PtrTy->getPointeeType())); // Default map type. CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_TO | MappableExprsHandler::OMP_MAP_FROM); } else if (CI.capturesVariableByCopy()) { CurBasePointers.push_back(CV); CurPointers.push_back(CV); if (!RI.getType()->isAnyPointerType()) { // We have to signal to the runtime captures passed by value that are // not pointers. CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_PRIVATE_VAL); CurSizes.push_back(CGF.getTypeSize(RI.getType())); } else { // Pointers are implicitly mapped with a zero size and no flags // (other than first map that is added for all implicit maps). CurMapTypes.push_back(0u); CurSizes.push_back(llvm::Constant::getNullValue(CGF.SizeTy)); } } else { assert(CI.capturesVariable() && "Expected captured reference."); CurBasePointers.push_back(CV); CurPointers.push_back(CV); const ReferenceType *PtrTy = cast(RI.getType().getTypePtr()); QualType ElementType = PtrTy->getPointeeType(); CurSizes.push_back(CGF.getTypeSize(ElementType)); // The default map type for a scalar/complex type is 'to' because by // default the value doesn't have to be retrieved. For an aggregate // type, the default is 'tofrom'. CurMapTypes.push_back(ElementType->isAggregateType() ? (MappableExprsHandler::OMP_MAP_TO | MappableExprsHandler::OMP_MAP_FROM) : MappableExprsHandler::OMP_MAP_TO); // If we have a capture by reference we may need to add the private // pointer flag if the base declaration shows in some first-private // clause. CurMapTypes.back() = adjustMapModifiersForPrivateClauses(CI, CurMapTypes.back()); } // Every default map produces a single argument, so, it is always the // first one. CurMapTypes.back() |= MappableExprsHandler::OMP_MAP_FIRST_REF; } }; enum OpenMPOffloadingReservedDeviceIDs { /// \brief Device ID if the device was not defined, runtime should get it /// from environment variables in the spec. OMP_DEVICEID_UNDEF = -1, }; } // anonymous namespace /// \brief Emit the arrays used to pass the captures and map information to the /// offloading runtime library. If there is no map or capture information, /// return nullptr by reference. static void emitOffloadingArrays(CodeGenFunction &CGF, llvm::Value *&BasePointersArray, llvm::Value *&PointersArray, llvm::Value *&SizesArray, llvm::Value *&MapTypesArray, MappableExprsHandler::MapValuesArrayTy &BasePointers, MappableExprsHandler::MapValuesArrayTy &Pointers, MappableExprsHandler::MapValuesArrayTy &Sizes, MappableExprsHandler::MapFlagsArrayTy &MapTypes) { auto &CGM = CGF.CGM; auto &Ctx = CGF.getContext(); BasePointersArray = PointersArray = SizesArray = MapTypesArray = nullptr; if (unsigned PointerNumVal = BasePointers.size()) { // Detect if we have any capture size requiring runtime evaluation of the // size so that a constant array could be eventually used. bool hasRuntimeEvaluationCaptureSize = false; for (auto *S : Sizes) if (!isa(S)) { hasRuntimeEvaluationCaptureSize = true; break; } llvm::APInt PointerNumAP(32, PointerNumVal, /*isSigned=*/true); QualType PointerArrayType = Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal, /*IndexTypeQuals=*/0); BasePointersArray = CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer(); PointersArray = CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer(); // If we don't have any VLA types or other types that require runtime // evaluation, we can use a constant array for the map sizes, otherwise we // need to fill up the arrays as we do for the pointers. if (hasRuntimeEvaluationCaptureSize) { QualType SizeArrayType = Ctx.getConstantArrayType( Ctx.getSizeType(), PointerNumAP, ArrayType::Normal, /*IndexTypeQuals=*/0); SizesArray = CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer(); } else { // We expect all the sizes to be constant, so we collect them to create // a constant array. SmallVector ConstSizes; for (auto S : Sizes) ConstSizes.push_back(cast(S)); auto *SizesArrayInit = llvm::ConstantArray::get( llvm::ArrayType::get(CGM.SizeTy, ConstSizes.size()), ConstSizes); auto *SizesArrayGbl = new llvm::GlobalVariable( CGM.getModule(), SizesArrayInit->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, SizesArrayInit, ".offload_sizes"); SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); SizesArray = SizesArrayGbl; } // The map types are always constant so we don't need to generate code to // fill arrays. Instead, we create an array constant. llvm::Constant *MapTypesArrayInit = llvm::ConstantDataArray::get(CGF.Builder.getContext(), MapTypes); auto *MapTypesArrayGbl = new llvm::GlobalVariable( CGM.getModule(), MapTypesArrayInit->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MapTypesArrayInit, ".offload_maptypes"); MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); MapTypesArray = MapTypesArrayGbl; for (unsigned i = 0; i < PointerNumVal; ++i) { llvm::Value *BPVal = BasePointers[i]; if (BPVal->getType()->isPointerTy()) BPVal = CGF.Builder.CreateBitCast(BPVal, CGM.VoidPtrTy); else { assert(BPVal->getType()->isIntegerTy() && "If not a pointer, the value type must be an integer."); BPVal = CGF.Builder.CreateIntToPtr(BPVal, CGM.VoidPtrTy); } llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.VoidPtrTy, PointerNumVal), BasePointersArray, 0, i); Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); CGF.Builder.CreateStore(BPVal, BPAddr); llvm::Value *PVal = Pointers[i]; if (PVal->getType()->isPointerTy()) PVal = CGF.Builder.CreateBitCast(PVal, CGM.VoidPtrTy); else { assert(PVal->getType()->isIntegerTy() && "If not a pointer, the value type must be an integer."); PVal = CGF.Builder.CreateIntToPtr(PVal, CGM.VoidPtrTy); } llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.VoidPtrTy, PointerNumVal), PointersArray, 0, i); Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); CGF.Builder.CreateStore(PVal, PAddr); if (hasRuntimeEvaluationCaptureSize) { llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.SizeTy, PointerNumVal), SizesArray, /*Idx0=*/0, /*Idx1=*/i); Address SAddr(S, Ctx.getTypeAlignInChars(Ctx.getSizeType())); CGF.Builder.CreateStore( CGF.Builder.CreateIntCast(Sizes[i], CGM.SizeTy, /*isSigned=*/true), SAddr); } } } } /// \brief Emit the arguments to be passed to the runtime library based on the /// arrays of pointers, sizes and map types. static void emitOffloadingArraysArgument( CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg, llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg, llvm::Value *&MapTypesArrayArg, llvm::Value *BasePointersArray, llvm::Value *PointersArray, llvm::Value *SizesArray, llvm::Value *MapTypesArray, unsigned NumElems) { auto &CGM = CGF.CGM; if (NumElems) { BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.VoidPtrTy, NumElems), BasePointersArray, /*Idx0=*/0, /*Idx1=*/0); PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.VoidPtrTy, NumElems), PointersArray, /*Idx0=*/0, /*Idx1=*/0); SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.SizeTy, NumElems), SizesArray, /*Idx0=*/0, /*Idx1=*/0); MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( llvm::ArrayType::get(CGM.Int32Ty, NumElems), MapTypesArray, /*Idx0=*/0, /*Idx1=*/0); } else { BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); SizesArrayArg = llvm::ConstantPointerNull::get(CGM.SizeTy->getPointerTo()); MapTypesArrayArg = llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()); } } void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF, const OMPExecutableDirective &D, llvm::Value *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond, const Expr *Device, ArrayRef CapturedVars) { if (!CGF.HaveInsertPoint()) return; assert(OutlinedFn && "Invalid outlined function!"); auto &Ctx = CGF.getContext(); // Fill up the arrays with all the captured variables. MappableExprsHandler::MapValuesArrayTy KernelArgs; MappableExprsHandler::MapValuesArrayTy BasePointers; MappableExprsHandler::MapValuesArrayTy Pointers; MappableExprsHandler::MapValuesArrayTy Sizes; MappableExprsHandler::MapFlagsArrayTy MapTypes; MappableExprsHandler::MapValuesArrayTy CurBasePointers; MappableExprsHandler::MapValuesArrayTy CurPointers; MappableExprsHandler::MapValuesArrayTy CurSizes; MappableExprsHandler::MapFlagsArrayTy CurMapTypes; // Get mappable expression information. MappableExprsHandler MEHandler(D, CGF); const CapturedStmt &CS = *cast(D.getAssociatedStmt()); auto RI = CS.getCapturedRecordDecl()->field_begin(); auto CV = CapturedVars.begin(); for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(), CE = CS.capture_end(); CI != CE; ++CI, ++RI, ++CV) { StringRef Name; QualType Ty; CurBasePointers.clear(); CurPointers.clear(); CurSizes.clear(); CurMapTypes.clear(); // VLA sizes are passed to the outlined region by copy and do not have map // information associated. if (CI->capturesVariableArrayType()) { CurBasePointers.push_back(*CV); CurPointers.push_back(*CV); CurSizes.push_back(CGF.getTypeSize(RI->getType())); // Copy to the device as an argument. No need to retrieve it. CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_PRIVATE_VAL | MappableExprsHandler::OMP_MAP_FIRST_REF); } else { // If we have any information in the map clause, we use it, otherwise we // just do a default mapping. MEHandler.generateInfoForCapture(CI, CurBasePointers, CurPointers, CurSizes, CurMapTypes); if (CurBasePointers.empty()) MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers, CurPointers, CurSizes, CurMapTypes); } // We expect to have at least an element of information for this capture. assert(!CurBasePointers.empty() && "Non-existing map pointer for capture!"); assert(CurBasePointers.size() == CurPointers.size() && CurBasePointers.size() == CurSizes.size() && CurBasePointers.size() == CurMapTypes.size() && "Inconsistent map information sizes!"); // The kernel args are always the first elements of the base pointers // associated with a capture. KernelArgs.push_back(CurBasePointers.front()); // We need to append the results of this capture to what we already have. BasePointers.append(CurBasePointers.begin(), CurBasePointers.end()); Pointers.append(CurPointers.begin(), CurPointers.end()); Sizes.append(CurSizes.begin(), CurSizes.end()); MapTypes.append(CurMapTypes.begin(), CurMapTypes.end()); } // Keep track on whether the host function has to be executed. auto OffloadErrorQType = Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true); auto OffloadError = CGF.MakeAddrLValue( CGF.CreateMemTemp(OffloadErrorQType, ".run_host_version"), OffloadErrorQType); CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), OffloadError); // Fill up the pointer arrays and transfer execution to the device. auto &&ThenGen = [&Ctx, &BasePointers, &Pointers, &Sizes, &MapTypes, Device, OutlinedFnID, OffloadError, OffloadErrorQType, &D](CodeGenFunction &CGF, PrePostActionTy &) { auto &RT = CGF.CGM.getOpenMPRuntime(); // Emit the offloading arrays. llvm::Value *BasePointersArray; llvm::Value *PointersArray; llvm::Value *SizesArray; llvm::Value *MapTypesArray; emitOffloadingArrays(CGF, BasePointersArray, PointersArray, SizesArray, MapTypesArray, BasePointers, Pointers, Sizes, MapTypes); emitOffloadingArraysArgument(CGF, BasePointersArray, PointersArray, SizesArray, MapTypesArray, BasePointersArray, PointersArray, SizesArray, MapTypesArray, BasePointers.size()); // On top of the arrays that were filled up, the target offloading call // takes as arguments the device id as well as the host pointer. The host // pointer is used by the runtime library to identify the current target // region, so it only has to be unique and not necessarily point to // anything. It could be the pointer to the outlined function that // implements the target region, but we aren't using that so that the // compiler doesn't need to keep that, and could therefore inline the host // function if proven worthwhile during optimization. // From this point on, we need to have an ID of the target region defined. assert(OutlinedFnID && "Invalid outlined function ID!"); // Emit device ID if any. llvm::Value *DeviceID; if (Device) DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), CGF.Int32Ty, /*isSigned=*/true); else DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); // Emit the number of elements in the offloading arrays. llvm::Value *PointerNum = CGF.Builder.getInt32(BasePointers.size()); // Return value of the runtime offloading call. llvm::Value *Return; auto *NumTeams = emitNumTeamsClauseForTargetDirective(RT, CGF, D); auto *ThreadLimit = emitThreadLimitClauseForTargetDirective(RT, CGF, D); // If we have NumTeams defined this means that we have an enclosed teams // region. Therefore we also expect to have ThreadLimit defined. These two // values should be defined in the presence of a teams directive, regardless // of having any clauses associated. If the user is using teams but no // clauses, these two values will be the default that should be passed to // the runtime library - a 32-bit integer with the value zero. if (NumTeams) { assert(ThreadLimit && "Thread limit expression should be available along " "with number of teams."); llvm::Value *OffloadingArgs[] = { DeviceID, OutlinedFnID, PointerNum, BasePointersArray, PointersArray, SizesArray, MapTypesArray, NumTeams, ThreadLimit}; Return = CGF.EmitRuntimeCall( RT.createRuntimeFunction(OMPRTL__tgt_target_teams), OffloadingArgs); } else { llvm::Value *OffloadingArgs[] = { DeviceID, OutlinedFnID, PointerNum, BasePointersArray, PointersArray, SizesArray, MapTypesArray}; Return = CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target), OffloadingArgs); } CGF.EmitStoreOfScalar(Return, OffloadError); }; // Notify that the host version must be executed. auto &&ElseGen = [OffloadError](CodeGenFunction &CGF, PrePostActionTy &) { CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/-1u), OffloadError); }; // If we have a target function ID it means that we need to support // offloading, otherwise, just execute on the host. We need to execute on host // regardless of the conditional in the if clause if, e.g., the user do not // specify target triples. if (OutlinedFnID) { if (IfCond) emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen); else { RegionCodeGenTy ThenRCG(ThenGen); ThenRCG(CGF); } } else { RegionCodeGenTy ElseRCG(ElseGen); ElseRCG(CGF); } // Check the error code and execute the host version if required. auto OffloadFailedBlock = CGF.createBasicBlock("omp_offload.failed"); auto OffloadContBlock = CGF.createBasicBlock("omp_offload.cont"); auto OffloadErrorVal = CGF.EmitLoadOfScalar(OffloadError, SourceLocation()); auto Failed = CGF.Builder.CreateIsNotNull(OffloadErrorVal); CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock); CGF.EmitBlock(OffloadFailedBlock); CGF.Builder.CreateCall(OutlinedFn, KernelArgs); CGF.EmitBranch(OffloadContBlock); CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true); } void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S, StringRef ParentName) { if (!S) return; // If we find a OMP target directive, codegen the outline function and // register the result. // FIXME: Add other directives with target when they become supported. bool isTargetDirective = isa(S); if (isTargetDirective) { auto *E = cast(S); unsigned DeviceID; unsigned FileID; unsigned Line; getTargetEntryUniqueInfo(CGM.getContext(), E->getLocStart(), DeviceID, FileID, Line); // Is this a target region that should not be emitted as an entry point? If // so just signal we are done with this target region. if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, Line)) return; llvm::Function *Fn; llvm::Constant *Addr; std::tie(Fn, Addr) = CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction( CGM, cast(*E), ParentName, /*isOffloadEntry=*/true); assert(Fn && Addr && "Target region emission failed."); return; } if (const OMPExecutableDirective *E = dyn_cast(S)) { if (!E->hasAssociatedStmt()) return; scanForTargetRegionsFunctions( cast(E->getAssociatedStmt())->getCapturedStmt(), ParentName); return; } // If this is a lambda function, look into its body. if (auto *L = dyn_cast(S)) S = L->getBody(); // Keep looking for target regions recursively. for (auto *II : S->children()) scanForTargetRegionsFunctions(II, ParentName); } bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) { auto &FD = *cast(GD.getDecl()); // If emitting code for the host, we do not process FD here. Instead we do // the normal code generation. if (!CGM.getLangOpts().OpenMPIsDevice) return false; // Try to detect target regions in the function. scanForTargetRegionsFunctions(FD.getBody(), CGM.getMangledName(GD)); // We should not emit any function othen that the ones created during the // scanning. Therefore, we signal that this function is completely dealt // with. return true; } bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) { if (!CGM.getLangOpts().OpenMPIsDevice) return false; // Check if there are Ctors/Dtors in this declaration and look for target // regions in it. We use the complete variant to produce the kernel name // mangling. QualType RDTy = cast(GD.getDecl())->getType(); if (auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { for (auto *Ctor : RD->ctors()) { StringRef ParentName = CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete)); scanForTargetRegionsFunctions(Ctor->getBody(), ParentName); } auto *Dtor = RD->getDestructor(); if (Dtor) { StringRef ParentName = CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete)); scanForTargetRegionsFunctions(Dtor->getBody(), ParentName); } } // If we are in target mode we do not emit any global (declare target is not // implemented yet). Therefore we signal that GD was processed in this case. return true; } bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) { auto *VD = GD.getDecl(); if (isa(VD)) return emitTargetFunctions(GD); return emitTargetGlobalVariable(GD); } llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() { // If we have offloading in the current module, we need to emit the entries // now and register the offloading descriptor. createOffloadEntriesAndInfoMetadata(); // Create and register the offloading binary descriptors. This is the main // entity that captures all the information about offloading in the current // compilation unit. return createOffloadingBinaryDescriptorRegistration(); } void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF, const OMPExecutableDirective &D, SourceLocation Loc, llvm::Value *OutlinedFn, ArrayRef CapturedVars) { if (!CGF.HaveInsertPoint()) return; auto *RTLoc = emitUpdateLocation(CGF, Loc); CodeGenFunction::RunCleanupsScope Scope(CGF); // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn); llvm::Value *Args[] = { RTLoc, CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())}; llvm::SmallVector RealArgs; RealArgs.append(std::begin(Args), std::end(Args)); RealArgs.append(CapturedVars.begin(), CapturedVars.end()); auto RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams); CGF.EmitRuntimeCall(RTLFn, RealArgs); } void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF, const Expr *NumTeams, const Expr *ThreadLimit, SourceLocation Loc) { if (!CGF.HaveInsertPoint()) return; auto *RTLoc = emitUpdateLocation(CGF, Loc); llvm::Value *NumTeamsVal = (NumTeams) ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams), CGF.CGM.Int32Ty, /* isSigned = */ true) : CGF.Builder.getInt32(0); llvm::Value *ThreadLimitVal = (ThreadLimit) ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit), CGF.CGM.Int32Ty, /* isSigned = */ true) : CGF.Builder.getInt32(0); // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit) llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal, ThreadLimitVal}; CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams), PushNumTeamsArgs); } void CGOpenMPRuntime::emitTargetDataCalls(CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, const Expr *Device, const RegionCodeGenTy &CodeGen) { if (!CGF.HaveInsertPoint()) return; llvm::Value *BasePointersArray = nullptr; llvm::Value *PointersArray = nullptr; llvm::Value *SizesArray = nullptr; llvm::Value *MapTypesArray = nullptr; unsigned NumOfPtrs = 0; // Generate the code for the opening of the data environment. Capture all the // arguments of the runtime call by reference because they are used in the // closing of the region. auto &&BeginThenGen = [this, &D, &BasePointersArray, &PointersArray, &SizesArray, &MapTypesArray, Device, &NumOfPtrs](CodeGenFunction &CGF, PrePostActionTy &) { // Fill up the arrays with all the mapped variables. MappableExprsHandler::MapValuesArrayTy BasePointers; MappableExprsHandler::MapValuesArrayTy Pointers; MappableExprsHandler::MapValuesArrayTy Sizes; MappableExprsHandler::MapFlagsArrayTy MapTypes; // Get map clause information. MappableExprsHandler MCHandler(D, CGF); MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes); NumOfPtrs = BasePointers.size(); // Fill up the arrays and create the arguments. emitOffloadingArrays(CGF, BasePointersArray, PointersArray, SizesArray, MapTypesArray, BasePointers, Pointers, Sizes, MapTypes); llvm::Value *BasePointersArrayArg = nullptr; llvm::Value *PointersArrayArg = nullptr; llvm::Value *SizesArrayArg = nullptr; llvm::Value *MapTypesArrayArg = nullptr; emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg, BasePointersArray, PointersArray, SizesArray, MapTypesArray, NumOfPtrs); // Emit device ID if any. llvm::Value *DeviceID = nullptr; if (Device) DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), CGF.Int32Ty, /*isSigned=*/true); else DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); // Emit the number of elements in the offloading arrays. auto *PointerNum = CGF.Builder.getInt32(NumOfPtrs); llvm::Value *OffloadingArgs[] = { DeviceID, PointerNum, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg}; auto &RT = CGF.CGM.getOpenMPRuntime(); CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_begin), OffloadingArgs); }; // Generate code for the closing of the data region. auto &&EndThenGen = [this, &BasePointersArray, &PointersArray, &SizesArray, &MapTypesArray, Device, &NumOfPtrs](CodeGenFunction &CGF, PrePostActionTy &) { assert(BasePointersArray && PointersArray && SizesArray && MapTypesArray && NumOfPtrs && "Invalid data environment closing arguments."); llvm::Value *BasePointersArrayArg = nullptr; llvm::Value *PointersArrayArg = nullptr; llvm::Value *SizesArrayArg = nullptr; llvm::Value *MapTypesArrayArg = nullptr; emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg, BasePointersArray, PointersArray, SizesArray, MapTypesArray, NumOfPtrs); // Emit device ID if any. llvm::Value *DeviceID = nullptr; if (Device) DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), CGF.Int32Ty, /*isSigned=*/true); else DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); // Emit the number of elements in the offloading arrays. auto *PointerNum = CGF.Builder.getInt32(NumOfPtrs); llvm::Value *OffloadingArgs[] = { DeviceID, PointerNum, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg}; auto &RT = CGF.CGM.getOpenMPRuntime(); CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_end), OffloadingArgs); }; // In the event we get an if clause, we don't have to take any action on the // else side. auto &&ElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {}; if (IfCond) { emitOMPIfClause(CGF, IfCond, BeginThenGen, ElseGen); } else { RegionCodeGenTy BeginThenRCG(BeginThenGen); BeginThenRCG(CGF); } CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, CodeGen); if (IfCond) { emitOMPIfClause(CGF, IfCond, EndThenGen, ElseGen); } else { RegionCodeGenTy EndThenRCG(EndThenGen); EndThenRCG(CGF); } } void CGOpenMPRuntime::emitTargetDataStandAloneCall( CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, const Expr *Device) { if (!CGF.HaveInsertPoint()) return; assert((isa(D) || isa(D) || isa(D)) && "Expecting either target enter, exit data, or update directives."); // Generate the code for the opening of the data environment. auto &&ThenGen = [this, &D, Device](CodeGenFunction &CGF, PrePostActionTy &) { // Fill up the arrays with all the mapped variables. MappableExprsHandler::MapValuesArrayTy BasePointers; MappableExprsHandler::MapValuesArrayTy Pointers; MappableExprsHandler::MapValuesArrayTy Sizes; MappableExprsHandler::MapFlagsArrayTy MapTypes; // Get map clause information. MappableExprsHandler MEHandler(D, CGF); MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes); llvm::Value *BasePointersArrayArg = nullptr; llvm::Value *PointersArrayArg = nullptr; llvm::Value *SizesArrayArg = nullptr; llvm::Value *MapTypesArrayArg = nullptr; // Fill up the arrays and create the arguments. emitOffloadingArrays(CGF, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg, BasePointers, Pointers, Sizes, MapTypes); emitOffloadingArraysArgument( CGF, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg, BasePointers.size()); // Emit device ID if any. llvm::Value *DeviceID = nullptr; if (Device) DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), CGF.Int32Ty, /*isSigned=*/true); else DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); // Emit the number of elements in the offloading arrays. auto *PointerNum = CGF.Builder.getInt32(BasePointers.size()); llvm::Value *OffloadingArgs[] = { DeviceID, PointerNum, BasePointersArrayArg, PointersArrayArg, SizesArrayArg, MapTypesArrayArg}; auto &RT = CGF.CGM.getOpenMPRuntime(); // Select the right runtime function call for each expected standalone // directive. OpenMPRTLFunction RTLFn; switch (D.getDirectiveKind()) { default: llvm_unreachable("Unexpected standalone target data directive."); break; case OMPD_target_enter_data: RTLFn = OMPRTL__tgt_target_data_begin; break; case OMPD_target_exit_data: RTLFn = OMPRTL__tgt_target_data_end; break; case OMPD_target_update: RTLFn = OMPRTL__tgt_target_data_update; break; } CGF.EmitRuntimeCall(RT.createRuntimeFunction(RTLFn), OffloadingArgs); }; // In the event we get an if clause, we don't have to take any action on the // else side. auto &&ElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {}; if (IfCond) { emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen); } else { RegionCodeGenTy ThenGenRCG(ThenGen); ThenGenRCG(CGF); } } namespace { /// Kind of parameter in a function with 'declare simd' directive. enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector }; /// Attribute set of the parameter. struct ParamAttrTy { ParamKindTy Kind = Vector; llvm::APSInt StrideOrArg; llvm::APSInt Alignment; }; } // namespace static unsigned evaluateCDTSize(const FunctionDecl *FD, ArrayRef ParamAttrs) { // Every vector variant of a SIMD-enabled function has a vector length (VLEN). // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument // of that clause. The VLEN value must be power of 2. // In other case the notion of the function`s "characteristic data type" (CDT) // is used to compute the vector length. // CDT is defined in the following order: // a) For non-void function, the CDT is the return type. // b) If the function has any non-uniform, non-linear parameters, then the // CDT is the type of the first such parameter. // c) If the CDT determined by a) or b) above is struct, union, or class // type which is pass-by-value (except for the type that maps to the // built-in complex data type), the characteristic data type is int. // d) If none of the above three cases is applicable, the CDT is int. // The VLEN is then determined based on the CDT and the size of vector // register of that ISA for which current vector version is generated. The // VLEN is computed using the formula below: // VLEN = sizeof(vector_register) / sizeof(CDT), // where vector register size specified in section 3.2.1 Registers and the // Stack Frame of original AMD64 ABI document. QualType RetType = FD->getReturnType(); if (RetType.isNull()) return 0; ASTContext &C = FD->getASTContext(); QualType CDT; if (!RetType.isNull() && !RetType->isVoidType()) CDT = RetType; else { unsigned Offset = 0; if (auto *MD = dyn_cast(FD)) { if (ParamAttrs[Offset].Kind == Vector) CDT = C.getPointerType(C.getRecordType(MD->getParent())); ++Offset; } if (CDT.isNull()) { for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) { if (ParamAttrs[I + Offset].Kind == Vector) { CDT = FD->getParamDecl(I)->getType(); break; } } } } if (CDT.isNull()) CDT = C.IntTy; CDT = CDT->getCanonicalTypeUnqualified(); if (CDT->isRecordType() || CDT->isUnionType()) CDT = C.IntTy; return C.getTypeSize(CDT); } static void emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn, llvm::APSInt VLENVal, ArrayRef ParamAttrs, OMPDeclareSimdDeclAttr::BranchStateTy State) { struct ISADataTy { char ISA; unsigned VecRegSize; }; ISADataTy ISAData[] = { { 'b', 128 }, // SSE { 'c', 256 }, // AVX { 'd', 256 }, // AVX2 { 'e', 512 }, // AVX512 }; llvm::SmallVector Masked; switch (State) { case OMPDeclareSimdDeclAttr::BS_Undefined: Masked.push_back('N'); Masked.push_back('M'); break; case OMPDeclareSimdDeclAttr::BS_Notinbranch: Masked.push_back('N'); break; case OMPDeclareSimdDeclAttr::BS_Inbranch: Masked.push_back('M'); break; } for (auto Mask : Masked) { for (auto &Data : ISAData) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); Out << "_ZGV" << Data.ISA << Mask; if (!VLENVal) { Out << llvm::APSInt::getUnsigned(Data.VecRegSize / evaluateCDTSize(FD, ParamAttrs)); } else Out << VLENVal; for (auto &ParamAttr : ParamAttrs) { switch (ParamAttr.Kind){ case LinearWithVarStride: Out << 's' << ParamAttr.StrideOrArg; break; case Linear: Out << 'l'; if (!!ParamAttr.StrideOrArg) Out << ParamAttr.StrideOrArg; break; case Uniform: Out << 'u'; break; case Vector: Out << 'v'; break; } if (!!ParamAttr.Alignment) Out << 'a' << ParamAttr.Alignment; } Out << '_' << Fn->getName(); Fn->addFnAttr(Out.str()); } } } void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn) { ASTContext &C = CGM.getContext(); FD = FD->getCanonicalDecl(); // Map params to their positions in function decl. llvm::DenseMap ParamPositions; if (isa(FD)) ParamPositions.insert({FD, 0}); unsigned ParamPos = ParamPositions.size(); for (auto *P : FD->parameters()) { ParamPositions.insert({P->getCanonicalDecl(), ParamPos}); ++ParamPos; } for (auto *Attr : FD->specific_attrs()) { llvm::SmallVector ParamAttrs(ParamPositions.size()); // Mark uniform parameters. for (auto *E : Attr->uniforms()) { E = E->IgnoreParenImpCasts(); unsigned Pos; if (isa(E)) Pos = ParamPositions[FD]; else { auto *PVD = cast(cast(E)->getDecl()) ->getCanonicalDecl(); Pos = ParamPositions[PVD]; } ParamAttrs[Pos].Kind = Uniform; } // Get alignment info. auto NI = Attr->alignments_begin(); for (auto *E : Attr->aligneds()) { E = E->IgnoreParenImpCasts(); unsigned Pos; QualType ParmTy; if (isa(E)) { Pos = ParamPositions[FD]; ParmTy = E->getType(); } else { auto *PVD = cast(cast(E)->getDecl()) ->getCanonicalDecl(); Pos = ParamPositions[PVD]; ParmTy = PVD->getType(); } ParamAttrs[Pos].Alignment = (*NI) ? (*NI)->EvaluateKnownConstInt(C) : llvm::APSInt::getUnsigned( C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy)) .getQuantity()); ++NI; } // Mark linear parameters. auto SI = Attr->steps_begin(); auto MI = Attr->modifiers_begin(); for (auto *E : Attr->linears()) { E = E->IgnoreParenImpCasts(); unsigned Pos; if (isa(E)) Pos = ParamPositions[FD]; else { auto *PVD = cast(cast(E)->getDecl()) ->getCanonicalDecl(); Pos = ParamPositions[PVD]; } auto &ParamAttr = ParamAttrs[Pos]; ParamAttr.Kind = Linear; if (*SI) { if (!(*SI)->EvaluateAsInt(ParamAttr.StrideOrArg, C, Expr::SE_AllowSideEffects)) { if (auto *DRE = cast((*SI)->IgnoreParenImpCasts())) { if (auto *StridePVD = cast(DRE->getDecl())) { ParamAttr.Kind = LinearWithVarStride; ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned( ParamPositions[StridePVD->getCanonicalDecl()]); } } } } ++SI; ++MI; } llvm::APSInt VLENVal; if (const Expr *VLEN = Attr->getSimdlen()) VLENVal = VLEN->EvaluateKnownConstInt(C); OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState(); if (CGM.getTriple().getArch() == llvm::Triple::x86 || CGM.getTriple().getArch() == llvm::Triple::x86_64) emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State); } } namespace { /// Cleanup action for doacross support. class DoacrossCleanupTy final : public EHScopeStack::Cleanup { public: static const int DoacrossFinArgs = 2; private: llvm::Value *RTLFn; llvm::Value *Args[DoacrossFinArgs]; public: DoacrossCleanupTy(llvm::Value *RTLFn, ArrayRef CallArgs) : RTLFn(RTLFn) { assert(CallArgs.size() == DoacrossFinArgs); std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args)); } void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { if (!CGF.HaveInsertPoint()) return; CGF.EmitRuntimeCall(RTLFn, Args); } }; } // namespace void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF, const OMPLoopDirective &D) { if (!CGF.HaveInsertPoint()) return; ASTContext &C = CGM.getContext(); QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true); RecordDecl *RD; if (KmpDimTy.isNull()) { // Build struct kmp_dim { // loop bounds info casted to kmp_int64 // kmp_int64 lo; // lower // kmp_int64 up; // upper // kmp_int64 st; // stride // }; RD = C.buildImplicitRecord("kmp_dim"); RD->startDefinition(); addFieldToRecordDecl(C, RD, Int64Ty); addFieldToRecordDecl(C, RD, Int64Ty); addFieldToRecordDecl(C, RD, Int64Ty); RD->completeDefinition(); KmpDimTy = C.getRecordType(RD); } else RD = cast(KmpDimTy->getAsTagDecl()); Address DimsAddr = CGF.CreateMemTemp(KmpDimTy, "dims"); CGF.EmitNullInitialization(DimsAddr, KmpDimTy); enum { LowerFD = 0, UpperFD, StrideFD }; // Fill dims with data. LValue DimsLVal = CGF.MakeAddrLValue(DimsAddr, KmpDimTy); // dims.upper = num_iterations; LValue UpperLVal = CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), UpperFD)); llvm::Value *NumIterVal = CGF.EmitScalarConversion( CGF.EmitScalarExpr(D.getNumIterations()), D.getNumIterations()->getType(), Int64Ty, D.getNumIterations()->getExprLoc()); CGF.EmitStoreOfScalar(NumIterVal, UpperLVal); // dims.stride = 1; LValue StrideLVal = CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), StrideFD)); CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1), StrideLVal); // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, // kmp_int32 num_dims, struct kmp_dim * dims); llvm::Value *Args[] = {emitUpdateLocation(CGF, D.getLocStart()), getThreadID(CGF, D.getLocStart()), llvm::ConstantInt::getSigned(CGM.Int32Ty, 1), CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( DimsAddr.getPointer(), CGM.VoidPtrTy)}; llvm::Value *RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_init); CGF.EmitRuntimeCall(RTLFn, Args); llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = { emitUpdateLocation(CGF, D.getLocEnd()), getThreadID(CGF, D.getLocEnd())}; llvm::Value *FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_fini); CGF.EHStack.pushCleanup(NormalAndEHCleanup, FiniRTLFn, llvm::makeArrayRef(FiniArgs)); } void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF, const OMPDependClause *C) { QualType Int64Ty = CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); const Expr *CounterVal = C->getCounterValue(); assert(CounterVal); llvm::Value *CntVal = CGF.EmitScalarConversion(CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, CounterVal->getExprLoc()); Address CntAddr = CGF.CreateMemTemp(Int64Ty, ".cnt.addr"); CGF.EmitStoreOfScalar(CntVal, CntAddr, /*Volatile=*/false, Int64Ty); llvm::Value *Args[] = {emitUpdateLocation(CGF, C->getLocStart()), getThreadID(CGF, C->getLocStart()), CntAddr.getPointer()}; llvm::Value *RTLFn; if (C->getDependencyKind() == OMPC_DEPEND_source) RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post); else { assert(C->getDependencyKind() == OMPC_DEPEND_sink); RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait); } CGF.EmitRuntimeCall(RTLFn, Args); }