//= unittests/ASTMatchers/ASTMatchersTraversalTest.cpp - matchers unit tests =// // // The LLVM Compiler Infrastructure //` // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ASTMatchersTest.h" #include "clang/AST/PrettyPrinter.h" #include "clang/ASTMatchers/ASTMatchFinder.h" #include "clang/ASTMatchers/ASTMatchers.h" #include "clang/Tooling/Tooling.h" #include "llvm/ADT/Triple.h" #include "llvm/Support/Host.h" #include "gtest/gtest.h" namespace clang { namespace ast_matchers { TEST(DeclarationMatcher, hasMethod) { EXPECT_TRUE(matches("class A { void func(); };", cxxRecordDecl(hasMethod(hasName("func"))))); EXPECT_TRUE(notMatches("class A { void func(); };", cxxRecordDecl(hasMethod(isPublic())))); } TEST(DeclarationMatcher, ClassDerivedFromDependentTemplateSpecialization) { EXPECT_TRUE(matches( "template struct A {" " template struct F {};" "};" "template struct B : A::template F {};" "B b;", cxxRecordDecl(hasName("B"), isDerivedFrom(recordDecl())))); } TEST(DeclarationMatcher, hasDeclContext) { EXPECT_TRUE(matches( "namespace N {" " namespace M {" " class D {};" " }" "}", recordDecl(hasDeclContext(namespaceDecl(hasName("M")))))); EXPECT_TRUE(notMatches( "namespace N {" " namespace M {" " class D {};" " }" "}", recordDecl(hasDeclContext(namespaceDecl(hasName("N")))))); EXPECT_TRUE(matches("namespace {" " namespace M {" " class D {};" " }" "}", recordDecl(hasDeclContext(namespaceDecl( hasName("M"), hasDeclContext(namespaceDecl())))))); EXPECT_TRUE(matches("class D{};", decl(hasDeclContext(decl())))); } TEST(HasDescendant, MatchesDescendantTypes) { EXPECT_TRUE(matches("void f() { int i = 3; }", decl(hasDescendant(loc(builtinType()))))); EXPECT_TRUE(matches("void f() { int i = 3; }", stmt(hasDescendant(builtinType())))); EXPECT_TRUE(matches("void f() { int i = 3; }", stmt(hasDescendant(loc(builtinType()))))); EXPECT_TRUE(matches("void f() { int i = 3; }", stmt(hasDescendant(qualType(builtinType()))))); EXPECT_TRUE(notMatches("void f() { float f = 2.0f; }", stmt(hasDescendant(isInteger())))); EXPECT_TRUE(matchAndVerifyResultTrue( "void f() { int a; float c; int d; int e; }", functionDecl(forEachDescendant( varDecl(hasDescendant(isInteger())).bind("x"))), llvm::make_unique>("x", 3))); } TEST(HasDescendant, MatchesDescendantsOfTypes) { EXPECT_TRUE(matches("void f() { int*** i; }", qualType(hasDescendant(builtinType())))); EXPECT_TRUE(matches("void f() { int*** i; }", qualType(hasDescendant( pointerType(pointee(builtinType())))))); EXPECT_TRUE(matches("void f() { int*** i; }", typeLoc(hasDescendant(loc(builtinType()))))); EXPECT_TRUE(matchAndVerifyResultTrue( "void f() { int*** i; }", qualType(asString("int ***"), forEachDescendant(pointerType().bind("x"))), llvm::make_unique>("x", 2))); } TEST(Has, MatchesChildrenOfTypes) { EXPECT_TRUE(matches("int i;", varDecl(hasName("i"), has(isInteger())))); EXPECT_TRUE(notMatches("int** i;", varDecl(hasName("i"), has(isInteger())))); EXPECT_TRUE(matchAndVerifyResultTrue( "int (*f)(float, int);", qualType(functionType(), forEach(qualType(isInteger()).bind("x"))), llvm::make_unique>("x", 2))); } TEST(Has, MatchesChildTypes) { EXPECT_TRUE(matches( "int* i;", varDecl(hasName("i"), hasType(qualType(has(builtinType())))))); EXPECT_TRUE(notMatches( "int* i;", varDecl(hasName("i"), hasType(qualType(has(pointerType())))))); } TEST(StatementMatcher, Has) { StatementMatcher HasVariableI = expr(hasType(pointsTo(recordDecl(hasName("X")))), has(ignoringParenImpCasts(declRefExpr(to(varDecl(hasName("i"))))))); EXPECT_TRUE(matches( "class X; X *x(int); void c() { int i; x(i); }", HasVariableI)); EXPECT_TRUE(notMatches( "class X; X *x(int); void c() { int i; x(42); }", HasVariableI)); } TEST(StatementMatcher, HasDescendant) { StatementMatcher HasDescendantVariableI = expr(hasType(pointsTo(recordDecl(hasName("X")))), hasDescendant(declRefExpr(to(varDecl(hasName("i")))))); EXPECT_TRUE(matches( "class X; X *x(bool); bool b(int); void c() { int i; x(b(i)); }", HasDescendantVariableI)); EXPECT_TRUE(notMatches( "class X; X *x(bool); bool b(int); void c() { int i; x(b(42)); }", HasDescendantVariableI)); } TEST(TypeMatcher, MatchesClassType) { TypeMatcher TypeA = hasDeclaration(recordDecl(hasName("A"))); EXPECT_TRUE(matches("class A { public: A *a; };", TypeA)); EXPECT_TRUE(notMatches("class A {};", TypeA)); TypeMatcher TypeDerivedFromA = hasDeclaration(cxxRecordDecl(isDerivedFrom("A"))); EXPECT_TRUE(matches("class A {}; class B : public A { public: B *b; };", TypeDerivedFromA)); EXPECT_TRUE(notMatches("class A {};", TypeA)); TypeMatcher TypeAHasClassB = hasDeclaration( recordDecl(hasName("A"), has(recordDecl(hasName("B"))))); EXPECT_TRUE( matches("class A { public: A *a; class B {}; };", TypeAHasClassB)); EXPECT_TRUE(matchesC("struct S {}; void f(void) { struct S s; }", varDecl(hasType(namedDecl(hasName("S")))))); } TEST(TypeMatcher, MatchesDeclTypes) { // TypedefType -> TypedefNameDecl EXPECT_TRUE(matches("typedef int I; void f(I i);", parmVarDecl(hasType(namedDecl(hasName("I")))))); // ObjCObjectPointerType EXPECT_TRUE(matchesObjC("@interface Foo @end void f(Foo *f);", parmVarDecl(hasType(objcObjectPointerType())))); // ObjCObjectPointerType -> ObjCInterfaceType -> ObjCInterfaceDecl EXPECT_TRUE(matchesObjC( "@interface Foo @end void f(Foo *f);", parmVarDecl(hasType(pointsTo(objcInterfaceDecl(hasName("Foo"))))))); // TemplateTypeParmType EXPECT_TRUE(matches("template void f(T t);", parmVarDecl(hasType(templateTypeParmType())))); // TemplateTypeParmType -> TemplateTypeParmDecl EXPECT_TRUE(matches("template void f(T t);", parmVarDecl(hasType(namedDecl(hasName("T")))))); // InjectedClassNameType EXPECT_TRUE(matches("template struct S {" " void f(S s);" "};", parmVarDecl(hasType(injectedClassNameType())))); EXPECT_TRUE(notMatches("template struct S {" " void g(S s);" "};", parmVarDecl(hasType(injectedClassNameType())))); // InjectedClassNameType -> CXXRecordDecl EXPECT_TRUE(matches("template struct S {" " void f(S s);" "};", parmVarDecl(hasType(namedDecl(hasName("S")))))); static const char Using[] = "template " "struct Base {" " typedef T Foo;" "};" "" "template " "struct S : private Base {" " using typename Base::Foo;" " void f(Foo);" "};"; // UnresolvedUsingTypenameDecl EXPECT_TRUE(matches(Using, unresolvedUsingTypenameDecl(hasName("Foo")))); // UnresolvedUsingTypenameType -> UnresolvedUsingTypenameDecl EXPECT_TRUE(matches(Using, parmVarDecl(hasType(namedDecl(hasName("Foo")))))); } TEST(HasDeclaration, HasDeclarationOfEnumType) { EXPECT_TRUE(matches("enum X {}; void y(X *x) { x; }", expr(hasType(pointsTo( qualType(hasDeclaration(enumDecl(hasName("X"))))))))); } TEST(HasDeclaration, HasGetDeclTraitTest) { EXPECT_TRUE(internal::has_getDecl::value); EXPECT_TRUE(internal::has_getDecl::value); EXPECT_FALSE(internal::has_getDecl::value); } TEST(HasDeclaration, HasDeclarationOfTypeWithDecl) { EXPECT_TRUE(matches("typedef int X; X a;", varDecl(hasName("a"), hasType(typedefType(hasDeclaration(decl())))))); // FIXME: Add tests for other types with getDecl() (e.g. RecordType) } TEST(HasDeclaration, HasDeclarationOfTemplateSpecializationType) { EXPECT_TRUE(matches("template class A {}; A a;", varDecl(hasType(templateSpecializationType( hasDeclaration(namedDecl(hasName("A")))))))); } TEST(HasType, TakesQualTypeMatcherAndMatchesExpr) { TypeMatcher ClassX = hasDeclaration(recordDecl(hasName("X"))); EXPECT_TRUE( matches("class X {}; void y(X &x) { x; }", expr(hasType(ClassX)))); EXPECT_TRUE( notMatches("class X {}; void y(X *x) { x; }", expr(hasType(ClassX)))); EXPECT_TRUE( matches("class X {}; void y(X *x) { x; }", expr(hasType(pointsTo(ClassX))))); } TEST(HasType, TakesQualTypeMatcherAndMatchesValueDecl) { TypeMatcher ClassX = hasDeclaration(recordDecl(hasName("X"))); EXPECT_TRUE( matches("class X {}; void y() { X x; }", varDecl(hasType(ClassX)))); EXPECT_TRUE( notMatches("class X {}; void y() { X *x; }", varDecl(hasType(ClassX)))); EXPECT_TRUE( matches("class X {}; void y() { X *x; }", varDecl(hasType(pointsTo(ClassX))))); } TEST(HasType, TakesDeclMatcherAndMatchesExpr) { DeclarationMatcher ClassX = recordDecl(hasName("X")); EXPECT_TRUE( matches("class X {}; void y(X &x) { x; }", expr(hasType(ClassX)))); EXPECT_TRUE( notMatches("class X {}; void y(X *x) { x; }", expr(hasType(ClassX)))); } TEST(HasType, TakesDeclMatcherAndMatchesValueDecl) { DeclarationMatcher ClassX = recordDecl(hasName("X")); EXPECT_TRUE( matches("class X {}; void y() { X x; }", varDecl(hasType(ClassX)))); EXPECT_TRUE( notMatches("class X {}; void y() { X *x; }", varDecl(hasType(ClassX)))); } TEST(HasType, MatchesTypedefDecl) { EXPECT_TRUE(matches("typedef int X;", typedefDecl(hasType(asString("int"))))); EXPECT_TRUE(matches("typedef const int T;", typedefDecl(hasType(asString("const int"))))); EXPECT_TRUE(notMatches("typedef const int T;", typedefDecl(hasType(asString("int"))))); EXPECT_TRUE(matches("typedef int foo; typedef foo bar;", typedefDecl(hasType(asString("foo")), hasName("bar")))); } TEST(HasType, MatchesTypedefNameDecl) { EXPECT_TRUE(matches("using X = int;", typedefNameDecl(hasType(asString("int"))))); EXPECT_TRUE(matches("using T = const int;", typedefNameDecl(hasType(asString("const int"))))); EXPECT_TRUE(notMatches("using T = const int;", typedefNameDecl(hasType(asString("int"))))); EXPECT_TRUE(matches("using foo = int; using bar = foo;", typedefNameDecl(hasType(asString("foo")), hasName("bar")))); } TEST(HasTypeLoc, MatchesDeclaratorDecls) { EXPECT_TRUE(matches("int x;", varDecl(hasName("x"), hasTypeLoc(loc(asString("int")))))); // Make sure we don't crash on implicit constructors. EXPECT_TRUE(notMatches("class X {}; X x;", declaratorDecl(hasTypeLoc(loc(asString("int")))))); } TEST(Callee, MatchesDeclarations) { StatementMatcher CallMethodX = callExpr(callee(cxxMethodDecl(hasName("x")))); EXPECT_TRUE(matches("class Y { void x() { x(); } };", CallMethodX)); EXPECT_TRUE(notMatches("class Y { void x() {} };", CallMethodX)); CallMethodX = callExpr(callee(cxxConversionDecl())); EXPECT_TRUE( matches("struct Y { operator int() const; }; int i = Y();", CallMethodX)); EXPECT_TRUE(notMatches("struct Y { operator int() const; }; Y y = Y();", CallMethodX)); } TEST(Callee, MatchesMemberExpressions) { EXPECT_TRUE(matches("class Y { void x() { this->x(); } };", callExpr(callee(memberExpr())))); EXPECT_TRUE( notMatches("class Y { void x() { this->x(); } };", callExpr(callee(callExpr())))); } TEST(Matcher, Argument) { StatementMatcher CallArgumentY = callExpr( hasArgument(0, declRefExpr(to(varDecl(hasName("y")))))); EXPECT_TRUE(matches("void x(int) { int y; x(y); }", CallArgumentY)); EXPECT_TRUE( matches("class X { void x(int) { int y; x(y); } };", CallArgumentY)); EXPECT_TRUE(notMatches("void x(int) { int z; x(z); }", CallArgumentY)); StatementMatcher WrongIndex = callExpr( hasArgument(42, declRefExpr(to(varDecl(hasName("y")))))); EXPECT_TRUE(notMatches("void x(int) { int y; x(y); }", WrongIndex)); } TEST(Matcher, AnyArgument) { StatementMatcher CallArgumentY = callExpr( hasAnyArgument( ignoringParenImpCasts(declRefExpr(to(varDecl(hasName("y"))))))); EXPECT_TRUE(matches("void x(int, int) { int y; x(1, y); }", CallArgumentY)); EXPECT_TRUE(matches("void x(int, int) { int y; x(y, 42); }", CallArgumentY)); EXPECT_TRUE(notMatches("void x(int, int) { x(1, 2); }", CallArgumentY)); StatementMatcher ImplicitCastedArgument = callExpr( hasAnyArgument(implicitCastExpr())); EXPECT_TRUE(matches("void x(long) { int y; x(y); }", ImplicitCastedArgument)); } TEST(ForEachArgumentWithParam, ReportsNoFalsePositives) { StatementMatcher ArgumentY = declRefExpr(to(varDecl(hasName("y")))).bind("arg"); DeclarationMatcher IntParam = parmVarDecl(hasType(isInteger())).bind("param"); StatementMatcher CallExpr = callExpr(forEachArgumentWithParam(ArgumentY, IntParam)); // IntParam does not match. EXPECT_TRUE(notMatches("void f(int* i) { int* y; f(y); }", CallExpr)); // ArgumentY does not match. EXPECT_TRUE(notMatches("void f(int i) { int x; f(x); }", CallExpr)); } TEST(ForEachArgumentWithParam, MatchesCXXMemberCallExpr) { StatementMatcher ArgumentY = declRefExpr(to(varDecl(hasName("y")))).bind("arg"); DeclarationMatcher IntParam = parmVarDecl(hasType(isInteger())).bind("param"); StatementMatcher CallExpr = callExpr(forEachArgumentWithParam(ArgumentY, IntParam)); EXPECT_TRUE(matchAndVerifyResultTrue( "struct S {" " const S& operator[](int i) { return *this; }" "};" "void f(S S1) {" " int y = 1;" " S1[y];" "}", CallExpr, llvm::make_unique>("param", 1))); StatementMatcher CallExpr2 = callExpr(forEachArgumentWithParam(ArgumentY, IntParam)); EXPECT_TRUE(matchAndVerifyResultTrue( "struct S {" " static void g(int i);" "};" "void f() {" " int y = 1;" " S::g(y);" "}", CallExpr2, llvm::make_unique>("param", 1))); } TEST(ForEachArgumentWithParam, MatchesCallExpr) { StatementMatcher ArgumentY = declRefExpr(to(varDecl(hasName("y")))).bind("arg"); DeclarationMatcher IntParam = parmVarDecl(hasType(isInteger())).bind("param"); StatementMatcher CallExpr = callExpr(forEachArgumentWithParam(ArgumentY, IntParam)); EXPECT_TRUE( matchAndVerifyResultTrue("void f(int i) { int y; f(y); }", CallExpr, llvm::make_unique>( "param"))); EXPECT_TRUE( matchAndVerifyResultTrue("void f(int i) { int y; f(y); }", CallExpr, llvm::make_unique>( "arg"))); EXPECT_TRUE(matchAndVerifyResultTrue( "void f(int i, int j) { int y; f(y, y); }", CallExpr, llvm::make_unique>("param", 2))); EXPECT_TRUE(matchAndVerifyResultTrue( "void f(int i, int j) { int y; f(y, y); }", CallExpr, llvm::make_unique>("arg", 2))); } TEST(ForEachArgumentWithParam, MatchesConstructExpr) { StatementMatcher ArgumentY = declRefExpr(to(varDecl(hasName("y")))).bind("arg"); DeclarationMatcher IntParam = parmVarDecl(hasType(isInteger())).bind("param"); StatementMatcher ConstructExpr = cxxConstructExpr(forEachArgumentWithParam(ArgumentY, IntParam)); EXPECT_TRUE(matchAndVerifyResultTrue( "struct C {" " C(int i) {}" "};" "int y = 0;" "C Obj(y);", ConstructExpr, llvm::make_unique>("param"))); } TEST(ForEachArgumentWithParam, HandlesBoundNodesForNonMatches) { EXPECT_TRUE(matchAndVerifyResultTrue( "void g(int i, int j) {" " int a;" " int b;" " int c;" " g(a, 0);" " g(a, b);" " g(0, b);" "}", functionDecl( forEachDescendant(varDecl().bind("v")), forEachDescendant(callExpr(forEachArgumentWithParam( declRefExpr(to(decl(equalsBoundNode("v")))), parmVarDecl())))), llvm::make_unique>("v", 4))); } TEST(QualType, hasCanonicalType) { EXPECT_TRUE(notMatches("typedef int &int_ref;" "int a;" "int_ref b = a;", varDecl(hasType(qualType(referenceType()))))); EXPECT_TRUE( matches("typedef int &int_ref;" "int a;" "int_ref b = a;", varDecl(hasType(qualType(hasCanonicalType(referenceType())))))); } TEST(HasParameter, CallsInnerMatcher) { EXPECT_TRUE(matches("class X { void x(int) {} };", cxxMethodDecl(hasParameter(0, varDecl())))); EXPECT_TRUE(notMatches("class X { void x(int) {} };", cxxMethodDecl(hasParameter(0, hasName("x"))))); } TEST(HasParameter, DoesNotMatchIfIndexOutOfBounds) { EXPECT_TRUE(notMatches("class X { void x(int) {} };", cxxMethodDecl(hasParameter(42, varDecl())))); } TEST(HasType, MatchesParameterVariableTypesStrictly) { EXPECT_TRUE(matches( "class X { void x(X x) {} };", cxxMethodDecl(hasParameter(0, hasType(recordDecl(hasName("X"))))))); EXPECT_TRUE(notMatches( "class X { void x(const X &x) {} };", cxxMethodDecl(hasParameter(0, hasType(recordDecl(hasName("X"))))))); EXPECT_TRUE(matches("class X { void x(const X *x) {} };", cxxMethodDecl(hasParameter( 0, hasType(pointsTo(recordDecl(hasName("X")))))))); EXPECT_TRUE(matches("class X { void x(const X &x) {} };", cxxMethodDecl(hasParameter( 0, hasType(references(recordDecl(hasName("X")))))))); } TEST(HasAnyParameter, MatchesIndependentlyOfPosition) { EXPECT_TRUE(matches( "class Y {}; class X { void x(X x, Y y) {} };", cxxMethodDecl(hasAnyParameter(hasType(recordDecl(hasName("X"))))))); EXPECT_TRUE(matches( "class Y {}; class X { void x(Y y, X x) {} };", cxxMethodDecl(hasAnyParameter(hasType(recordDecl(hasName("X"))))))); } TEST(Returns, MatchesReturnTypes) { EXPECT_TRUE(matches("class Y { int f() { return 1; } };", functionDecl(returns(asString("int"))))); EXPECT_TRUE(notMatches("class Y { int f() { return 1; } };", functionDecl(returns(asString("float"))))); EXPECT_TRUE(matches("class Y { Y getMe() { return *this; } };", functionDecl(returns(hasDeclaration( recordDecl(hasName("Y"))))))); } TEST(HasAnyParameter, DoesntMatchIfInnerMatcherDoesntMatch) { EXPECT_TRUE(notMatches( "class Y {}; class X { void x(int) {} };", cxxMethodDecl(hasAnyParameter(hasType(recordDecl(hasName("X"))))))); } TEST(HasAnyParameter, DoesNotMatchThisPointer) { EXPECT_TRUE(notMatches("class Y {}; class X { void x() {} };", cxxMethodDecl(hasAnyParameter( hasType(pointsTo(recordDecl(hasName("X")))))))); } TEST(HasName, MatchesParameterVariableDeclarations) { EXPECT_TRUE(matches("class Y {}; class X { void x(int x) {} };", cxxMethodDecl(hasAnyParameter(hasName("x"))))); EXPECT_TRUE(notMatches("class Y {}; class X { void x(int) {} };", cxxMethodDecl(hasAnyParameter(hasName("x"))))); } TEST(Matcher, MatchesTypeTemplateArgument) { EXPECT_TRUE(matches( "template struct B {};" "B b;", classTemplateSpecializationDecl(hasAnyTemplateArgument(refersToType( asString("int")))))); } TEST(Matcher, MatchesDeclarationReferenceTemplateArgument) { EXPECT_TRUE(matches( "struct B { int next; };" "template struct A {};" "A<&B::next> a;", classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToDeclaration(fieldDecl(hasName("next"))))))); EXPECT_TRUE(notMatches( "template struct A {};" "A a;", classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToDeclaration(decl()))))); EXPECT_TRUE(matches( "struct B { int next; };" "template struct A {};" "A<&B::next> a;", templateSpecializationType(hasAnyTemplateArgument(isExpr( hasDescendant(declRefExpr(to(fieldDecl(hasName("next")))))))))); EXPECT_TRUE(notMatches( "template struct A {};" "A a;", templateSpecializationType(hasAnyTemplateArgument( refersToDeclaration(decl()))))); } TEST(Matcher, MatchesSpecificArgument) { EXPECT_TRUE(matches( "template class A {};" "A a;", classTemplateSpecializationDecl(hasTemplateArgument( 1, refersToType(asString("int")))))); EXPECT_TRUE(notMatches( "template class A {};" "A a;", classTemplateSpecializationDecl(hasTemplateArgument( 1, refersToType(asString("int")))))); EXPECT_TRUE(matches( "template class A {};" "A a;", templateSpecializationType(hasTemplateArgument( 1, refersToType(asString("int")))))); EXPECT_TRUE(notMatches( "template class A {};" "A a;", templateSpecializationType(hasTemplateArgument( 1, refersToType(asString("int")))))); } TEST(TemplateArgument, Matches) { EXPECT_TRUE(matches("template struct C {}; C c;", classTemplateSpecializationDecl( hasAnyTemplateArgument(templateArgument())))); EXPECT_TRUE(matches( "template struct C {}; C c;", templateSpecializationType(hasAnyTemplateArgument(templateArgument())))); } TEST(RefersToIntegralType, Matches) { EXPECT_TRUE(matches("template struct C {}; C<42> c;", classTemplateSpecializationDecl( hasAnyTemplateArgument(refersToIntegralType( asString("int")))))); EXPECT_TRUE(notMatches("template struct C {}; C<42> c;", classTemplateSpecializationDecl(hasAnyTemplateArgument( refersToIntegralType(asString("int")))))); } TEST(ConstructorDeclaration, SimpleCase) { EXPECT_TRUE(matches("class Foo { Foo(int i); };", cxxConstructorDecl(ofClass(hasName("Foo"))))); EXPECT_TRUE(notMatches("class Foo { Foo(int i); };", cxxConstructorDecl(ofClass(hasName("Bar"))))); } TEST(DestructorDeclaration, MatchesVirtualDestructor) { EXPECT_TRUE(matches("class Foo { virtual ~Foo(); };", cxxDestructorDecl(ofClass(hasName("Foo"))))); } TEST(DestructorDeclaration, DoesNotMatchImplicitDestructor) { EXPECT_TRUE(notMatches("class Foo {};", cxxDestructorDecl(ofClass(hasName("Foo"))))); } TEST(HasAnyConstructorInitializer, SimpleCase) { EXPECT_TRUE( notMatches("class Foo { Foo() { } };", cxxConstructorDecl(hasAnyConstructorInitializer(anything())))); EXPECT_TRUE( matches("class Foo {" " Foo() : foo_() { }" " int foo_;" "};", cxxConstructorDecl(hasAnyConstructorInitializer(anything())))); } TEST(HasAnyConstructorInitializer, ForField) { static const char Code[] = "class Baz { };" "class Foo {" " Foo() : foo_() { }" " Baz foo_;" " Baz bar_;" "};"; EXPECT_TRUE(matches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( forField(hasType(recordDecl(hasName("Baz")))))))); EXPECT_TRUE(matches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( forField(hasName("foo_")))))); EXPECT_TRUE(notMatches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( forField(hasType(recordDecl(hasName("Bar")))))))); } TEST(HasAnyConstructorInitializer, WithInitializer) { static const char Code[] = "class Foo {" " Foo() : foo_(0) { }" " int foo_;" "};"; EXPECT_TRUE(matches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( withInitializer(integerLiteral(equals(0))))))); EXPECT_TRUE(notMatches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( withInitializer(integerLiteral(equals(1))))))); } TEST(HasAnyConstructorInitializer, IsWritten) { static const char Code[] = "struct Bar { Bar(){} };" "class Foo {" " Foo() : foo_() { }" " Bar foo_;" " Bar bar_;" "};"; EXPECT_TRUE(matches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( allOf(forField(hasName("foo_")), isWritten()))))); EXPECT_TRUE(notMatches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( allOf(forField(hasName("bar_")), isWritten()))))); EXPECT_TRUE(matches(Code, cxxConstructorDecl(hasAnyConstructorInitializer( allOf(forField(hasName("bar_")), unless(isWritten())))))); } TEST(HasAnyConstructorInitializer, IsBaseInitializer) { static const char Code[] = "struct B {};" "struct D : B {" " int I;" " D(int i) : I(i) {}" "};" "struct E : B {" " E() : B() {}" "};"; EXPECT_TRUE(matches(Code, cxxConstructorDecl(allOf( hasAnyConstructorInitializer(allOf(isBaseInitializer(), isWritten())), hasName("E"))))); EXPECT_TRUE(notMatches(Code, cxxConstructorDecl(allOf( hasAnyConstructorInitializer(allOf(isBaseInitializer(), isWritten())), hasName("D"))))); EXPECT_TRUE(matches(Code, cxxConstructorDecl(allOf( hasAnyConstructorInitializer(allOf(isMemberInitializer(), isWritten())), hasName("D"))))); EXPECT_TRUE(notMatches(Code, cxxConstructorDecl(allOf( hasAnyConstructorInitializer(allOf(isMemberInitializer(), isWritten())), hasName("E"))))); } TEST(IfStmt, ChildTraversalMatchers) { EXPECT_TRUE(matches("void f() { if (false) true; else false; }", ifStmt(hasThen(cxxBoolLiteral(equals(true)))))); EXPECT_TRUE(notMatches("void f() { if (false) false; else true; }", ifStmt(hasThen(cxxBoolLiteral(equals(true)))))); EXPECT_TRUE(matches("void f() { if (false) false; else true; }", ifStmt(hasElse(cxxBoolLiteral(equals(true)))))); EXPECT_TRUE(notMatches("void f() { if (false) true; else false; }", ifStmt(hasElse(cxxBoolLiteral(equals(true)))))); } TEST(MatchBinaryOperator, HasOperatorName) { StatementMatcher OperatorOr = binaryOperator(hasOperatorName("||")); EXPECT_TRUE(matches("void x() { true || false; }", OperatorOr)); EXPECT_TRUE(notMatches("void x() { true && false; }", OperatorOr)); } TEST(MatchBinaryOperator, HasLHSAndHasRHS) { StatementMatcher OperatorTrueFalse = binaryOperator(hasLHS(cxxBoolLiteral(equals(true))), hasRHS(cxxBoolLiteral(equals(false)))); EXPECT_TRUE(matches("void x() { true || false; }", OperatorTrueFalse)); EXPECT_TRUE(matches("void x() { true && false; }", OperatorTrueFalse)); EXPECT_TRUE(notMatches("void x() { false || true; }", OperatorTrueFalse)); StatementMatcher OperatorIntPointer = arraySubscriptExpr( hasLHS(hasType(isInteger())), hasRHS(hasType(pointsTo(qualType())))); EXPECT_TRUE(matches("void x() { 1[\"abc\"]; }", OperatorIntPointer)); EXPECT_TRUE(notMatches("void x() { \"abc\"[1]; }", OperatorIntPointer)); } TEST(MatchBinaryOperator, HasEitherOperand) { StatementMatcher HasOperand = binaryOperator(hasEitherOperand(cxxBoolLiteral(equals(false)))); EXPECT_TRUE(matches("void x() { true || false; }", HasOperand)); EXPECT_TRUE(matches("void x() { false && true; }", HasOperand)); EXPECT_TRUE(notMatches("void x() { true || true; }", HasOperand)); } TEST(Matcher, BinaryOperatorTypes) { // Integration test that verifies the AST provides all binary operators in // a way we expect. // FIXME: Operator ',' EXPECT_TRUE( matches("void x() { 3, 4; }", binaryOperator(hasOperatorName(",")))); EXPECT_TRUE( matches("bool b; bool c = (b = true);", binaryOperator(hasOperatorName("=")))); EXPECT_TRUE( matches("bool b = 1 != 2;", binaryOperator(hasOperatorName("!=")))); EXPECT_TRUE( matches("bool b = 1 == 2;", binaryOperator(hasOperatorName("==")))); EXPECT_TRUE(matches("bool b = 1 < 2;", binaryOperator(hasOperatorName("<")))); EXPECT_TRUE( matches("bool b = 1 <= 2;", binaryOperator(hasOperatorName("<=")))); EXPECT_TRUE( matches("int i = 1 << 2;", binaryOperator(hasOperatorName("<<")))); EXPECT_TRUE( matches("int i = 1; int j = (i <<= 2);", binaryOperator(hasOperatorName("<<=")))); EXPECT_TRUE(matches("bool b = 1 > 2;", binaryOperator(hasOperatorName(">")))); EXPECT_TRUE( matches("bool b = 1 >= 2;", binaryOperator(hasOperatorName(">=")))); EXPECT_TRUE( matches("int i = 1 >> 2;", binaryOperator(hasOperatorName(">>")))); EXPECT_TRUE( matches("int i = 1; int j = (i >>= 2);", binaryOperator(hasOperatorName(">>=")))); EXPECT_TRUE( matches("int i = 42 ^ 23;", binaryOperator(hasOperatorName("^")))); EXPECT_TRUE( matches("int i = 42; int j = (i ^= 42);", binaryOperator(hasOperatorName("^=")))); EXPECT_TRUE( matches("int i = 42 % 23;", binaryOperator(hasOperatorName("%")))); EXPECT_TRUE( matches("int i = 42; int j = (i %= 42);", binaryOperator(hasOperatorName("%=")))); EXPECT_TRUE( matches("bool b = 42 &23;", binaryOperator(hasOperatorName("&")))); EXPECT_TRUE( matches("bool b = true && false;", binaryOperator(hasOperatorName("&&")))); EXPECT_TRUE( matches("bool b = true; bool c = (b &= false);", binaryOperator(hasOperatorName("&=")))); EXPECT_TRUE( matches("bool b = 42 | 23;", binaryOperator(hasOperatorName("|")))); EXPECT_TRUE( matches("bool b = true || false;", binaryOperator(hasOperatorName("||")))); EXPECT_TRUE( matches("bool b = true; bool c = (b |= false);", binaryOperator(hasOperatorName("|=")))); EXPECT_TRUE( matches("int i = 42 *23;", binaryOperator(hasOperatorName("*")))); EXPECT_TRUE( matches("int i = 42; int j = (i *= 23);", binaryOperator(hasOperatorName("*=")))); EXPECT_TRUE( matches("int i = 42 / 23;", binaryOperator(hasOperatorName("/")))); EXPECT_TRUE( matches("int i = 42; int j = (i /= 23);", binaryOperator(hasOperatorName("/=")))); EXPECT_TRUE( matches("int i = 42 + 23;", binaryOperator(hasOperatorName("+")))); EXPECT_TRUE( matches("int i = 42; int j = (i += 23);", binaryOperator(hasOperatorName("+=")))); EXPECT_TRUE( matches("int i = 42 - 23;", binaryOperator(hasOperatorName("-")))); EXPECT_TRUE( matches("int i = 42; int j = (i -= 23);", binaryOperator(hasOperatorName("-=")))); EXPECT_TRUE( matches("struct A { void x() { void (A::*a)(); (this->*a)(); } };", binaryOperator(hasOperatorName("->*")))); EXPECT_TRUE( matches("struct A { void x() { void (A::*a)(); ((*this).*a)(); } };", binaryOperator(hasOperatorName(".*")))); // Member expressions as operators are not supported in matches. EXPECT_TRUE( notMatches("struct A { void x(A *a) { a->x(this); } };", binaryOperator(hasOperatorName("->")))); // Initializer assignments are not represented as operator equals. EXPECT_TRUE( notMatches("bool b = true;", binaryOperator(hasOperatorName("=")))); // Array indexing is not represented as operator. EXPECT_TRUE(notMatches("int a[42]; void x() { a[23]; }", unaryOperator())); // Overloaded operators do not match at all. EXPECT_TRUE(notMatches( "struct A { bool operator&&(const A &a) const { return false; } };" "void x() { A a, b; a && b; }", binaryOperator())); } TEST(MatchUnaryOperator, HasOperatorName) { StatementMatcher OperatorNot = unaryOperator(hasOperatorName("!")); EXPECT_TRUE(matches("void x() { !true; } ", OperatorNot)); EXPECT_TRUE(notMatches("void x() { true; } ", OperatorNot)); } TEST(MatchUnaryOperator, HasUnaryOperand) { StatementMatcher OperatorOnFalse = unaryOperator(hasUnaryOperand(cxxBoolLiteral(equals(false)))); EXPECT_TRUE(matches("void x() { !false; }", OperatorOnFalse)); EXPECT_TRUE(notMatches("void x() { !true; }", OperatorOnFalse)); } TEST(Matcher, UnaryOperatorTypes) { // Integration test that verifies the AST provides all unary operators in // a way we expect. EXPECT_TRUE(matches("bool b = !true;", unaryOperator(hasOperatorName("!")))); EXPECT_TRUE( matches("bool b; bool *p = &b;", unaryOperator(hasOperatorName("&")))); EXPECT_TRUE(matches("int i = ~ 1;", unaryOperator(hasOperatorName("~")))); EXPECT_TRUE( matches("bool *p; bool b = *p;", unaryOperator(hasOperatorName("*")))); EXPECT_TRUE( matches("int i; int j = +i;", unaryOperator(hasOperatorName("+")))); EXPECT_TRUE( matches("int i; int j = -i;", unaryOperator(hasOperatorName("-")))); EXPECT_TRUE( matches("int i; int j = ++i;", unaryOperator(hasOperatorName("++")))); EXPECT_TRUE( matches("int i; int j = i++;", unaryOperator(hasOperatorName("++")))); EXPECT_TRUE( matches("int i; int j = --i;", unaryOperator(hasOperatorName("--")))); EXPECT_TRUE( matches("int i; int j = i--;", unaryOperator(hasOperatorName("--")))); // We don't match conversion operators. EXPECT_TRUE(notMatches("int i; double d = (double)i;", unaryOperator())); // Function calls are not represented as operator. EXPECT_TRUE(notMatches("void f(); void x() { f(); }", unaryOperator())); // Overloaded operators do not match at all. // FIXME: We probably want to add that. EXPECT_TRUE(notMatches( "struct A { bool operator!() const { return false; } };" "void x() { A a; !a; }", unaryOperator(hasOperatorName("!")))); } TEST(ArraySubscriptMatchers, ArrayIndex) { EXPECT_TRUE(matches( "int i[2]; void f() { i[1] = 1; }", arraySubscriptExpr(hasIndex(integerLiteral(equals(1)))))); EXPECT_TRUE(matches( "int i[2]; void f() { 1[i] = 1; }", arraySubscriptExpr(hasIndex(integerLiteral(equals(1)))))); EXPECT_TRUE(notMatches( "int i[2]; void f() { i[1] = 1; }", arraySubscriptExpr(hasIndex(integerLiteral(equals(0)))))); } TEST(ArraySubscriptMatchers, MatchesArrayBase) { EXPECT_TRUE(matches( "int i[2]; void f() { i[1] = 2; }", arraySubscriptExpr(hasBase(implicitCastExpr( hasSourceExpression(declRefExpr())))))); } TEST(Matcher, OfClass) { StatementMatcher Constructor = cxxConstructExpr(hasDeclaration(cxxMethodDecl( ofClass(hasName("X"))))); EXPECT_TRUE( matches("class X { public: X(); }; void x(int) { X x; }", Constructor)); EXPECT_TRUE( matches("class X { public: X(); }; void x(int) { X x = X(); }", Constructor)); EXPECT_TRUE( notMatches("class Y { public: Y(); }; void x(int) { Y y; }", Constructor)); } TEST(Matcher, VisitsTemplateInstantiations) { EXPECT_TRUE(matches( "class A { public: void x(); };" "template class B { public: void y() { T t; t.x(); } };" "void f() { B b; b.y(); }", callExpr(callee(cxxMethodDecl(hasName("x")))))); EXPECT_TRUE(matches( "class A { public: void x(); };" "class C {" " public:" " template class B { public: void y() { T t; t.x(); } };" "};" "void f() {" " C::B b; b.y();" "}", recordDecl(hasName("C"), hasDescendant(callExpr( callee(cxxMethodDecl(hasName("x")))))))); } TEST(Matcher, HasCondition) { StatementMatcher IfStmt = ifStmt(hasCondition(cxxBoolLiteral(equals(true)))); EXPECT_TRUE(matches("void x() { if (true) {} }", IfStmt)); EXPECT_TRUE(notMatches("void x() { if (false) {} }", IfStmt)); StatementMatcher ForStmt = forStmt(hasCondition(cxxBoolLiteral(equals(true)))); EXPECT_TRUE(matches("void x() { for (;true;) {} }", ForStmt)); EXPECT_TRUE(notMatches("void x() { for (;false;) {} }", ForStmt)); StatementMatcher WhileStmt = whileStmt(hasCondition(cxxBoolLiteral(equals(true)))); EXPECT_TRUE(matches("void x() { while (true) {} }", WhileStmt)); EXPECT_TRUE(notMatches("void x() { while (false) {} }", WhileStmt)); StatementMatcher SwitchStmt = switchStmt(hasCondition(integerLiteral(equals(42)))); EXPECT_TRUE(matches("void x() { switch (42) {case 42:;} }", SwitchStmt)); EXPECT_TRUE(notMatches("void x() { switch (43) {case 43:;} }", SwitchStmt)); } TEST(For, ForLoopInternals) { EXPECT_TRUE(matches("void f(){ int i; for (; i < 3 ; ); }", forStmt(hasCondition(anything())))); EXPECT_TRUE(matches("void f() { for (int i = 0; ;); }", forStmt(hasLoopInit(anything())))); } TEST(For, ForRangeLoopInternals) { EXPECT_TRUE(matches("void f(){ int a[] {1, 2}; for (int i : a); }", cxxForRangeStmt(hasLoopVariable(anything())))); EXPECT_TRUE(matches( "void f(){ int a[] {1, 2}; for (int i : a); }", cxxForRangeStmt(hasRangeInit(declRefExpr(to(varDecl(hasName("a")))))))); } TEST(For, NegativeForLoopInternals) { EXPECT_TRUE(notMatches("void f(){ for (int i = 0; ; ++i); }", forStmt(hasCondition(expr())))); EXPECT_TRUE(notMatches("void f() {int i; for (; i < 4; ++i) {} }", forStmt(hasLoopInit(anything())))); } TEST(HasBody, FindsBodyOfForWhileDoLoops) { EXPECT_TRUE(matches("void f() { for(;;) {} }", forStmt(hasBody(compoundStmt())))); EXPECT_TRUE(notMatches("void f() { for(;;); }", forStmt(hasBody(compoundStmt())))); EXPECT_TRUE(matches("void f() { while(true) {} }", whileStmt(hasBody(compoundStmt())))); EXPECT_TRUE(matches("void f() { do {} while(true); }", doStmt(hasBody(compoundStmt())))); EXPECT_TRUE(matches("void f() { int p[2]; for (auto x : p) {} }", cxxForRangeStmt(hasBody(compoundStmt())))); EXPECT_TRUE(matches("void f() {}", functionDecl(hasBody(compoundStmt())))); EXPECT_TRUE(notMatches("void f();", functionDecl(hasBody(compoundStmt())))); EXPECT_TRUE(matches("void f(); void f() {}", functionDecl(hasBody(compoundStmt())))); } TEST(HasAnySubstatement, MatchesForTopLevelCompoundStatement) { // The simplest case: every compound statement is in a function // definition, and the function body itself must be a compound // statement. EXPECT_TRUE(matches("void f() { for (;;); }", compoundStmt(hasAnySubstatement(forStmt())))); } TEST(HasAnySubstatement, IsNotRecursive) { // It's really "has any immediate substatement". EXPECT_TRUE(notMatches("void f() { if (true) for (;;); }", compoundStmt(hasAnySubstatement(forStmt())))); } TEST(HasAnySubstatement, MatchesInNestedCompoundStatements) { EXPECT_TRUE(matches("void f() { if (true) { for (;;); } }", compoundStmt(hasAnySubstatement(forStmt())))); } TEST(HasAnySubstatement, FindsSubstatementBetweenOthers) { EXPECT_TRUE(matches("void f() { 1; 2; 3; for (;;); 4; 5; 6; }", compoundStmt(hasAnySubstatement(forStmt())))); } TEST(Member, MatchesMemberAllocationFunction) { // Fails in C++11 mode EXPECT_TRUE(matchesConditionally( "namespace std { typedef typeof(sizeof(int)) size_t; }" "class X { void *operator new(std::size_t); };", cxxMethodDecl(ofClass(hasName("X"))), true, "-std=gnu++98")); EXPECT_TRUE(matches("class X { void operator delete(void*); };", cxxMethodDecl(ofClass(hasName("X"))))); // Fails in C++11 mode EXPECT_TRUE(matchesConditionally( "namespace std { typedef typeof(sizeof(int)) size_t; }" "class X { void operator delete[](void*, std::size_t); };", cxxMethodDecl(ofClass(hasName("X"))), true, "-std=gnu++98")); } TEST(HasDestinationType, MatchesSimpleCase) { EXPECT_TRUE(matches("char* p = static_cast(0);", cxxStaticCastExpr(hasDestinationType( pointsTo(TypeMatcher(anything())))))); } TEST(HasImplicitDestinationType, MatchesSimpleCase) { // This test creates an implicit const cast. EXPECT_TRUE(matches("int x; const int i = x;", implicitCastExpr( hasImplicitDestinationType(isInteger())))); // This test creates an implicit array-to-pointer cast. EXPECT_TRUE(matches("int arr[3]; int *p = arr;", implicitCastExpr(hasImplicitDestinationType( pointsTo(TypeMatcher(anything())))))); } TEST(HasImplicitDestinationType, DoesNotMatchIncorrectly) { // This test creates an implicit cast from int to char. EXPECT_TRUE(notMatches("char c = 0;", implicitCastExpr(hasImplicitDestinationType( unless(anything()))))); // This test creates an implicit array-to-pointer cast. EXPECT_TRUE(notMatches("int arr[3]; int *p = arr;", implicitCastExpr(hasImplicitDestinationType( unless(anything()))))); } TEST(IgnoringImplicit, MatchesImplicit) { EXPECT_TRUE(matches("class C {}; C a = C();", varDecl(has(ignoringImplicit(cxxConstructExpr()))))); } TEST(IgnoringImplicit, DoesNotMatchIncorrectly) { EXPECT_TRUE( notMatches("class C {}; C a = C();", varDecl(has(cxxConstructExpr())))); } TEST(IgnoringImpCasts, MatchesImpCasts) { // This test checks that ignoringImpCasts matches when implicit casts are // present and its inner matcher alone does not match. // Note that this test creates an implicit const cast. EXPECT_TRUE(matches("int x = 0; const int y = x;", varDecl(hasInitializer(ignoringImpCasts( declRefExpr(to(varDecl(hasName("x"))))))))); // This test creates an implict cast from int to char. EXPECT_TRUE(matches("char x = 0;", varDecl(hasInitializer(ignoringImpCasts( integerLiteral(equals(0))))))); } TEST(IgnoringImpCasts, DoesNotMatchIncorrectly) { // These tests verify that ignoringImpCasts does not match if the inner // matcher does not match. // Note that the first test creates an implicit const cast. EXPECT_TRUE(notMatches("int x; const int y = x;", varDecl(hasInitializer(ignoringImpCasts( unless(anything())))))); EXPECT_TRUE(notMatches("int x; int y = x;", varDecl(hasInitializer(ignoringImpCasts( unless(anything())))))); // These tests verify that ignoringImplictCasts does not look through explicit // casts or parentheses. EXPECT_TRUE(notMatches("char* p = static_cast(0);", varDecl(hasInitializer(ignoringImpCasts( integerLiteral()))))); EXPECT_TRUE(notMatches("int i = (0);", varDecl(hasInitializer(ignoringImpCasts( integerLiteral()))))); EXPECT_TRUE(notMatches("float i = (float)0;", varDecl(hasInitializer(ignoringImpCasts( integerLiteral()))))); EXPECT_TRUE(notMatches("float i = float(0);", varDecl(hasInitializer(ignoringImpCasts( integerLiteral()))))); } TEST(IgnoringImpCasts, MatchesWithoutImpCasts) { // This test verifies that expressions that do not have implicit casts // still match the inner matcher. EXPECT_TRUE(matches("int x = 0; int &y = x;", varDecl(hasInitializer(ignoringImpCasts( declRefExpr(to(varDecl(hasName("x"))))))))); } TEST(IgnoringParenCasts, MatchesParenCasts) { // This test checks that ignoringParenCasts matches when parentheses and/or // casts are present and its inner matcher alone does not match. EXPECT_TRUE(matches("int x = (0);", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); EXPECT_TRUE(matches("int x = (((((0)))));", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); // This test creates an implict cast from int to char in addition to the // parentheses. EXPECT_TRUE(matches("char x = (0);", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); EXPECT_TRUE(matches("char x = (char)0;", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); EXPECT_TRUE(matches("char* p = static_cast(0);", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); } TEST(IgnoringParenCasts, MatchesWithoutParenCasts) { // This test verifies that expressions that do not have any casts still match. EXPECT_TRUE(matches("int x = 0;", varDecl(hasInitializer(ignoringParenCasts( integerLiteral(equals(0))))))); } TEST(IgnoringParenCasts, DoesNotMatchIncorrectly) { // These tests verify that ignoringImpCasts does not match if the inner // matcher does not match. EXPECT_TRUE(notMatches("int x = ((0));", varDecl(hasInitializer(ignoringParenCasts( unless(anything())))))); // This test creates an implicit cast from int to char in addition to the // parentheses. EXPECT_TRUE(notMatches("char x = ((0));", varDecl(hasInitializer(ignoringParenCasts( unless(anything())))))); EXPECT_TRUE(notMatches("char *x = static_cast((0));", varDecl(hasInitializer(ignoringParenCasts( unless(anything())))))); } TEST(IgnoringParenAndImpCasts, MatchesParenImpCasts) { // This test checks that ignoringParenAndImpCasts matches when // parentheses and/or implicit casts are present and its inner matcher alone // does not match. // Note that this test creates an implicit const cast. EXPECT_TRUE(matches("int x = 0; const int y = x;", varDecl(hasInitializer(ignoringParenImpCasts( declRefExpr(to(varDecl(hasName("x"))))))))); // This test creates an implicit cast from int to char. EXPECT_TRUE(matches("const char x = (0);", varDecl(hasInitializer(ignoringParenImpCasts( integerLiteral(equals(0))))))); } TEST(IgnoringParenAndImpCasts, MatchesWithoutParenImpCasts) { // This test verifies that expressions that do not have parentheses or // implicit casts still match. EXPECT_TRUE(matches("int x = 0; int &y = x;", varDecl(hasInitializer(ignoringParenImpCasts( declRefExpr(to(varDecl(hasName("x"))))))))); EXPECT_TRUE(matches("int x = 0;", varDecl(hasInitializer(ignoringParenImpCasts( integerLiteral(equals(0))))))); } TEST(IgnoringParenAndImpCasts, DoesNotMatchIncorrectly) { // These tests verify that ignoringParenImpCasts does not match if // the inner matcher does not match. // This test creates an implicit cast. EXPECT_TRUE(notMatches("char c = ((3));", varDecl(hasInitializer(ignoringParenImpCasts( unless(anything())))))); // These tests verify that ignoringParenAndImplictCasts does not look // through explicit casts. EXPECT_TRUE(notMatches("float y = (float(0));", varDecl(hasInitializer(ignoringParenImpCasts( integerLiteral()))))); EXPECT_TRUE(notMatches("float y = (float)0;", varDecl(hasInitializer(ignoringParenImpCasts( integerLiteral()))))); EXPECT_TRUE(notMatches("char* p = static_cast(0);", varDecl(hasInitializer(ignoringParenImpCasts( integerLiteral()))))); } TEST(HasSourceExpression, MatchesImplicitCasts) { EXPECT_TRUE(matches("class string {}; class URL { public: URL(string s); };" "void r() {string a_string; URL url = a_string; }", implicitCastExpr( hasSourceExpression(cxxConstructExpr())))); } TEST(HasSourceExpression, MatchesExplicitCasts) { EXPECT_TRUE(matches("float x = static_cast(42);", explicitCastExpr( hasSourceExpression(hasDescendant( expr(integerLiteral())))))); } TEST(UsingDeclaration, MatchesSpecificTarget) { EXPECT_TRUE(matches("namespace f { int a; void b(); } using f::b;", usingDecl(hasAnyUsingShadowDecl( hasTargetDecl(functionDecl()))))); EXPECT_TRUE(notMatches("namespace f { int a; void b(); } using f::a;", usingDecl(hasAnyUsingShadowDecl( hasTargetDecl(functionDecl()))))); } TEST(UsingDeclaration, ThroughUsingDeclaration) { EXPECT_TRUE(matches( "namespace a { void f(); } using a::f; void g() { f(); }", declRefExpr(throughUsingDecl(anything())))); EXPECT_TRUE(notMatches( "namespace a { void f(); } using a::f; void g() { a::f(); }", declRefExpr(throughUsingDecl(anything())))); } TEST(SingleDecl, IsSingleDecl) { StatementMatcher SingleDeclStmt = declStmt(hasSingleDecl(varDecl(hasInitializer(anything())))); EXPECT_TRUE(matches("void f() {int a = 4;}", SingleDeclStmt)); EXPECT_TRUE(notMatches("void f() {int a;}", SingleDeclStmt)); EXPECT_TRUE(notMatches("void f() {int a = 4, b = 3;}", SingleDeclStmt)); } TEST(DeclStmt, ContainsDeclaration) { DeclarationMatcher MatchesInit = varDecl(hasInitializer(anything())); EXPECT_TRUE(matches("void f() {int a = 4;}", declStmt(containsDeclaration(0, MatchesInit)))); EXPECT_TRUE(matches("void f() {int a = 4, b = 3;}", declStmt(containsDeclaration(0, MatchesInit), containsDeclaration(1, MatchesInit)))); unsigned WrongIndex = 42; EXPECT_TRUE(notMatches("void f() {int a = 4, b = 3;}", declStmt(containsDeclaration(WrongIndex, MatchesInit)))); } TEST(SwitchCase, MatchesEachCase) { EXPECT_TRUE(notMatches("void x() { switch(42); }", switchStmt(forEachSwitchCase(caseStmt())))); EXPECT_TRUE(matches("void x() { switch(42) case 42:; }", switchStmt(forEachSwitchCase(caseStmt())))); EXPECT_TRUE(matches("void x() { switch(42) { case 42:; } }", switchStmt(forEachSwitchCase(caseStmt())))); EXPECT_TRUE(notMatches( "void x() { if (1) switch(42) { case 42: switch (42) { default:; } } }", ifStmt(has(switchStmt(forEachSwitchCase(defaultStmt())))))); EXPECT_TRUE(matches("void x() { switch(42) { case 1+1: case 4:; } }", switchStmt(forEachSwitchCase( caseStmt(hasCaseConstant(integerLiteral())))))); EXPECT_TRUE(notMatches("void x() { switch(42) { case 1+1: case 2+2:; } }", switchStmt(forEachSwitchCase( caseStmt(hasCaseConstant(integerLiteral())))))); EXPECT_TRUE(notMatches("void x() { switch(42) { case 1 ... 2:; } }", switchStmt(forEachSwitchCase( caseStmt(hasCaseConstant(integerLiteral())))))); EXPECT_TRUE(matchAndVerifyResultTrue( "void x() { switch (42) { case 1: case 2: case 3: default:; } }", switchStmt(forEachSwitchCase(caseStmt().bind("x"))), llvm::make_unique>("x", 3))); } TEST(ForEachConstructorInitializer, MatchesInitializers) { EXPECT_TRUE(matches( "struct X { X() : i(42), j(42) {} int i, j; };", cxxConstructorDecl(forEachConstructorInitializer(cxxCtorInitializer())))); } TEST(HasConditionVariableStatement, DoesNotMatchCondition) { EXPECT_TRUE(notMatches( "void x() { if(true) {} }", ifStmt(hasConditionVariableStatement(declStmt())))); EXPECT_TRUE(notMatches( "void x() { int x; if((x = 42)) {} }", ifStmt(hasConditionVariableStatement(declStmt())))); } TEST(HasConditionVariableStatement, MatchesConditionVariables) { EXPECT_TRUE(matches( "void x() { if(int* a = 0) {} }", ifStmt(hasConditionVariableStatement(declStmt())))); } TEST(ForEach, BindsOneNode) { EXPECT_TRUE(matchAndVerifyResultTrue("class C { int x; };", recordDecl(hasName("C"), forEach(fieldDecl(hasName("x")).bind("x"))), llvm::make_unique>("x", 1))); } TEST(ForEach, BindsMultipleNodes) { EXPECT_TRUE(matchAndVerifyResultTrue("class C { int x; int y; int z; };", recordDecl(hasName("C"), forEach(fieldDecl().bind("f"))), llvm::make_unique>("f", 3))); } TEST(ForEach, BindsRecursiveCombinations) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { class D { int x; int y; }; class E { int y; int z; }; };", recordDecl(hasName("C"), forEach(recordDecl(forEach(fieldDecl().bind("f"))))), llvm::make_unique>("f", 4))); } TEST(ForEachDescendant, BindsOneNode) { EXPECT_TRUE(matchAndVerifyResultTrue("class C { class D { int x; }; };", recordDecl(hasName("C"), forEachDescendant(fieldDecl(hasName("x")).bind("x"))), llvm::make_unique>("x", 1))); } TEST(ForEachDescendant, NestedForEachDescendant) { DeclarationMatcher m = recordDecl( isDefinition(), decl().bind("x"), hasName("C")); EXPECT_TRUE(matchAndVerifyResultTrue( "class A { class B { class C {}; }; };", recordDecl(hasName("A"), anyOf(m, forEachDescendant(m))), llvm::make_unique>("x", "C"))); // Check that a partial match of 'm' that binds 'x' in the // first part of anyOf(m, anything()) will not overwrite the // binding created by the earlier binding in the hasDescendant. EXPECT_TRUE(matchAndVerifyResultTrue( "class A { class B { class C {}; }; };", recordDecl(hasName("A"), allOf(hasDescendant(m), anyOf(m, anything()))), llvm::make_unique>("x", "C"))); } TEST(ForEachDescendant, BindsMultipleNodes) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { class D { int x; int y; }; " " class E { class F { int y; int z; }; }; };", recordDecl(hasName("C"), forEachDescendant(fieldDecl().bind("f"))), llvm::make_unique>("f", 4))); } TEST(ForEachDescendant, BindsRecursiveCombinations) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { class D { " " class E { class F { class G { int y; int z; }; }; }; }; };", recordDecl(hasName("C"), forEachDescendant(recordDecl( forEachDescendant(fieldDecl().bind("f"))))), llvm::make_unique>("f", 8))); } TEST(ForEachDescendant, BindsCombinations) { EXPECT_TRUE(matchAndVerifyResultTrue( "void f() { if(true) {} if (true) {} while (true) {} if (true) {} while " "(true) {} }", compoundStmt(forEachDescendant(ifStmt().bind("if")), forEachDescendant(whileStmt().bind("while"))), llvm::make_unique>("if", 6))); } TEST(Has, DoesNotDeleteBindings) { EXPECT_TRUE(matchAndVerifyResultTrue( "class X { int a; };", recordDecl(decl().bind("x"), has(fieldDecl())), llvm::make_unique>("x", 1))); } TEST(LoopingMatchers, DoNotOverwritePreviousMatchResultOnFailure) { // Those matchers cover all the cases where an inner matcher is called // and there is not a 1:1 relationship between the match of the outer // matcher and the match of the inner matcher. // The pattern to look for is: // ... return InnerMatcher.matches(...); ... // In which case no special handling is needed. // // On the other hand, if there are multiple alternative matches // (for example forEach*) or matches might be discarded (for example has*) // the implementation must make sure that the discarded matches do not // affect the bindings. // When new such matchers are added, add a test here that: // - matches a simple node, and binds it as the first thing in the matcher: // recordDecl(decl().bind("x"), hasName("X"))) // - uses the matcher under test afterwards in a way that not the first // alternative is matched; for anyOf, that means the first branch // would need to return false; for hasAncestor, it means that not // the direct parent matches the inner matcher. EXPECT_TRUE(matchAndVerifyResultTrue( "class X { int y; };", recordDecl( recordDecl().bind("x"), hasName("::X"), anyOf(forEachDescendant(recordDecl(hasName("Y"))), anything())), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class X {};", recordDecl(recordDecl().bind("x"), hasName("::X"), anyOf(unless(anything()), anything())), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "template class X {}; X x;", classTemplateSpecializationDecl( decl().bind("x"), hasAnyTemplateArgument(refersToType(asString("int")))), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class X { void f(); void g(); };", cxxRecordDecl(decl().bind("x"), hasMethod(hasName("g"))), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class X { X() : a(1), b(2) {} double a; int b; };", recordDecl(decl().bind("x"), has(cxxConstructorDecl( hasAnyConstructorInitializer(forField(hasName("b")))))), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "void x(int, int) { x(0, 42); }", callExpr(expr().bind("x"), hasAnyArgument(integerLiteral(equals(42)))), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "void x(int, int y) {}", functionDecl(decl().bind("x"), hasAnyParameter(hasName("y"))), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "void x() { return; if (true) {} }", functionDecl(decl().bind("x"), has(compoundStmt(hasAnySubstatement(ifStmt())))), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "namespace X { void b(int); void b(); }" "using X::b;", usingDecl(decl().bind("x"), hasAnyUsingShadowDecl(hasTargetDecl( functionDecl(parameterCountIs(1))))), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A{}; class B{}; class C : B, A {};", cxxRecordDecl(decl().bind("x"), isDerivedFrom("::A")), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A{}; typedef A B; typedef A C; typedef A D;" "class E : A {};", cxxRecordDecl(decl().bind("x"), isDerivedFrom("C")), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A { class B { void f() {} }; };", functionDecl(decl().bind("x"), hasAncestor(recordDecl(hasName("::A")))), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "template struct A { struct B {" " void f() { if(true) {} }" "}; };" "void t() { A::B b; b.f(); }", ifStmt(stmt().bind("x"), hasAncestor(recordDecl(hasName("::A")))), llvm::make_unique>("x", 2))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A {};", recordDecl(hasName("::A"), decl().bind("x"), unless(hasName("fooble"))), llvm::make_unique>("x", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A { A() : s(), i(42) {} const char *s; int i; };", cxxConstructorDecl(hasName("::A::A"), decl().bind("x"), forEachConstructorInitializer(forField(hasName("i")))), llvm::make_unique>("x", 1))); } TEST(ForEachDescendant, BindsCorrectNodes) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { void f(); int i; };", recordDecl(hasName("C"), forEachDescendant(decl().bind("decl"))), llvm::make_unique>("decl", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( "class C { void f() {} int i; };", recordDecl(hasName("C"), forEachDescendant(decl().bind("decl"))), llvm::make_unique>("decl", 1))); } TEST(FindAll, BindsNodeOnMatch) { EXPECT_TRUE(matchAndVerifyResultTrue( "class A {};", recordDecl(hasName("::A"), findAll(recordDecl(hasName("::A")).bind("v"))), llvm::make_unique>("v", 1))); } TEST(FindAll, BindsDescendantNodeOnMatch) { EXPECT_TRUE(matchAndVerifyResultTrue( "class A { int a; int b; };", recordDecl(hasName("::A"), findAll(fieldDecl().bind("v"))), llvm::make_unique>("v", 2))); } TEST(FindAll, BindsNodeAndDescendantNodesOnOneMatch) { EXPECT_TRUE(matchAndVerifyResultTrue( "class A { int a; int b; };", recordDecl(hasName("::A"), findAll(decl(anyOf(recordDecl(hasName("::A")).bind("v"), fieldDecl().bind("v"))))), llvm::make_unique>("v", 3))); EXPECT_TRUE(matchAndVerifyResultTrue( "class A { class B {}; class C {}; };", recordDecl(hasName("::A"), findAll(recordDecl(isDefinition()).bind("v"))), llvm::make_unique>("v", 3))); } TEST(HasAncenstor, MatchesDeclarationAncestors) { EXPECT_TRUE(matches( "class A { class B { class C {}; }; };", recordDecl(hasName("C"), hasAncestor(recordDecl(hasName("A")))))); } TEST(HasAncenstor, FailsIfNoAncestorMatches) { EXPECT_TRUE(notMatches( "class A { class B { class C {}; }; };", recordDecl(hasName("C"), hasAncestor(recordDecl(hasName("X")))))); } TEST(HasAncestor, MatchesDeclarationsThatGetVisitedLater) { EXPECT_TRUE(matches( "class A { class B { void f() { C c; } class C {}; }; };", varDecl(hasName("c"), hasType(recordDecl(hasName("C"), hasAncestor(recordDecl(hasName("A")))))))); } TEST(HasAncenstor, MatchesStatementAncestors) { EXPECT_TRUE(matches( "void f() { if (true) { while (false) { 42; } } }", integerLiteral(equals(42), hasAncestor(ifStmt())))); } TEST(HasAncestor, DrillsThroughDifferentHierarchies) { EXPECT_TRUE(matches( "void f() { if (true) { int x = 42; } }", integerLiteral(equals(42), hasAncestor(functionDecl(hasName("f")))))); } TEST(HasAncestor, BindsRecursiveCombinations) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { class D { class E { class F { int y; }; }; }; };", fieldDecl(hasAncestor(recordDecl(hasAncestor(recordDecl().bind("r"))))), llvm::make_unique>("r", 1))); } TEST(HasAncestor, BindsCombinationsWithHasDescendant) { EXPECT_TRUE(matchAndVerifyResultTrue( "class C { class D { class E { class F { int y; }; }; }; };", fieldDecl(hasAncestor( decl( hasDescendant(recordDecl(isDefinition(), hasAncestor(recordDecl()))) ).bind("d") )), llvm::make_unique>("d", "E"))); } TEST(HasAncestor, MatchesClosestAncestor) { EXPECT_TRUE(matchAndVerifyResultTrue( "template struct C {" " void f(int) {" " struct I { void g(T) { int x; } } i; i.g(42);" " }" "};" "template struct C;", varDecl(hasName("x"), hasAncestor(functionDecl(hasParameter( 0, varDecl(hasType(asString("int"))))).bind("f"))).bind("v"), llvm::make_unique>("f", "g", 2))); } TEST(HasAncestor, MatchesInTemplateInstantiations) { EXPECT_TRUE(matches( "template struct A { struct B { struct C { T t; }; }; }; " "A::B::C a;", fieldDecl(hasType(asString("int")), hasAncestor(recordDecl(hasName("A")))))); } TEST(HasAncestor, MatchesInImplicitCode) { EXPECT_TRUE(matches( "struct X {}; struct A { A() {} X x; };", cxxConstructorDecl( hasAnyConstructorInitializer(withInitializer(expr( hasAncestor(recordDecl(hasName("A"))))))))); } TEST(HasParent, MatchesOnlyParent) { EXPECT_TRUE(matches( "void f() { if (true) { int x = 42; } }", compoundStmt(hasParent(ifStmt())))); EXPECT_TRUE(notMatches( "void f() { for (;;) { int x = 42; } }", compoundStmt(hasParent(ifStmt())))); EXPECT_TRUE(notMatches( "void f() { if (true) for (;;) { int x = 42; } }", compoundStmt(hasParent(ifStmt())))); } TEST(HasAncestor, MatchesAllAncestors) { EXPECT_TRUE(matches( "template struct C { static void f() { 42; } };" "void t() { C::f(); }", integerLiteral( equals(42), allOf( hasAncestor(cxxRecordDecl(isTemplateInstantiation())), hasAncestor(cxxRecordDecl(unless(isTemplateInstantiation()))))))); } TEST(HasAncestor, ImplicitArrayCopyCtorDeclRefExpr) { EXPECT_TRUE(matches("struct MyClass {\n" " int c[1];\n" " static MyClass Create() { return MyClass(); }\n" "};", declRefExpr(to(decl(hasAncestor(decl())))))); } TEST(HasAncestor, AnonymousUnionMemberExpr) { EXPECT_TRUE(matches("int F() {\n" " union { int i; };\n" " return i;\n" "}\n", memberExpr(member(hasAncestor(decl()))))); EXPECT_TRUE(matches("void f() {\n" " struct {\n" " struct { int a; int b; };\n" " } s;\n" " s.a = 4;\n" "}\n", memberExpr(member(hasAncestor(decl()))))); EXPECT_TRUE(matches("void f() {\n" " struct {\n" " struct { int a; int b; };\n" " } s;\n" " s.a = 4;\n" "}\n", declRefExpr(to(decl(hasAncestor(decl())))))); } TEST(HasAncestor, NonParmDependentTemplateParmVarDeclRefExpr) { EXPECT_TRUE(matches("struct PartitionAllocator {\n" " template\n" " static int quantizedSize(int count) {\n" " return count;\n" " }\n" " void f() { quantizedSize(10); }\n" "};", declRefExpr(to(decl(hasAncestor(decl())))))); } TEST(HasAncestor, AddressOfExplicitSpecializationFunction) { EXPECT_TRUE(matches("template void f();\n" "template <> void f();\n" "void (*get_f())() { return f; }\n", declRefExpr(to(decl(hasAncestor(decl())))))); } TEST(HasParent, MatchesAllParents) { EXPECT_TRUE(matches( "template struct C { static void f() { 42; } };" "void t() { C::f(); }", integerLiteral( equals(42), hasParent(compoundStmt(hasParent(functionDecl( hasParent(cxxRecordDecl(isTemplateInstantiation()))))))))); EXPECT_TRUE( matches("template struct C { static void f() { 42; } };" "void t() { C::f(); }", integerLiteral( equals(42), hasParent(compoundStmt(hasParent(functionDecl(hasParent( cxxRecordDecl(unless(isTemplateInstantiation())))))))))); EXPECT_TRUE(matches( "template struct C { static void f() { 42; } };" "void t() { C::f(); }", integerLiteral(equals(42), hasParent(compoundStmt( allOf(hasParent(functionDecl(hasParent( cxxRecordDecl(isTemplateInstantiation())))), hasParent(functionDecl(hasParent(cxxRecordDecl( unless(isTemplateInstantiation()))))))))))); EXPECT_TRUE( notMatches("template struct C { static void f() {} };" "void t() { C::f(); }", compoundStmt(hasParent(recordDecl())))); } TEST(HasParent, NoDuplicateParents) { class HasDuplicateParents : public BoundNodesCallback { public: bool run(const BoundNodes *Nodes) override { return false; } bool run(const BoundNodes *Nodes, ASTContext *Context) override { const Stmt *Node = Nodes->getNodeAs("node"); std::set Parents; for (const auto &Parent : Context->getParents(*Node)) { if (!Parents.insert(Parent.getMemoizationData()).second) { return true; } } return false; } }; EXPECT_FALSE(matchAndVerifyResultTrue( "template int Foo() { return 1 + 2; }\n" "int x = Foo() + Foo();", stmt().bind("node"), llvm::make_unique())); } TEST(TypeMatching, PointeeTypes) { EXPECT_TRUE(matches("int b; int &a = b;", referenceType(pointee(builtinType())))); EXPECT_TRUE(matches("int *a;", pointerType(pointee(builtinType())))); EXPECT_TRUE(matches("int *a;", loc(pointerType(pointee(builtinType()))))); EXPECT_TRUE(matches( "int const *A;", pointerType(pointee(isConstQualified(), builtinType())))); EXPECT_TRUE(notMatches( "int *A;", pointerType(pointee(isConstQualified(), builtinType())))); } TEST(ElaboratedTypeNarrowing, hasQualifier) { EXPECT_TRUE(matches( "namespace N {" " namespace M {" " class D {};" " }" "}" "N::M::D d;", elaboratedType(hasQualifier(hasPrefix(specifiesNamespace(hasName("N"))))))); EXPECT_TRUE(notMatches( "namespace M {" " class D {};" "}" "M::D d;", elaboratedType(hasQualifier(hasPrefix(specifiesNamespace(hasName("N"))))))); EXPECT_TRUE(notMatches( "struct D {" "} d;", elaboratedType(hasQualifier(nestedNameSpecifier())))); } TEST(ElaboratedTypeNarrowing, namesType) { EXPECT_TRUE(matches( "namespace N {" " namespace M {" " class D {};" " }" "}" "N::M::D d;", elaboratedType(elaboratedType(namesType(recordType( hasDeclaration(namedDecl(hasName("D"))))))))); EXPECT_TRUE(notMatches( "namespace M {" " class D {};" "}" "M::D d;", elaboratedType(elaboratedType(namesType(typedefType()))))); } TEST(NNS, BindsNestedNameSpecifiers) { EXPECT_TRUE(matchAndVerifyResultTrue( "namespace ns { struct E { struct B {}; }; } ns::E::B b;", nestedNameSpecifier(specifiesType(asString("struct ns::E"))).bind("nns"), llvm::make_unique>( "nns", "ns::struct E::"))); } TEST(NNS, BindsNestedNameSpecifierLocs) { EXPECT_TRUE(matchAndVerifyResultTrue( "namespace ns { struct B {}; } ns::B b;", loc(nestedNameSpecifier()).bind("loc"), llvm::make_unique>("loc", 1))); } TEST(NNS, DescendantsOfNestedNameSpecifiers) { std::string Fragment = "namespace a { struct A { struct B { struct C {}; }; }; };" "void f() { a::A::B::C c; }"; EXPECT_TRUE(matches( Fragment, nestedNameSpecifier(specifiesType(asString("struct a::A::B")), hasDescendant(nestedNameSpecifier( specifiesNamespace(hasName("a"))))))); EXPECT_TRUE(notMatches( Fragment, nestedNameSpecifier(specifiesType(asString("struct a::A::B")), has(nestedNameSpecifier( specifiesNamespace(hasName("a"))))))); EXPECT_TRUE(matches( Fragment, nestedNameSpecifier(specifiesType(asString("struct a::A")), has(nestedNameSpecifier( specifiesNamespace(hasName("a"))))))); // Not really useful because a NestedNameSpecifier can af at most one child, // but to complete the interface. EXPECT_TRUE(matchAndVerifyResultTrue( Fragment, nestedNameSpecifier(specifiesType(asString("struct a::A::B")), forEach(nestedNameSpecifier().bind("x"))), llvm::make_unique>("x", 1))); } TEST(NNS, NestedNameSpecifiersAsDescendants) { std::string Fragment = "namespace a { struct A { struct B { struct C {}; }; }; };" "void f() { a::A::B::C c; }"; EXPECT_TRUE(matches( Fragment, decl(hasDescendant(nestedNameSpecifier(specifiesType( asString("struct a::A"))))))); EXPECT_TRUE(matchAndVerifyResultTrue( Fragment, functionDecl(hasName("f"), forEachDescendant(nestedNameSpecifier().bind("x"))), // Nested names: a, a::A and a::A::B. llvm::make_unique>("x", 3))); } TEST(NNSLoc, DescendantsOfNestedNameSpecifierLocs) { std::string Fragment = "namespace a { struct A { struct B { struct C {}; }; }; };" "void f() { a::A::B::C c; }"; EXPECT_TRUE(matches( Fragment, nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A::B"))), hasDescendant(loc(nestedNameSpecifier( specifiesNamespace(hasName("a")))))))); EXPECT_TRUE(notMatches( Fragment, nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A::B"))), has(loc(nestedNameSpecifier( specifiesNamespace(hasName("a")))))))); EXPECT_TRUE(matches( Fragment, nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A"))), has(loc(nestedNameSpecifier( specifiesNamespace(hasName("a")))))))); EXPECT_TRUE(matchAndVerifyResultTrue( Fragment, nestedNameSpecifierLoc(loc(specifiesType(asString("struct a::A::B"))), forEach(nestedNameSpecifierLoc().bind("x"))), llvm::make_unique>("x", 1))); } TEST(NNSLoc, NestedNameSpecifierLocsAsDescendants) { std::string Fragment = "namespace a { struct A { struct B { struct C {}; }; }; };" "void f() { a::A::B::C c; }"; EXPECT_TRUE(matches( Fragment, decl(hasDescendant(loc(nestedNameSpecifier(specifiesType( asString("struct a::A")))))))); EXPECT_TRUE(matchAndVerifyResultTrue( Fragment, functionDecl(hasName("f"), forEachDescendant(nestedNameSpecifierLoc().bind("x"))), // Nested names: a, a::A and a::A::B. llvm::make_unique>("x", 3))); } template class VerifyMatchOnNode : public BoundNodesCallback { public: VerifyMatchOnNode(StringRef Id, const internal::Matcher &InnerMatcher, StringRef InnerId) : Id(Id), InnerMatcher(InnerMatcher), InnerId(InnerId) { } bool run(const BoundNodes *Nodes) override { return false; } bool run(const BoundNodes *Nodes, ASTContext *Context) override { const T *Node = Nodes->getNodeAs(Id); return selectFirst(InnerId, match(InnerMatcher, *Node, *Context)) != nullptr; } private: std::string Id; internal::Matcher InnerMatcher; std::string InnerId; }; TEST(MatchFinder, CanMatchDeclarationsRecursively) { EXPECT_TRUE(matchAndVerifyResultTrue( "class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"), llvm::make_unique>( "X", decl(hasDescendant(recordDecl(hasName("X::Y")).bind("Y"))), "Y"))); EXPECT_TRUE(matchAndVerifyResultFalse( "class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"), llvm::make_unique>( "X", decl(hasDescendant(recordDecl(hasName("X::Z")).bind("Z"))), "Z"))); } TEST(MatchFinder, CanMatchStatementsRecursively) { EXPECT_TRUE(matchAndVerifyResultTrue( "void f() { if (1) { for (;;) { } } }", ifStmt().bind("if"), llvm::make_unique>( "if", stmt(hasDescendant(forStmt().bind("for"))), "for"))); EXPECT_TRUE(matchAndVerifyResultFalse( "void f() { if (1) { for (;;) { } } }", ifStmt().bind("if"), llvm::make_unique>( "if", stmt(hasDescendant(declStmt().bind("decl"))), "decl"))); } TEST(MatchFinder, CanMatchSingleNodesRecursively) { EXPECT_TRUE(matchAndVerifyResultTrue( "class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"), llvm::make_unique>( "X", recordDecl(has(recordDecl(hasName("X::Y")).bind("Y"))), "Y"))); EXPECT_TRUE(matchAndVerifyResultFalse( "class X { class Y {}; };", recordDecl(hasName("::X")).bind("X"), llvm::make_unique>( "X", recordDecl(has(recordDecl(hasName("X::Z")).bind("Z"))), "Z"))); } TEST(StatementMatcher, HasReturnValue) { StatementMatcher RetVal = returnStmt(hasReturnValue(binaryOperator())); EXPECT_TRUE(matches("int F() { int a, b; return a + b; }", RetVal)); EXPECT_FALSE(matches("int F() { int a; return a; }", RetVal)); EXPECT_FALSE(matches("void F() { return; }", RetVal)); } TEST(StatementMatcher, ForFunction) { const auto CppString1 = "struct PosVec {" " PosVec& operator=(const PosVec&) {" " auto x = [] { return 1; };" " return *this;" " }" "};"; const auto CppString2 = "void F() {" " struct S {" " void F2() {" " return;" " }" " };" "}"; EXPECT_TRUE( matches( CppString1, returnStmt(forFunction(hasName("operator=")), has(unaryOperator(hasOperatorName("*")))))); EXPECT_TRUE( notMatches( CppString1, returnStmt(forFunction(hasName("operator=")), has(integerLiteral())))); EXPECT_TRUE( matches( CppString1, returnStmt(forFunction(hasName("operator()")), has(integerLiteral())))); EXPECT_TRUE(matches(CppString2, returnStmt(forFunction(hasName("F2"))))); EXPECT_TRUE(notMatches(CppString2, returnStmt(forFunction(hasName("F"))))); } TEST(Matcher, ForEachOverriden) { const auto ForEachOverriddenInClass = [](const char *ClassName) { return cxxMethodDecl(ofClass(hasName(ClassName)), isVirtual(), forEachOverridden(cxxMethodDecl().bind("overridden"))) .bind("override"); }; static const char Code1[] = "class A { virtual void f(); };" "class B : public A { void f(); };" "class C : public B { void f(); };"; // C::f overrides A::f. EXPECT_TRUE(matchAndVerifyResultTrue( Code1, ForEachOverriddenInClass("C"), llvm::make_unique>("override", "f", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( Code1, ForEachOverriddenInClass("C"), llvm::make_unique>("overridden", "f", 1))); // B::f overrides A::f. EXPECT_TRUE(matchAndVerifyResultTrue( Code1, ForEachOverriddenInClass("B"), llvm::make_unique>("override", "f", 1))); EXPECT_TRUE(matchAndVerifyResultTrue( Code1, ForEachOverriddenInClass("B"), llvm::make_unique>("overridden", "f", 1))); // A::f overrides nothing. EXPECT_TRUE(notMatches(Code1, ForEachOverriddenInClass("A"))); static const char Code2[] = "class A1 { virtual void f(); };" "class A2 { virtual void f(); };" "class B : public A1, public A2 { void f(); };"; // B::f overrides A1::f and A2::f. This produces two matches. EXPECT_TRUE(matchAndVerifyResultTrue( Code2, ForEachOverriddenInClass("B"), llvm::make_unique>("override", "f", 2))); EXPECT_TRUE(matchAndVerifyResultTrue( Code2, ForEachOverriddenInClass("B"), llvm::make_unique>("overridden", "f", 2))); // A1::f overrides nothing. EXPECT_TRUE(notMatches(Code2, ForEachOverriddenInClass("A1"))); } } // namespace ast_matchers } // namespace clang