//===-- tsan_sync.cc ------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // //===----------------------------------------------------------------------===// #include "sanitizer_common/sanitizer_placement_new.h" #include "tsan_sync.h" #include "tsan_rtl.h" #include "tsan_mman.h" namespace __tsan { void DDMutexInit(ThreadState *thr, uptr pc, SyncVar *s); SyncVar::SyncVar() : mtx(MutexTypeSyncVar, StatMtxSyncVar) { Reset(0); } void SyncVar::Init(ThreadState *thr, uptr pc, uptr addr, u64 uid) { this->addr = addr; this->uid = uid; this->next = 0; creation_stack_id = 0; if (kCppMode) // Go does not use them creation_stack_id = CurrentStackId(thr, pc); if (common_flags()->detect_deadlocks) DDMutexInit(thr, pc, this); } void SyncVar::Reset(Processor *proc) { uid = 0; creation_stack_id = 0; owner_tid = kInvalidTid; last_lock = 0; recursion = 0; is_rw = 0; is_recursive = 0; is_broken = 0; is_linker_init = 0; if (proc == 0) { CHECK_EQ(clock.size(), 0); CHECK_EQ(read_clock.size(), 0); } else { clock.Reset(&proc->clock_cache); read_clock.Reset(&proc->clock_cache); } } MetaMap::MetaMap() { atomic_store(&uid_gen_, 0, memory_order_relaxed); } void MetaMap::AllocBlock(ThreadState *thr, uptr pc, uptr p, uptr sz) { u32 idx = block_alloc_.Alloc(&thr->proc()->block_cache); MBlock *b = block_alloc_.Map(idx); b->siz = sz; b->tid = thr->tid; b->stk = CurrentStackId(thr, pc); u32 *meta = MemToMeta(p); DCHECK_EQ(*meta, 0); *meta = idx | kFlagBlock; } uptr MetaMap::FreeBlock(Processor *proc, uptr p) { MBlock* b = GetBlock(p); if (b == 0) return 0; uptr sz = RoundUpTo(b->siz, kMetaShadowCell); FreeRange(proc, p, sz); return sz; } bool MetaMap::FreeRange(Processor *proc, uptr p, uptr sz) { bool has_something = false; u32 *meta = MemToMeta(p); u32 *end = MemToMeta(p + sz); if (end == meta) end++; for (; meta < end; meta++) { u32 idx = *meta; if (idx == 0) { // Note: don't write to meta in this case -- the block can be huge. continue; } *meta = 0; has_something = true; while (idx != 0) { if (idx & kFlagBlock) { block_alloc_.Free(&proc->block_cache, idx & ~kFlagMask); break; } else if (idx & kFlagSync) { DCHECK(idx & kFlagSync); SyncVar *s = sync_alloc_.Map(idx & ~kFlagMask); u32 next = s->next; s->Reset(proc); sync_alloc_.Free(&proc->sync_cache, idx & ~kFlagMask); idx = next; } else { CHECK(0); } } } return has_something; } // ResetRange removes all meta objects from the range. // It is called for large mmap-ed regions. The function is best-effort wrt // freeing of meta objects, because we don't want to page in the whole range // which can be huge. The function probes pages one-by-one until it finds a page // without meta objects, at this point it stops freeing meta objects. Because // thread stacks grow top-down, we do the same starting from end as well. void MetaMap::ResetRange(Processor *proc, uptr p, uptr sz) { if (kGoMode) { // UnmapOrDie/MmapFixedNoReserve does not work on Windows, // so we do the optimization only for C/C++. FreeRange(proc, p, sz); return; } const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize; const uptr kPageSize = GetPageSizeCached() * kMetaRatio; if (sz <= 4 * kPageSize) { // If the range is small, just do the normal free procedure. FreeRange(proc, p, sz); return; } // First, round both ends of the range to page size. uptr diff = RoundUp(p, kPageSize) - p; if (diff != 0) { FreeRange(proc, p, diff); p += diff; sz -= diff; } diff = p + sz - RoundDown(p + sz, kPageSize); if (diff != 0) { FreeRange(proc, p + sz - diff, diff); sz -= diff; } // Now we must have a non-empty page-aligned range. CHECK_GT(sz, 0); CHECK_EQ(p, RoundUp(p, kPageSize)); CHECK_EQ(sz, RoundUp(sz, kPageSize)); const uptr p0 = p; const uptr sz0 = sz; // Probe start of the range. for (uptr checked = 0; sz > 0; checked += kPageSize) { bool has_something = FreeRange(proc, p, kPageSize); p += kPageSize; sz -= kPageSize; if (!has_something && checked > (128 << 10)) break; } // Probe end of the range. for (uptr checked = 0; sz > 0; checked += kPageSize) { bool has_something = FreeRange(proc, p + sz - kPageSize, kPageSize); sz -= kPageSize; // Stacks grow down, so sync object are most likely at the end of the region // (if it is a stack). The very end of the stack is TLS and tsan increases // TLS by at least 256K, so check at least 512K. if (!has_something && checked > (512 << 10)) break; } // Finally, page out the whole range (including the parts that we've just // freed). Note: we can't simply madvise, because we need to leave a zeroed // range (otherwise __tsan_java_move can crash if it encounters a left-over // meta objects in java heap). uptr metap = (uptr)MemToMeta(p0); uptr metasz = sz0 / kMetaRatio; UnmapOrDie((void*)metap, metasz); MmapFixedNoReserve(metap, metasz); } MBlock* MetaMap::GetBlock(uptr p) { u32 *meta = MemToMeta(p); u32 idx = *meta; for (;;) { if (idx == 0) return 0; if (idx & kFlagBlock) return block_alloc_.Map(idx & ~kFlagMask); DCHECK(idx & kFlagSync); SyncVar * s = sync_alloc_.Map(idx & ~kFlagMask); idx = s->next; } } SyncVar* MetaMap::GetOrCreateAndLock(ThreadState *thr, uptr pc, uptr addr, bool write_lock) { return GetAndLock(thr, pc, addr, write_lock, true); } SyncVar* MetaMap::GetIfExistsAndLock(uptr addr, bool write_lock) { return GetAndLock(0, 0, addr, write_lock, false); } SyncVar* MetaMap::GetAndLock(ThreadState *thr, uptr pc, uptr addr, bool write_lock, bool create) { u32 *meta = MemToMeta(addr); u32 idx0 = *meta; u32 myidx = 0; SyncVar *mys = 0; for (;;) { u32 idx = idx0; for (;;) { if (idx == 0) break; if (idx & kFlagBlock) break; DCHECK(idx & kFlagSync); SyncVar * s = sync_alloc_.Map(idx & ~kFlagMask); if (s->addr == addr) { if (myidx != 0) { mys->Reset(thr->proc()); sync_alloc_.Free(&thr->proc()->sync_cache, myidx); } if (write_lock) s->mtx.Lock(); else s->mtx.ReadLock(); return s; } idx = s->next; } if (!create) return 0; if (*meta != idx0) { idx0 = *meta; continue; } if (myidx == 0) { const u64 uid = atomic_fetch_add(&uid_gen_, 1, memory_order_relaxed); myidx = sync_alloc_.Alloc(&thr->proc()->sync_cache); mys = sync_alloc_.Map(myidx); mys->Init(thr, pc, addr, uid); } mys->next = idx0; if (atomic_compare_exchange_strong((atomic_uint32_t*)meta, &idx0, myidx | kFlagSync, memory_order_release)) { if (write_lock) mys->mtx.Lock(); else mys->mtx.ReadLock(); return mys; } } } void MetaMap::MoveMemory(uptr src, uptr dst, uptr sz) { // src and dst can overlap, // there are no concurrent accesses to the regions (e.g. stop-the-world). CHECK_NE(src, dst); CHECK_NE(sz, 0); uptr diff = dst - src; u32 *src_meta = MemToMeta(src); u32 *dst_meta = MemToMeta(dst); u32 *src_meta_end = MemToMeta(src + sz); uptr inc = 1; if (dst > src) { src_meta = MemToMeta(src + sz) - 1; dst_meta = MemToMeta(dst + sz) - 1; src_meta_end = MemToMeta(src) - 1; inc = -1; } for (; src_meta != src_meta_end; src_meta += inc, dst_meta += inc) { CHECK_EQ(*dst_meta, 0); u32 idx = *src_meta; *src_meta = 0; *dst_meta = idx; // Patch the addresses in sync objects. while (idx != 0) { if (idx & kFlagBlock) break; CHECK(idx & kFlagSync); SyncVar *s = sync_alloc_.Map(idx & ~kFlagMask); s->addr += diff; idx = s->next; } } } void MetaMap::OnProcIdle(Processor *proc) { block_alloc_.FlushCache(&proc->block_cache); sync_alloc_.FlushCache(&proc->sync_cache); } } // namespace __tsan