/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.0 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Shader precision tests. * * \note Floating-point case uses R32UI render target and uses * floatBitsToUint() in shader to write out floating-point value bits. * This is done since ES3 core doesn't support FP render targets. *//*--------------------------------------------------------------------*/ #include "es3fShaderPrecisionTests.hpp" #include "tcuVector.hpp" #include "tcuTestLog.hpp" #include "tcuVectorUtil.hpp" #include "tcuFloat.hpp" #include "tcuFormatUtil.hpp" #include "gluRenderContext.hpp" #include "gluShaderProgram.hpp" #include "gluShaderUtil.hpp" #include "gluDrawUtil.hpp" #include "deRandom.hpp" #include "deString.h" #include "glwEnums.hpp" #include "glwFunctions.hpp" #include namespace deqp { namespace gles3 { namespace Functional { using std::string; using std::vector; using std::ostringstream; using tcu::TestLog; enum { FRAMEBUFFER_WIDTH = 32, FRAMEBUFFER_HEIGHT = 32 }; static glu::ShaderProgram* createFloatPrecisionEvalProgram (const glu::RenderContext& context, glu::Precision precision, const char* evalOp, bool isVertexCase) { glu::DataType type = glu::TYPE_FLOAT; glu::DataType outType = glu::TYPE_UINT; const char* typeName = glu::getDataTypeName(type); const char* outTypeName = glu::getDataTypeName(outType); const char* precName = glu::getPrecisionName(precision); ostringstream vtx; ostringstream frag; ostringstream& op = isVertexCase ? vtx : frag; vtx << "#version 300 es\n" << "in highp vec4 a_position;\n" << "in " << precName << " " << typeName << " a_in0;\n" << "in " << precName << " " << typeName << " a_in1;\n"; frag << "#version 300 es\n" << "layout(location = 0) out highp " << outTypeName << " o_out;\n"; if (isVertexCase) { vtx << "flat out " << precName << " " << typeName << " v_out;\n"; frag << "flat in " << precName << " " << typeName << " v_out;\n"; } else { vtx << "flat out " << precName << " " << typeName << " v_in0;\n" << "flat out " << precName << " " << typeName << " v_in1;\n"; frag << "flat in " << precName << " " << typeName << " v_in0;\n" << "flat in " << precName << " " << typeName << " v_in1;\n"; } vtx << "\nvoid main (void)\n{\n" << " gl_Position = a_position;\n"; frag << "\nvoid main (void)\n{\n"; op << "\t" << precName << " " << typeName << " in0 = " << (isVertexCase ? "a_" : "v_") << "in0;\n" << "\t" << precName << " " << typeName << " in1 = " << (isVertexCase ? "a_" : "v_") << "in1;\n"; if (!isVertexCase) op << "\t" << precName << " " << typeName << " res;\n"; op << "\t" << (isVertexCase ? "v_out" : "res") << " = " << evalOp << ";\n"; if (isVertexCase) { frag << " o_out = floatBitsToUint(v_out);\n"; } else { vtx << " v_in0 = a_in0;\n" << " v_in1 = a_in1;\n"; frag << " o_out = floatBitsToUint(res);\n"; } vtx << "}\n"; frag << "}\n"; return new glu::ShaderProgram(context, glu::makeVtxFragSources(vtx.str(), frag.str())); } static glu::ShaderProgram* createIntUintPrecisionEvalProgram (const glu::RenderContext& context, glu::DataType type, glu::Precision precision, const char* evalOp, bool isVertexCase) { const char* typeName = glu::getDataTypeName(type); const char* precName = glu::getPrecisionName(precision); ostringstream vtx; ostringstream frag; ostringstream& op = isVertexCase ? vtx : frag; vtx << "#version 300 es\n" << "in highp vec4 a_position;\n" << "in " << precName << " " << typeName << " a_in0;\n" << "in " << precName << " " << typeName << " a_in1;\n"; frag << "#version 300 es\n" << "layout(location = 0) out " << precName << " " << typeName << " o_out;\n"; if (isVertexCase) { vtx << "flat out " << precName << " " << typeName << " v_out;\n"; frag << "flat in " << precName << " " << typeName << " v_out;\n"; } else { vtx << "flat out " << precName << " " << typeName << " v_in0;\n" << "flat out " << precName << " " << typeName << " v_in1;\n"; frag << "flat in " << precName << " " << typeName << " v_in0;\n" << "flat in " << precName << " " << typeName << " v_in1;\n"; } vtx << "\nvoid main (void)\n{\n" << " gl_Position = a_position;\n"; frag << "\nvoid main (void)\n{\n"; op << "\t" << precName << " " << typeName << " in0 = " << (isVertexCase ? "a_" : "v_") << "in0;\n" << "\t" << precName << " " << typeName << " in1 = " << (isVertexCase ? "a_" : "v_") << "in1;\n"; op << "\t" << (isVertexCase ? "v_" : "o_") << "out = " << evalOp << ";\n"; if (isVertexCase) { frag << " o_out = v_out;\n"; } else { vtx << " v_in0 = a_in0;\n" << " v_in1 = a_in1;\n"; } vtx << "}\n"; frag << "}\n"; return new glu::ShaderProgram(context, glu::makeVtxFragSources(vtx.str(), frag.str())); } class ShaderFloatPrecisionCase : public TestCase { public: typedef double (*EvalFunc) (double in0, double in1); ShaderFloatPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, const tcu::Vec2& rangeA, const tcu::Vec2& rangeB, bool isVertexCase); ~ShaderFloatPrecisionCase (void); void init (void); void deinit (void); IterateResult iterate (void); protected: bool compare (float in0, float in1, double reference, float result); private: ShaderFloatPrecisionCase (const ShaderFloatPrecisionCase& other); ShaderFloatPrecisionCase& operator= (const ShaderFloatPrecisionCase& other); // Case parameters. std::string m_op; EvalFunc m_evalFunc; glu::Precision m_precision; tcu::Vec2 m_rangeA; tcu::Vec2 m_rangeB; bool m_isVertexCase; int m_numTestsPerIter; int m_numIters; de::Random m_rnd; // Iteration state. glu::ShaderProgram* m_program; deUint32 m_framebuffer; deUint32 m_renderbuffer; int m_iterNdx; }; ShaderFloatPrecisionCase::ShaderFloatPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, const tcu::Vec2& rangeA, const tcu::Vec2& rangeB, bool isVertexCase) : TestCase (context, name, desc) , m_op (op) , m_evalFunc (evalFunc) , m_precision (precision) , m_rangeA (rangeA) , m_rangeB (rangeB) , m_isVertexCase (isVertexCase) , m_numTestsPerIter (32) , m_numIters (4) , m_rnd (deStringHash(name)) , m_program (DE_NULL) , m_framebuffer (0) , m_renderbuffer (0) , m_iterNdx (0) { } ShaderFloatPrecisionCase::~ShaderFloatPrecisionCase (void) { ShaderFloatPrecisionCase::deinit(); } void ShaderFloatPrecisionCase::init (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); TestLog& log = m_testCtx.getLog(); DE_ASSERT(!m_program && !m_framebuffer && !m_renderbuffer); // Create program. m_program = createFloatPrecisionEvalProgram(m_context.getRenderContext(), m_precision, m_op.c_str(), m_isVertexCase); log << *m_program; TCU_CHECK(m_program->isOk()); // Create framebuffer. gl.genFramebuffers(1, &m_framebuffer); gl.genRenderbuffers(1, &m_renderbuffer); gl.bindRenderbuffer(GL_RENDERBUFFER, m_renderbuffer); gl.renderbufferStorage(GL_RENDERBUFFER, GL_R32UI, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT); gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer); gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_renderbuffer); GLU_EXPECT_NO_ERROR(gl.getError(), "Post framebuffer setup"); TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); gl.bindFramebuffer(GL_FRAMEBUFFER, m_context.getRenderContext().getDefaultFramebuffer()); // Initialize test result to pass. m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); m_iterNdx = 0; } void ShaderFloatPrecisionCase::deinit (void) { delete m_program; if (m_framebuffer) m_context.getRenderContext().getFunctions().deleteFramebuffers(1, &m_framebuffer); if (m_renderbuffer) m_context.getRenderContext().getFunctions().deleteRenderbuffers(1, &m_renderbuffer); m_program = DE_NULL; m_framebuffer = 0; m_renderbuffer = 0; } bool ShaderFloatPrecisionCase::compare (float in0, float in1, double reference, float result) { // Comparison is done using 64-bit reference value to accurately evaluate rounding mode error. // If 32-bit reference value is used, 2 bits of rounding error must be allowed. // For mediump and lowp types the comparison currently allows 3 bits of rounding error: // two bits from conversions and one from actual operation. // \todo [2013-09-30 pyry] Make this more strict: determine if rounding can actually happen. const int mantissaBits = m_precision == glu::PRECISION_HIGHP ? 23 : 10; const int numPrecBits = 52 - mantissaBits; const int in0Exp = tcu::Float32(in0).exponent(); const int in1Exp = tcu::Float32(in1).exponent(); const int resExp = tcu::Float32(result).exponent(); const int numLostBits = de::max(de::max(in0Exp-resExp, in1Exp-resExp), 0); // Lost due to mantissa shift. const int roundingUlpError = m_precision == glu::PRECISION_HIGHP ? 1 : 3; const int maskBits = numLostBits + numPrecBits; m_testCtx.getLog() << TestLog::Message << "Assuming " << mantissaBits << " mantissa bits, " << numLostBits << " bits lost in operation, and " << roundingUlpError << " ULP rounding error." << TestLog::EndMessage; { const deUint64 refBits = tcu::Float64(reference).bits(); const deUint64 resBits = tcu::Float64(result).bits(); const deUint64 accurateRefBits = maskBits < 64 ? refBits >> (deUint64)maskBits : 0u; const deUint64 accurateResBits = maskBits < 64 ? resBits >> (deUint64)maskBits : 0u; const deUint64 ulpDiff = (deUint64)de::abs((deInt64)accurateRefBits - (deInt64)accurateResBits); if (ulpDiff > (deUint64)roundingUlpError) { m_testCtx.getLog() << TestLog::Message << "ERROR: comparison failed! ULP diff (ignoring lost/undefined bits) = " << ulpDiff << TestLog::EndMessage; return false; } else return true; } } ShaderFloatPrecisionCase::IterateResult ShaderFloatPrecisionCase::iterate (void) { // Constant data. const float position[] = { -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f }; const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 }; const int numVertices = 4; float in0Arr[4] = { 0.0f }; float in1Arr[4] = { 0.0f }; TestLog& log = m_testCtx.getLog(); const glw::Functions& gl = m_context.getRenderContext().getFunctions(); vector vertexArrays; // Image read from GL. std::vector pixels (FRAMEBUFFER_WIDTH*FRAMEBUFFER_HEIGHT*4); // \todo [2012-05-03 pyry] Could be cached. deUint32 prog = m_program->getProgram(); gl.useProgram(prog); gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer); vertexArrays.push_back(glu::va::Float("a_position", 4, numVertices, 0, &position[0])); vertexArrays.push_back(glu::va::Float("a_in0", 1, numVertices, 0, &in0Arr[0])); vertexArrays.push_back(glu::va::Float("a_in1", 1, numVertices, 0, &in1Arr[0])); GLU_EXPECT_NO_ERROR(gl.getError(), "After program setup"); // Compute values and reference. for (int testNdx = 0; testNdx < m_numTestsPerIter; testNdx++) { const float in0 = m_rnd.getFloat(m_rangeA.x(), m_rangeA.y()); const float in1 = m_rnd.getFloat(m_rangeB.x(), m_rangeB.y()); const double refD = m_evalFunc((double)in0, (double)in1); const float refF = tcu::Float64(refD).asFloat(); // Uses RTE rounding mode. log << TestLog::Message << "iter " << m_iterNdx << ", test " << testNdx << ": " << "in0 = " << in0 << " / " << tcu::toHex(tcu::Float32(in0).bits()) << ", in1 = " << in1 << " / " << tcu::toHex(tcu::Float32(in1).bits()) << TestLog::EndMessage << TestLog::Message << " reference = " << refF << " / " << tcu::toHex(tcu::Float32(refF).bits()) << TestLog::EndMessage; std::fill(&in0Arr[0], &in0Arr[0] + DE_LENGTH_OF_ARRAY(in0Arr), in0); std::fill(&in1Arr[0], &in1Arr[0] + DE_LENGTH_OF_ARRAY(in1Arr), in1); glu::draw(m_context.getRenderContext(), prog, (int)vertexArrays.size(), &vertexArrays[0], glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0])); gl.readPixels(0, 0, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT, GL_RGBA_INTEGER, GL_UNSIGNED_INT, &pixels[0]); GLU_EXPECT_NO_ERROR(gl.getError(), "After render"); log << TestLog::Message << " result = " << pixels[0] << " / " << tcu::toHex(tcu::Float32(pixels[0]).bits()) << TestLog::EndMessage; // Verify results { const bool firstPixelOk = compare(in0, in1, refD, pixels[0]); if (firstPixelOk) { // Check that rest of pixels match to first one. const deUint32 firstPixelBits = tcu::Float32(pixels[0]).bits(); bool allPixelsOk = true; for (int y = 0; y < FRAMEBUFFER_HEIGHT; y++) { for (int x = 0; x < FRAMEBUFFER_WIDTH; x++) { const deUint32 pixelBits = tcu::Float32(pixels[(y*FRAMEBUFFER_WIDTH + x)*4]).bits(); if (pixelBits != firstPixelBits) { log << TestLog::Message << "ERROR: Inconsistent results, got " << tcu::toHex(pixelBits) << " at (" << x << ", " << y << ")" << TestLog::EndMessage; allPixelsOk = false; } } if (!allPixelsOk) break; } if (!allPixelsOk) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Inconsistent values in framebuffer"); } else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Result comparison failed"); } if (m_testCtx.getTestResult() != QP_TEST_RESULT_PASS) break; } gl.bindFramebuffer(GL_FRAMEBUFFER, m_context.getRenderContext().getDefaultFramebuffer()); GLU_EXPECT_NO_ERROR(gl.getError(), "After iteration"); m_iterNdx += 1; return (m_iterNdx < m_numIters && m_testCtx.getTestResult() == QP_TEST_RESULT_PASS) ? CONTINUE : STOP; } class ShaderIntPrecisionCase : public TestCase { public: typedef int (*EvalFunc) (int a, int b); ShaderIntPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, int bits, const tcu::IVec2& rangeA, const tcu::IVec2& rangeB, bool isVertexCase); ~ShaderIntPrecisionCase (void); void init (void); void deinit (void); IterateResult iterate (void); private: ShaderIntPrecisionCase (const ShaderIntPrecisionCase& other); ShaderIntPrecisionCase& operator= (const ShaderIntPrecisionCase& other); // Case parameters. std::string m_op; EvalFunc m_evalFunc; glu::Precision m_precision; int m_bits; tcu::IVec2 m_rangeA; tcu::IVec2 m_rangeB; bool m_isVertexCase; int m_numTestsPerIter; int m_numIters; de::Random m_rnd; // Iteration state. glu::ShaderProgram* m_program; deUint32 m_framebuffer; deUint32 m_renderbuffer; int m_iterNdx; }; ShaderIntPrecisionCase::ShaderIntPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, int bits, const tcu::IVec2& rangeA, const tcu::IVec2& rangeB, bool isVertexCase) : TestCase (context, name, desc) , m_op (op) , m_evalFunc (evalFunc) , m_precision (precision) , m_bits (bits) , m_rangeA (rangeA) , m_rangeB (rangeB) , m_isVertexCase (isVertexCase) , m_numTestsPerIter (32) , m_numIters (4) , m_rnd (deStringHash(name)) , m_program (DE_NULL) , m_framebuffer (0) , m_renderbuffer (0) , m_iterNdx (0) { } ShaderIntPrecisionCase::~ShaderIntPrecisionCase (void) { ShaderIntPrecisionCase::deinit(); } void ShaderIntPrecisionCase::init (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); TestLog& log = m_testCtx.getLog(); DE_ASSERT(!m_program && !m_framebuffer && !m_renderbuffer); // Create program. m_program = createIntUintPrecisionEvalProgram(m_context.getRenderContext(), glu::TYPE_INT, m_precision, m_op.c_str(), m_isVertexCase); log << *m_program; TCU_CHECK(m_program->isOk()); // Create framebuffer. gl.genFramebuffers(1, &m_framebuffer); gl.genRenderbuffers(1, &m_renderbuffer); gl.bindRenderbuffer(GL_RENDERBUFFER, m_renderbuffer); gl.renderbufferStorage(GL_RENDERBUFFER, GL_R32I, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT); gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer); gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_renderbuffer); GLU_EXPECT_NO_ERROR(gl.getError(), "Post framebuffer setup"); TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); gl.bindFramebuffer(GL_FRAMEBUFFER, m_context.getRenderContext().getDefaultFramebuffer()); // Initialize test result to pass. m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); m_iterNdx = 0; log << TestLog::Message << "Number of accurate bits assumed = " << m_bits << TestLog::EndMessage; } void ShaderIntPrecisionCase::deinit (void) { delete m_program; if (m_framebuffer) m_context.getRenderContext().getFunctions().deleteFramebuffers(1, &m_framebuffer); if (m_renderbuffer) m_context.getRenderContext().getFunctions().deleteRenderbuffers(1, &m_renderbuffer); m_program = DE_NULL; m_framebuffer = 0; m_renderbuffer = 0; } ShaderIntPrecisionCase::IterateResult ShaderIntPrecisionCase::iterate (void) { // Constant data. const float position[] = { -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f }; const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 }; const int numVertices = 4; int in0Arr[4] = { 0 }; int in1Arr[4] = { 0 }; TestLog& log = m_testCtx.getLog(); const glw::Functions& gl = m_context.getRenderContext().getFunctions(); deUint32 mask = m_bits == 32 ? 0xffffffffu : ((1u< pixels (FRAMEBUFFER_WIDTH*FRAMEBUFFER_HEIGHT*4); vector vertexArrays; deUint32 prog = m_program->getProgram(); // \todo [2012-05-03 pyry] A bit hacky. getInt() should work fine with ranges like this. bool isMaxRangeA = m_rangeA.x() == (int)0x80000000 && m_rangeA.y() == (int)0x7fffffff; bool isMaxRangeB = m_rangeB.x() == (int)0x80000000 && m_rangeB.y() == (int)0x7fffffff; gl.useProgram(prog); gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer); vertexArrays.push_back(glu::va::Float("a_position", 4, numVertices, 0, &position[0])); vertexArrays.push_back(glu::va::Int32("a_in0", 1, numVertices, 0, &in0Arr[0])); vertexArrays.push_back(glu::va::Int32("a_in1", 1, numVertices, 0, &in1Arr[0])); GLU_EXPECT_NO_ERROR(gl.getError(), "After program setup"); // Compute values and reference. for (int testNdx = 0; testNdx < m_numTestsPerIter; testNdx++) { int in0 = deSignExtendTo32(((isMaxRangeA ? (int)m_rnd.getUint32() : m_rnd.getInt(m_rangeA.x(), m_rangeA.y())) & mask), m_bits); int in1 = deSignExtendTo32(((isMaxRangeB ? (int)m_rnd.getUint32() : m_rnd.getInt(m_rangeB.x(), m_rangeB.y())) & mask), m_bits); int refMasked = m_evalFunc(in0, in1) & mask; int refOut = deSignExtendTo32(refMasked, m_bits); log << TestLog::Message << "iter " << m_iterNdx << ", test " << testNdx << ": " << "in0 = " << in0 << ", in1 = " << in1 << ", ref out = " << refOut << " / " << tcu::toHex(refMasked) << TestLog::EndMessage; std::fill(&in0Arr[0], &in0Arr[0] + DE_LENGTH_OF_ARRAY(in0Arr), in0); std::fill(&in1Arr[0], &in1Arr[0] + DE_LENGTH_OF_ARRAY(in1Arr), in1); glu::draw(m_context.getRenderContext(), prog, (int)vertexArrays.size(), &vertexArrays[0], glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0])); gl.readPixels(0, 0, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT, GL_RGBA_INTEGER, GL_INT, &pixels[0]); GLU_EXPECT_NO_ERROR(gl.getError(), "After render"); // Compare pixels. for (int y = 0; y < FRAMEBUFFER_HEIGHT; y++) { for (int x = 0; x < FRAMEBUFFER_WIDTH; x++) { int cmpOut = pixels[(y*FRAMEBUFFER_WIDTH + x)*4]; int cmpMasked = cmpOut & mask; if (cmpMasked != refMasked) { log << TestLog::Message << "Comparison failed (at " << x << ", " << y << "): " << "got " << cmpOut << " / " << tcu::toHex(cmpOut) << TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Fail"); return STOP; } } } } gl.bindFramebuffer(GL_FRAMEBUFFER, m_context.getRenderContext().getDefaultFramebuffer()); GLU_EXPECT_NO_ERROR(gl.getError(), "After iteration"); m_iterNdx += 1; return (m_iterNdx < m_numIters) ? CONTINUE : STOP; } class ShaderUintPrecisionCase : public TestCase { public: typedef deUint32 (*EvalFunc) (deUint32 a, deUint32 b); ShaderUintPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, int bits, const tcu::UVec2& rangeA, const tcu::UVec2& rangeB, bool isVertexCase); ~ShaderUintPrecisionCase (void); void init (void); void deinit (void); IterateResult iterate (void); private: ShaderUintPrecisionCase (const ShaderUintPrecisionCase& other); ShaderUintPrecisionCase& operator= (const ShaderUintPrecisionCase& other); // Case parameters. std::string m_op; EvalFunc m_evalFunc; glu::Precision m_precision; int m_bits; tcu::UVec2 m_rangeA; tcu::UVec2 m_rangeB; bool m_isVertexCase; int m_numTestsPerIter; int m_numIters; de::Random m_rnd; // Iteration state. glu::ShaderProgram* m_program; deUint32 m_framebuffer; deUint32 m_renderbuffer; int m_iterNdx; }; ShaderUintPrecisionCase::ShaderUintPrecisionCase (Context& context, const char* name, const char* desc, const char* op, EvalFunc evalFunc, glu::Precision precision, int bits, const tcu::UVec2& rangeA, const tcu::UVec2& rangeB, bool isVertexCase) : TestCase (context, name, desc) , m_op (op) , m_evalFunc (evalFunc) , m_precision (precision) , m_bits (bits) , m_rangeA (rangeA) , m_rangeB (rangeB) , m_isVertexCase (isVertexCase) , m_numTestsPerIter (32) , m_numIters (4) , m_rnd (deStringHash(name)) , m_program (DE_NULL) , m_framebuffer (0) , m_renderbuffer (0) , m_iterNdx (0) { } ShaderUintPrecisionCase::~ShaderUintPrecisionCase (void) { ShaderUintPrecisionCase::deinit(); } void ShaderUintPrecisionCase::init (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); TestLog& log = m_testCtx.getLog(); DE_ASSERT(!m_program && !m_framebuffer && !m_renderbuffer); // Create program. m_program = createIntUintPrecisionEvalProgram(m_context.getRenderContext(), glu::TYPE_UINT, m_precision, m_op.c_str(), m_isVertexCase); log << *m_program; TCU_CHECK(m_program->isOk()); // Create framebuffer. gl.genFramebuffers(1, &m_framebuffer); gl.genRenderbuffers(1, &m_renderbuffer); gl.bindRenderbuffer(GL_RENDERBUFFER, m_renderbuffer); gl.renderbufferStorage(GL_RENDERBUFFER, GL_R32UI, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT); gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer); gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, m_renderbuffer); GLU_EXPECT_NO_ERROR(gl.getError(), "Post framebuffer setup"); TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); gl.bindFramebuffer(GL_FRAMEBUFFER, m_context.getRenderContext().getDefaultFramebuffer()); // Initialize test result to pass. m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); m_iterNdx = 0; log << TestLog::Message << "Number of accurate bits assumed = " << m_bits << TestLog::EndMessage; } void ShaderUintPrecisionCase::deinit (void) { delete m_program; if (m_framebuffer) m_context.getRenderContext().getFunctions().deleteFramebuffers(1, &m_framebuffer); if (m_renderbuffer) m_context.getRenderContext().getFunctions().deleteRenderbuffers(1, &m_renderbuffer); m_program = DE_NULL; m_framebuffer = 0; m_renderbuffer = 0; } ShaderUintPrecisionCase::IterateResult ShaderUintPrecisionCase::iterate (void) { // Constant data. const float position[] = { -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f }; const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 }; const int numVertices = 4; deUint32 in0Arr[4] = { 0 }; deUint32 in1Arr[4] = { 0 }; TestLog& log = m_testCtx.getLog(); const glw::Functions& gl = m_context.getRenderContext().getFunctions(); deUint32 mask = m_bits == 32 ? 0xffffffffu : ((1u< pixels (FRAMEBUFFER_WIDTH*FRAMEBUFFER_HEIGHT*4); vector vertexArrays; deUint32 prog = m_program->getProgram(); // \todo [2012-05-03 pyry] A bit hacky. bool isMaxRangeA = m_rangeA.x() == 0 && m_rangeA.y() == 0xffffffff; bool isMaxRangeB = m_rangeB.x() == 0 && m_rangeB.y() == 0xffffffff; gl.useProgram(prog); gl.bindFramebuffer(GL_FRAMEBUFFER, m_framebuffer); vertexArrays.push_back(glu::va::Float("a_position", 4, numVertices, 0, &position[0])); vertexArrays.push_back(glu::va::Uint32("a_in0", 1, numVertices, 0, &in0Arr[0])); vertexArrays.push_back(glu::va::Uint32("a_in1", 1, numVertices, 0, &in1Arr[0])); GLU_EXPECT_NO_ERROR(gl.getError(), "After program setup"); // Compute values and reference. for (int testNdx = 0; testNdx < m_numTestsPerIter; testNdx++) { deUint32 in0 = (isMaxRangeA ? m_rnd.getUint32() : (m_rangeA.x() + m_rnd.getUint32()%(m_rangeA.y()-m_rangeA.x()+1))) & mask; deUint32 in1 = (isMaxRangeB ? m_rnd.getUint32() : (m_rangeB.x() + m_rnd.getUint32()%(m_rangeB.y()-m_rangeB.x()+1))) & mask; deUint32 refOut = m_evalFunc(in0, in1) & mask; log << TestLog::Message << "iter " << m_iterNdx << ", test " << testNdx << ": " << "in0 = " << tcu::toHex(in0) << ", in1 = " << tcu::toHex(in1) << ", ref out = " << tcu::toHex(refOut) << TestLog::EndMessage; std::fill(&in0Arr[0], &in0Arr[0] + DE_LENGTH_OF_ARRAY(in0Arr), in0); std::fill(&in1Arr[0], &in1Arr[0] + DE_LENGTH_OF_ARRAY(in1Arr), in1); glu::draw(m_context.getRenderContext(), prog, (int)vertexArrays.size(), &vertexArrays[0], glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0])); gl.readPixels(0, 0, FRAMEBUFFER_WIDTH, FRAMEBUFFER_HEIGHT, GL_RGBA_INTEGER, GL_UNSIGNED_INT, &pixels[0]); GLU_EXPECT_NO_ERROR(gl.getError(), "After render"); // Compare pixels. for (int y = 0; y < FRAMEBUFFER_HEIGHT; y++) { for (int x = 0; x < FRAMEBUFFER_WIDTH; x++) { deUint32 cmpOut = pixels[(y*FRAMEBUFFER_WIDTH + x)*4]; deUint32 cmpMasked = cmpOut & mask; if (cmpMasked != refOut) { log << TestLog::Message << "Comparison failed (at " << x << ", " << y << "): " << "got " << tcu::toHex(cmpOut) << TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Fail"); return STOP; } } } } gl.bindFramebuffer(GL_FRAMEBUFFER, 0); GLU_EXPECT_NO_ERROR(gl.getError(), "After iteration"); m_iterNdx += 1; return (m_iterNdx < m_numIters) ? CONTINUE : STOP; } ShaderPrecisionTests::ShaderPrecisionTests (Context& context) : TestCaseGroup(context, "precision", "Shader precision requirements validation tests") { } ShaderPrecisionTests::~ShaderPrecisionTests (void) { } void ShaderPrecisionTests::init (void) { using tcu::add; using tcu::sub; using tcu::mul; using tcu::div; using tcu::Vec2; using tcu::IVec2; using tcu::UVec2; // Exp = Emax-2, Mantissa = 0 float minF32 = tcu::Float32((1u<<31) | (0xfdu<<23) | 0x0u).asFloat(); float maxF32 = tcu::Float32((0u<<31) | (0xfdu<<23) | 0x0u).asFloat(); float minF16 = tcu::Float16((deUint16)((1u<<15) | (0x1du<<10) | 0x0u)).asFloat(); float maxF16 = tcu::Float16((deUint16)((0u<<15) | (0x1du<<10) | 0x0u)).asFloat(); tcu::Vec2 fullRange32F (minF32, maxF32); tcu::Vec2 fullRange16F (minF16, maxF16); tcu::IVec2 fullRange32I (0x80000000, 0x7fffffff); tcu::IVec2 fullRange16I (-(1<<15), (1<<15)-1); tcu::IVec2 fullRange8I (-(1<<7), (1<<7)-1); tcu::UVec2 fullRange32U (0u, 0xffffffffu); tcu::UVec2 fullRange16U (0u, 0xffffu); tcu::UVec2 fullRange8U (0u, 0xffu); // \note Right now it is not programmatically verified that the results shouldn't end up being inf/nan but // actual values used are ok. static const struct { const char* name; const char* op; ShaderFloatPrecisionCase::EvalFunc evalFunc; glu::Precision precision; tcu::Vec2 rangeA; tcu::Vec2 rangeB; } floatCases[] = { // Name Op Eval Precision RangeA RangeB { "highp_add", "in0 + in1", add, glu::PRECISION_HIGHP, fullRange32F, fullRange32F }, { "highp_sub", "in0 - in1", sub, glu::PRECISION_HIGHP, fullRange32F, fullRange32F }, { "highp_mul", "in0 * in1", mul, glu::PRECISION_HIGHP, Vec2(-1e5f, 1e5f), Vec2(-1e5f, 1e5f) }, { "highp_div", "in0 / in1", div, glu::PRECISION_HIGHP, Vec2(-1e5f, 1e5f), Vec2(-1e5f, 1e5f) }, { "mediump_add", "in0 + in1", add, glu::PRECISION_MEDIUMP, fullRange16F, fullRange16F }, { "mediump_sub", "in0 - in1", sub, glu::PRECISION_MEDIUMP, fullRange16F, fullRange16F }, { "mediump_mul", "in0 * in1", mul, glu::PRECISION_MEDIUMP, Vec2(-1e2f, 1e2f), Vec2(-1e2f, 1e2f) }, { "mediump_div", "in0 / in1", div, glu::PRECISION_MEDIUMP, Vec2(-1e2f, 1e2f), Vec2(-1e2f, 1e2f) } }; static const struct { const char* name; const char* op; ShaderIntPrecisionCase::EvalFunc evalFunc; glu::Precision precision; int bits; tcu::IVec2 rangeA; tcu::IVec2 rangeB; } intCases[] = { // Name Op Eval Precision Bits RangeA RangeB { "highp_add", "in0 + in1", add, glu::PRECISION_HIGHP, 32, fullRange32I, fullRange32I }, { "highp_sub", "in0 - in1", sub, glu::PRECISION_HIGHP, 32, fullRange32I, fullRange32I }, { "highp_mul", "in0 * in1", mul, glu::PRECISION_HIGHP, 32, fullRange32I, fullRange32I }, { "highp_div", "in0 / in1", div, glu::PRECISION_HIGHP, 32, fullRange32I, IVec2(-10000, -1) }, { "mediump_add", "in0 + in1", add, glu::PRECISION_MEDIUMP, 16, fullRange16I, fullRange16I }, { "mediump_sub", "in0 - in1", sub, glu::PRECISION_MEDIUMP, 16, fullRange16I, fullRange16I }, { "mediump_mul", "in0 * in1", mul, glu::PRECISION_MEDIUMP, 16, fullRange16I, fullRange16I }, { "mediump_div", "in0 / in1", div, glu::PRECISION_MEDIUMP, 16, fullRange16I, IVec2(1, 1000) }, { "lowp_add", "in0 + in1", add, glu::PRECISION_LOWP, 8, fullRange8I, fullRange8I }, { "lowp_sub", "in0 - in1", sub, glu::PRECISION_LOWP, 8, fullRange8I, fullRange8I }, { "lowp_mul", "in0 * in1", mul, glu::PRECISION_LOWP, 8, fullRange8I, fullRange8I }, { "lowp_div", "in0 / in1", div, glu::PRECISION_LOWP, 8, fullRange8I, IVec2(-50, -1) } }; static const struct { const char* name; const char* op; ShaderUintPrecisionCase::EvalFunc evalFunc; glu::Precision precision; int bits; tcu::UVec2 rangeA; tcu::UVec2 rangeB; } uintCases[] = { // Name Op Eval Precision Bits RangeA RangeB { "highp_add", "in0 + in1", add, glu::PRECISION_HIGHP, 32, fullRange32U, fullRange32U }, { "highp_sub", "in0 - in1", sub, glu::PRECISION_HIGHP, 32, fullRange32U, fullRange32U }, { "highp_mul", "in0 * in1", mul, glu::PRECISION_HIGHP, 32, fullRange32U, fullRange32U }, { "highp_div", "in0 / in1", div, glu::PRECISION_HIGHP, 32, fullRange32U, UVec2(1u, 10000u) }, { "mediump_add", "in0 + in1", add, glu::PRECISION_MEDIUMP, 16, fullRange16U, fullRange16U }, { "mediump_sub", "in0 - in1", sub, glu::PRECISION_MEDIUMP, 16, fullRange16U, fullRange16U }, { "mediump_mul", "in0 * in1", mul, glu::PRECISION_MEDIUMP, 16, fullRange16U, fullRange16U }, { "mediump_div", "in0 / in1", div, glu::PRECISION_MEDIUMP, 16, fullRange16U, UVec2(1, 1000u) }, { "lowp_add", "in0 + in1", add, glu::PRECISION_LOWP, 8, fullRange8U, fullRange8U }, { "lowp_sub", "in0 - in1", sub, glu::PRECISION_LOWP, 8, fullRange8U, fullRange8U }, { "lowp_mul", "in0 * in1", mul, glu::PRECISION_LOWP, 8, fullRange8U, fullRange8U }, { "lowp_div", "in0 / in1", div, glu::PRECISION_LOWP, 8, fullRange8U, UVec2(1, 50u) } }; tcu::TestCaseGroup* floatGroup = new tcu::TestCaseGroup(m_testCtx, "float", "Floating-point precision tests"); addChild(floatGroup); for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(floatCases); ndx++) { floatGroup->addChild(new ShaderFloatPrecisionCase(m_context, (string(floatCases[ndx].name) + "_vertex").c_str(), "", floatCases[ndx].op, floatCases[ndx].evalFunc, floatCases[ndx].precision, floatCases[ndx].rangeA, floatCases[ndx].rangeB, true)); floatGroup->addChild(new ShaderFloatPrecisionCase(m_context, (string(floatCases[ndx].name) + "_fragment").c_str(), "", floatCases[ndx].op, floatCases[ndx].evalFunc, floatCases[ndx].precision, floatCases[ndx].rangeA, floatCases[ndx].rangeB, false)); } tcu::TestCaseGroup* intGroup = new tcu::TestCaseGroup(m_testCtx, "int", "Integer precision tests"); addChild(intGroup); for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(intCases); ndx++) { intGroup->addChild(new ShaderIntPrecisionCase(m_context, (string(intCases[ndx].name) + "_vertex").c_str(), "", intCases[ndx].op, intCases[ndx].evalFunc, intCases[ndx].precision, intCases[ndx].bits, intCases[ndx].rangeA, intCases[ndx].rangeB, true)); intGroup->addChild(new ShaderIntPrecisionCase(m_context, (string(intCases[ndx].name) + "_fragment").c_str(), "", intCases[ndx].op, intCases[ndx].evalFunc, intCases[ndx].precision, intCases[ndx].bits, intCases[ndx].rangeA, intCases[ndx].rangeB, false)); } tcu::TestCaseGroup* uintGroup = new tcu::TestCaseGroup(m_testCtx, "uint", "Unsigned integer precision tests"); addChild(uintGroup); for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(uintCases); ndx++) { uintGroup->addChild(new ShaderUintPrecisionCase(m_context, (string(uintCases[ndx].name) + "_vertex").c_str(), "", uintCases[ndx].op, uintCases[ndx].evalFunc, uintCases[ndx].precision, uintCases[ndx].bits, uintCases[ndx].rangeA, uintCases[ndx].rangeB, true)); uintGroup->addChild(new ShaderUintPrecisionCase(m_context, (string(uintCases[ndx].name) + "_fragment").c_str(), "", uintCases[ndx].op, uintCases[ndx].evalFunc, uintCases[ndx].precision, uintCases[ndx].bits, uintCases[ndx].rangeA, uintCases[ndx].rangeB, false)); } } } // Functional } // gles3 } // deqp