#include "xmpmeta/md5.h" #include // for memcpy(). #include #include "base/integral_types.h" #include "strings/escaping.h" namespace dynamic_depth { namespace xmpmeta { namespace { const int kMd5DigestSize = 16; typedef struct MD5Context MD5_CTX; struct MD5Context { uint32 buf[4]; uint32 bits[2]; uint32 in[16]; }; void MD5Init(struct MD5Context* context); void MD5Update(struct MD5Context* context, const uint8* data, size_t len); void MD5Final(unsigned char digest[16], struct MD5Context* ctx); void MD5Transform(uint32 buf[4], const uint32 in[16]); // Start MD5 accumulation. Set bit count to 0 and buffer to mysterious // initialization constants. void MD5Init(MD5Context* context) { context->buf[0] = 0x67452301; context->buf[1] = 0xefcdab89; context->buf[2] = 0x98badcfe; context->buf[3] = 0x10325476; context->bits[0] = 0; context->bits[1] = 0; } // Update context to reflect the concatenation of another buffer full of bytes. void MD5Update(MD5Context* context, const uint8* data, size_t len) { // Update bitcount. uint32 t = context->bits[0]; if ((context->bits[0] = t + (static_cast(len) << 3)) < t) { context->bits[1]++; // Carry from low to high. } context->bits[1] += len >> 29; t = (t >> 3) & 0x3f; // Bytes already in shsInfo->data. // Handle any leading odd-sized chunks. if (t) { uint8* p = reinterpret_cast(context->in) + t; t = 64 - t; if (len < t) { memcpy(p, data, len); return; } memcpy(p, data, t); MD5Transform(context->buf, context->in); data += t; len -= t; } // Process data in 64-byte chunks. while (len >= 64) { memcpy(context->in, data, 64); MD5Transform(context->buf, context->in); data += 64; len -= 64; } // Handle any remaining bytes of data. memcpy(context->in, data, len); } // Final wrapup - pad to 64-byte boundary with the bit pattern. // 1 0* (64-bit count of bits processed, MSB-first) void MD5Final(uint8 digest[16], MD5Context* ctx) { // Compute number of bytes mod 64. uint32 count = (ctx->bits[0] >> 3) & 0x3F; // Set the first char of padding to 0x80. This is safe since there is // always at least one byte free. uint8* p = reinterpret_cast(ctx->in) + count; *p++ = 0x80; // Bytes of padding needed to make 64 bytes. count = 64 - 1 - count; // Pad out to 56 mod 64. if (count < 8) { // Two lots of padding: Pad the first block to 64 bytes. memset(p, 0, count); MD5Transform(ctx->buf, ctx->in); // Now fill the next block with 56 bytes. memset(ctx->in, 0, 56); } else { // Pad block to 56 bytes. memset(p, 0, count - 8); } // Append length in bits and transform. ctx->in[14] = ctx->bits[0]; ctx->in[15] = ctx->bits[1]; MD5Transform(ctx->buf, ctx->in); memcpy(digest, ctx->buf, 16); memset(ctx, 0, sizeof(*ctx)); // In case it's sensitive. } // The four core functions - F1 is optimized somewhat. // #define F1(x, y, z) (x & y | ~x & z) #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) // This is the central step in the MD5 algorithm. #define MD5STEP(f, w, x, y, z, data, s) \ (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) #if defined(__clang__) && defined(__has_attribute) #if __has_attribute(no_sanitize) #define DDEPTH_NO_UNSIGNED_OVERFLOW_CHECK \ __attribute__((no_sanitize("unsigned-integer-overflow"))) #endif #endif #ifndef DDEPTH_NO_UNSIGNED_OVERFLOW_CHECK #define DDEPTH_NO_UNSIGNED_OVERFLOW_CHECK #endif // The core of the MD5 algorithm, this alters an existing MD5 hash to // reflect the addition of 16 longwords of new data. MD5Update blocks // the data and converts bytes into longwords for this routine. DDEPTH_NO_UNSIGNED_OVERFLOW_CHECK void MD5Transform(uint32 buf[4], const uint32 in[16]) { uint32 a = buf[0]; uint32 b = buf[1]; uint32 c = buf[2]; uint32 d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } void MD5(const uint8_t* to_hash, size_t to_hash_length, uint8_t* output) { MD5Context md5_context; MD5Init(&md5_context); MD5Update(&md5_context, to_hash, to_hash_length); MD5Final(output, &md5_context); } } // namespace string MD5Hash(const string& to_hash) { std::vector buffer; buffer.resize(kMd5DigestSize); MD5(reinterpret_cast(to_hash.data()), to_hash.length(), &buffer[0]); return dynamic_depth::b2a_hex(reinterpret_cast(&buffer[0]), kMd5DigestSize); } } // namespace xmpmeta } // namespace dynamic_depth