/******************************************************************************* * Copyright 2010-2018 Intel Corporation * All Rights Reserved. * * If this software was obtained under the Intel Simplified Software License, * the following terms apply: * * The source code, information and material ("Material") contained herein is * owned by Intel Corporation or its suppliers or licensors, and title to such * Material remains with Intel Corporation or its suppliers or licensors. The * Material contains proprietary information of Intel or its suppliers and * licensors. The Material is protected by worldwide copyright laws and treaty * provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission. No license under * any patent, copyright or other intellectual property rights in the Material * is granted to or conferred upon you, either expressly, by implication, * inducement, estoppel or otherwise. Any license under such intellectual * property rights must be express and approved by Intel in writing. * * Unless otherwise agreed by Intel in writing, you may not remove or alter this * notice or any other notice embedded in Materials by Intel or Intel's * suppliers or licensors in any way. * * * If this software was obtained under the Apache License, Version 2.0 (the * "License"), the following terms apply: * * You may not use this file except in compliance with the License. You may * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /* // Intel(R) Integrated Performance Primitives. Cryptography Primitives. // EC over GF(p^m) definitinons // // Context: // ippsGFpECVerify() // */ #include "owndefs.h" #include "owncp.h" #include "pcpgfpecstuff.h" #include "pcpeccp.h" //tbcd: temporary excluded: #include /*F* // Name: ippsGFpECVerify // // Purpose: Verifies the parameters of an elliptic curve. // // Returns: Reason: // ippStsNullPtrErr pEC == NULL // pResult == NULL // pScratchBuffer == NULL // ippStsContextMatchErr invalid pEC->idCtx // ippStsNoErr no error // // Parameters: // pResult Pointer to the verification result // pEC Pointer to the context of the elliptic curve // pScratchBuffer Pointer to the scratch buffer // *F*/ IPPFUN(IppStatus, ippsGFpECVerify,(IppECResult* pResult, IppsGFpECState* pEC, Ipp8u* pScratchBuffer)) { IPP_BAD_PTR3_RET(pEC, pResult, pScratchBuffer); pEC = (IppsGFpECState*)( IPP_ALIGNED_PTR(pEC, ECGFP_ALIGNMENT) ); IPP_BADARG_RET( !ECP_TEST_ID(pEC), ippStsContextMatchErr ); *pResult = ippECValid; { IppsGFpState* pGF = ECP_GFP(pEC); gsModEngine* pGFE = GFP_PMA(pGF); int elemLen = GFP_FELEN(pGFE); mod_mul mulF = GFP_METHOD(pGFE)->mul; mod_sqr sqrF = GFP_METHOD(pGFE)->sqr; mod_add addF = GFP_METHOD(pGFE)->add; /* // check discriminant ( 4*A^3 + 27*B^2 != 0 mod P) */ if(ippECValid == *pResult) { BNU_CHUNK_T* pT = cpGFpGetPool(1, pGFE); BNU_CHUNK_T* pU = cpGFpGetPool(1, pGFE); //tbcd: temporary excluded: assert(NULL!=pT && NULL!=pU); if(ECP_SPECIFIC(pEC)==ECP_EPID2) cpGFpElementPadd(pT, elemLen, 0); /* T = 4*A^3 = 0 */ else { addF(pT, ECP_A(pEC), ECP_A(pEC), pGFE); /* T = 4*A^3 */ sqrF(pT, pT, pGFE); mulF(pT, ECP_A(pEC), pT, pGFE); } addF(pU, ECP_B(pEC), ECP_B(pEC), pGFE); /* U = 9*B^2 */ addF(pU, pU, ECP_B(pEC), pGFE); sqrF(pU, pU, pGFE); addF(pT, pU, pT, pGFE); /* T += 3*U */ addF(pT, pU, pT, pGFE); addF(pT, pU, pT, pGFE); *pResult = GFP_IS_ZERO(pT, elemLen)? ippECIsZeroDiscriminant: ippECValid; cpGFpReleasePool(2, pGFE); } if(ECP_SUBGROUP(pEC)) { /* // check base point and it order */ if(ippECValid == *pResult) { IppsGFpECPoint G; cpEcGFpInitPoint(&G, ECP_G(pEC), ECP_AFFINE_POINT|ECP_FINITE_POINT, pEC); /* check G != infinity */ *pResult = gfec_IsPointAtInfinity(&G)? ippECPointIsAtInfinite : ippECValid; /* check G lies on EC */ if(ippECValid == *pResult) *pResult = gfec_IsPointOnCurve(&G, pEC)? ippECValid : ippECPointIsNotValid; /* check Gorder*G = infinity */ if(ippECValid == *pResult) { IppsGFpECPoint T; cpEcGFpInitPoint(&T, cpEcGFpGetPool(1, pEC),0, pEC); gfec_MulBasePoint(&T, MOD_MODULUS(ECP_MONT_R(pEC)), BITS_BNU_CHUNK(ECP_ORDBITSIZE(pEC)), pEC, pScratchBuffer); *pResult = gfec_IsPointAtInfinity(&T)? ippECValid : ippECInvalidOrder; cpEcGFpReleasePool(1, pEC); } } /* // check order==P */ if(ippECValid == *pResult) { BNU_CHUNK_T* pPrime = GFP_MODULUS(pGFE); int primeLen = GFP_FELEN(pGFE); gsModEngine* pR = ECP_MONT_R(pEC); BNU_CHUNK_T* pOrder = MOD_MODULUS(pR); int orderLen = MOD_LEN(pR); *pResult = (primeLen==orderLen && GFP_EQ(pPrime, pOrder, primeLen))? ippECIsWeakSSSA : ippECValid; } } return ippStsNoErr; } }