/******************************************************************************* * Copyright 2002-2018 Intel Corporation * All Rights Reserved. * * If this software was obtained under the Intel Simplified Software License, * the following terms apply: * * The source code, information and material ("Material") contained herein is * owned by Intel Corporation or its suppliers or licensors, and title to such * Material remains with Intel Corporation or its suppliers or licensors. The * Material contains proprietary information of Intel or its suppliers and * licensors. The Material is protected by worldwide copyright laws and treaty * provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission. No license under * any patent, copyright or other intellectual property rights in the Material * is granted to or conferred upon you, either expressly, by implication, * inducement, estoppel or otherwise. Any license under such intellectual * property rights must be express and approved by Intel in writing. * * Unless otherwise agreed by Intel in writing, you may not remove or alter this * notice or any other notice embedded in Materials by Intel or Intel's * suppliers or licensors in any way. * * * If this software was obtained under the Apache License, Version 2.0 (the * "License"), the following terms apply: * * You may not use this file except in compliance with the License. You may * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ /* // Intel(R) Integrated Performance Primitives // Cryptographic Primitives (ippcp) // // Contents: // ippsMontMul() // */ #include "owndefs.h" #include "owncp.h" #include "pcpbn.h" #include "pcpmontgomery.h" #include "pcptool.h" /*F* // Name: ippsMontMul // // Purpose: Computes Montgomery modular multiplication for positive big // number integers of Montgomery form. The following pseudocode // represents this function: // r <- ( a * b * R^(-1) ) mod m // // Returns: Reason: // ippStsNoErr Returns no error. // ippStsNullPtrErr Returns an error when pointers are null. // ippStsBadArgErr Returns an error when a or b is a negative integer. // ippStsScaleRangeErr Returns an error when a or b is more than m. // ippStsOutOfRangeErr Returns an error when IppsBigNumState *r is larger than // IppsMontState *m. // ippStsContextMatchErr Returns an error when the context parameter does // not match the operation. // // Parameters: // pA Multiplicand within the range [0, m - 1]. // pB Multiplier within the range [0, m - 1]. // pCtx Modulus. // pR Montgomery multiplication result. // // Notes: The size of IppsBigNumState *r should not be less than the data // length of the modulus m. *F*/ IPPFUN(IppStatus, ippsMontMul, (const IppsBigNumState* pA, const IppsBigNumState* pB, IppsMontState* pCtx, IppsBigNumState* pR)) { IPP_BAD_PTR4_RET(pA, pB, pCtx, pR); pCtx = (IppsMontState*)(IPP_ALIGNED_PTR((pCtx), MONT_ALIGNMENT)); pA = (IppsBigNumState*)( IPP_ALIGNED_PTR(pA, BN_ALIGNMENT) ); pB = (IppsBigNumState*)( IPP_ALIGNED_PTR(pB, BN_ALIGNMENT) ); pR = (IppsBigNumState*)( IPP_ALIGNED_PTR(pR, BN_ALIGNMENT) ); IPP_BADARG_RET(!MNT_VALID_ID(pCtx), ippStsContextMatchErr); IPP_BADARG_RET(!BN_VALID_ID(pA), ippStsContextMatchErr); IPP_BADARG_RET(!BN_VALID_ID(pB), ippStsContextMatchErr); IPP_BADARG_RET(!BN_VALID_ID(pR), ippStsContextMatchErr); IPP_BADARG_RET(BN_NEGATIVE(pA) || BN_NEGATIVE(pB), ippStsBadArgErr); IPP_BADARG_RET(cpCmp_BNU(BN_NUMBER(pA), BN_SIZE(pA), MOD_MODULUS( MNT_ENGINE(pCtx) ), MOD_LEN( MNT_ENGINE(pCtx) )) >= 0, ippStsScaleRangeErr); IPP_BADARG_RET(cpCmp_BNU(BN_NUMBER(pB), BN_SIZE(pB), MOD_MODULUS( MNT_ENGINE(pCtx) ), MOD_LEN( MNT_ENGINE(pCtx) )) >= 0, ippStsScaleRangeErr); IPP_BADARG_RET(BN_ROOM(pR) < MOD_LEN( MNT_ENGINE(pCtx) ), ippStsOutOfRangeErr); { const int usedPoolLen = 2; cpSize nsM = MOD_LEN( MNT_ENGINE(pCtx) ); BNU_CHUNK_T* pDataR = BN_NUMBER(pR); BNU_CHUNK_T* pDataA = gsModPoolAlloc(MNT_ENGINE(pCtx), usedPoolLen); BNU_CHUNK_T* pDataB = pDataA + nsM; //tbcd: temporary excluded: assert(NULL!=pDataA); ZEXPAND_COPY_BNU(pDataA, nsM, BN_NUMBER(pA), BN_SIZE(pA)); ZEXPAND_COPY_BNU(pDataB, nsM, BN_NUMBER(pB), BN_SIZE(pB)); MOD_METHOD( MNT_ENGINE(pCtx) )->mul(pDataR, pDataA, pDataB, MNT_ENGINE(pCtx)); gsModPoolFree(MNT_ENGINE(pCtx), usedPoolLen); FIX_BNU(pDataR, nsM); BN_SIZE(pR) = nsM; BN_SIGN(pR) = ippBigNumPOS; return ippStsNoErr; } }