/* * Copyright 2014 Google Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "flatbuffers/flatbuffers.h" #include "flatbuffers/idl.h" #include "flatbuffers/minireflect.h" #include "flatbuffers/registry.h" #include "flatbuffers/util.h" // clang-format off #ifdef FLATBUFFERS_CPP98_STL #include "flatbuffers/stl_emulation.h" namespace std { using flatbuffers::unique_ptr; } #endif // clang-format on #include "monster_test_generated.h" #include "namespace_test/namespace_test1_generated.h" #include "namespace_test/namespace_test2_generated.h" #include "union_vector/union_vector_generated.h" #include "monster_extra_generated.h" #include "test_assert.h" #include "flatbuffers/flexbuffers.h" using namespace MyGame::Example; void FlatBufferBuilderTest(); // Include simple random number generator to ensure results will be the // same cross platform. // http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator uint32_t lcg_seed = 48271; uint32_t lcg_rand() { return lcg_seed = (static_cast(lcg_seed) * 279470273UL) % 4294967291UL; } void lcg_reset() { lcg_seed = 48271; } std::string test_data_path = #ifdef BAZEL_TEST_DATA_PATH "../com_github_google_flatbuffers/tests/"; #else "tests/"; #endif // example of how to build up a serialized buffer algorithmically: flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) { flatbuffers::FlatBufferBuilder builder; auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20)); auto name = builder.CreateString("MyMonster"); unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; auto inventory = builder.CreateVector(inv_data, 10); // Alternatively, create the vector first, and fill in data later: // unsigned char *inv_buf = nullptr; // auto inventory = builder.CreateUninitializedVector( // 10, &inv_buf); // memcpy(inv_buf, inv_data, 10); Test tests[] = { Test(10, 20), Test(30, 40) }; auto testv = builder.CreateVectorOfStructs(tests, 2); // clang-format off #ifndef FLATBUFFERS_CPP98_STL // Create a vector of structures from a lambda. auto testv2 = builder.CreateVectorOfStructs( 2, [&](size_t i, Test* s) -> void { *s = tests[i]; }); #else // Create a vector of structures using a plain old C++ function. auto testv2 = builder.CreateVectorOfStructs( 2, [](size_t i, Test* s, void *state) -> void { *s = (reinterpret_cast(state))[i]; }, tests); #endif // FLATBUFFERS_CPP98_STL // clang-format on // create monster with very few fields set: // (same functionality as CreateMonster below, but sets fields manually) flatbuffers::Offset mlocs[3]; auto fred = builder.CreateString("Fred"); auto barney = builder.CreateString("Barney"); auto wilma = builder.CreateString("Wilma"); MonsterBuilder mb1(builder); mb1.add_name(fred); mlocs[0] = mb1.Finish(); MonsterBuilder mb2(builder); mb2.add_name(barney); mb2.add_hp(1000); mlocs[1] = mb2.Finish(); MonsterBuilder mb3(builder); mb3.add_name(wilma); mlocs[2] = mb3.Finish(); // Create an array of strings. Also test string pooling, and lambdas. auto vecofstrings = builder.CreateVector>( 4, [](size_t i, flatbuffers::FlatBufferBuilder *b) -> flatbuffers::Offset { static const char *names[] = { "bob", "fred", "bob", "fred" }; return b->CreateSharedString(names[i]); }, &builder); // Creating vectors of strings in one convenient call. std::vector names2; names2.push_back("jane"); names2.push_back("mary"); auto vecofstrings2 = builder.CreateVectorOfStrings(names2); // Create an array of sorted tables, can be used with binary search when read: auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3); // Create an array of sorted structs, // can be used with binary search when read: std::vector abilities; abilities.push_back(Ability(4, 40)); abilities.push_back(Ability(3, 30)); abilities.push_back(Ability(2, 20)); abilities.push_back(Ability(1, 10)); auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities); // Create a nested FlatBuffer. // Nested FlatBuffers are stored in a ubyte vector, which can be convenient // since they can be memcpy'd around much easier than other FlatBuffer // values. They have little overhead compared to storing the table directly. // As a test, create a mostly empty Monster buffer: flatbuffers::FlatBufferBuilder nested_builder; auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0, nested_builder.CreateString("NestedMonster")); FinishMonsterBuffer(nested_builder, nmloc); // Now we can store the buffer in the parent. Note that by default, vectors // are only aligned to their elements or size field, so in this case if the // buffer contains 64-bit elements, they may not be correctly aligned. We fix // that with: builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t), nested_builder.GetBufferMinAlignment()); // If for whatever reason you don't have the nested_builder available, you // can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or // the largest force_align value in your schema if you're using it. auto nested_flatbuffer_vector = builder.CreateVector( nested_builder.GetBufferPointer(), nested_builder.GetSize()); // Test a nested FlexBuffer: flexbuffers::Builder flexbuild; flexbuild.Int(1234); flexbuild.Finish(); auto flex = builder.CreateVector(flexbuild.GetBuffer()); // Test vector of enums. Color colors[] = { Color_Blue, Color_Green }; // We use this special creation function because we have an array of // pre-C++11 (enum class) enums whose size likely is int, yet its declared // type in the schema is byte. auto vecofcolors = builder.CreateVectorScalarCast(colors, 2); // shortcut for creating monster with all fields set: auto mloc = CreateMonster(builder, &vec, 150, 80, name, inventory, Color_Blue, Any_Monster, mlocs[1].Union(), // Store a union. testv, vecofstrings, vecoftables, 0, nested_flatbuffer_vector, 0, false, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f, vecofstrings2, vecofstructs, flex, testv2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, AnyUniqueAliases_NONE, 0, AnyAmbiguousAliases_NONE, 0, vecofcolors); FinishMonsterBuffer(builder, mloc); // clang-format off #ifdef FLATBUFFERS_TEST_VERBOSE // print byte data for debugging: auto p = builder.GetBufferPointer(); for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++) printf("%d ", p[i]); #endif // clang-format on // return the buffer for the caller to use. auto bufferpointer = reinterpret_cast(builder.GetBufferPointer()); buffer.assign(bufferpointer, bufferpointer + builder.GetSize()); return builder.Release(); } // example of accessing a buffer loaded in memory: void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length, bool pooled = true) { // First, verify the buffers integrity (optional) flatbuffers::Verifier verifier(flatbuf, length); TEST_EQ(VerifyMonsterBuffer(verifier), true); // clang-format off #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE std::vector test_buff; test_buff.resize(length * 2); std::memcpy(&test_buff[0], flatbuf, length); std::memcpy(&test_buff[length], flatbuf, length); flatbuffers::Verifier verifier1(&test_buff[0], length); TEST_EQ(VerifyMonsterBuffer(verifier1), true); TEST_EQ(verifier1.GetComputedSize(), length); flatbuffers::Verifier verifier2(&test_buff[length], length); TEST_EQ(VerifyMonsterBuffer(verifier2), true); TEST_EQ(verifier2.GetComputedSize(), length); #endif // clang-format on TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0); TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true); TEST_EQ(strcmp(MonsterExtension(), "mon"), 0); // Access the buffer from the root. auto monster = GetMonster(flatbuf); TEST_EQ(monster->hp(), 80); TEST_EQ(monster->mana(), 150); // default TEST_EQ_STR(monster->name()->c_str(), "MyMonster"); // Can't access the following field, it is deprecated in the schema, // which means accessors are not generated: // monster.friendly() auto pos = monster->pos(); TEST_NOTNULL(pos); TEST_EQ(pos->z(), 3); TEST_EQ(pos->test3().a(), 10); TEST_EQ(pos->test3().b(), 20); auto inventory = monster->inventory(); TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null. TEST_NOTNULL(inventory); unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; // Check compatibilty of iterators with STL. std::vector inv_vec(inventory->begin(), inventory->end()); for (auto it = inventory->begin(); it != inventory->end(); ++it) { auto indx = it - inventory->begin(); TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. TEST_EQ(*it, inv_data[indx]); } for (auto it = inventory->cbegin(); it != inventory->cend(); ++it) { auto indx = it - inventory->cbegin(); TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. TEST_EQ(*it, inv_data[indx]); } for (auto it = inventory->rbegin(); it != inventory->rend(); ++it) { auto indx = inventory->rend() - it; TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. TEST_EQ(*it, inv_data[indx]); } for (auto it = inventory->crbegin(); it != inventory->crend(); ++it) { auto indx = inventory->crend() - it; TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check. TEST_EQ(*it, inv_data[indx]); } TEST_EQ(monster->color(), Color_Blue); // Example of accessing a union: TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is. auto monster2 = reinterpret_cast(monster->test()); TEST_NOTNULL(monster2); TEST_EQ_STR(monster2->name()->c_str(), "Fred"); // Example of accessing a vector of strings: auto vecofstrings = monster->testarrayofstring(); TEST_EQ(vecofstrings->size(), 4U); TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob"); TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred"); if (pooled) { // These should have pointer equality because of string pooling. TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str()); TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str()); } auto vecofstrings2 = monster->testarrayofstring2(); if (vecofstrings2) { TEST_EQ(vecofstrings2->size(), 2U); TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane"); TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary"); } // Example of accessing a vector of tables: auto vecoftables = monster->testarrayoftables(); TEST_EQ(vecoftables->size(), 3U); for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it) TEST_EQ(strlen(it->name()->c_str()) >= 4, true); TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney"); TEST_EQ(vecoftables->Get(0)->hp(), 1000); TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred"); TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma"); TEST_NOTNULL(vecoftables->LookupByKey("Barney")); TEST_NOTNULL(vecoftables->LookupByKey("Fred")); TEST_NOTNULL(vecoftables->LookupByKey("Wilma")); // Test accessing a vector of sorted structs auto vecofstructs = monster->testarrayofsortedstruct(); if (vecofstructs) { // not filled in monster_test.bfbs for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size() - 1; i++) { auto left = vecofstructs->Get(i); auto right = vecofstructs->Get(i + 1); TEST_EQ(true, (left->KeyCompareLessThan(right))); } TEST_NOTNULL(vecofstructs->LookupByKey(3)); TEST_EQ(static_cast(nullptr), vecofstructs->LookupByKey(5)); } // Test nested FlatBuffers if available: auto nested_buffer = monster->testnestedflatbuffer(); if (nested_buffer) { // nested_buffer is a vector of bytes you can memcpy. However, if you // actually want to access the nested data, this is a convenient // accessor that directly gives you the root table: auto nested_monster = monster->testnestedflatbuffer_nested_root(); TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster"); } // Test flexbuffer if available: auto flex = monster->flex(); // flex is a vector of bytes you can memcpy etc. TEST_EQ(flex->size(), 4); // Encoded FlexBuffer bytes. // However, if you actually want to access the nested data, this is a // convenient accessor that directly gives you the root value: TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234); // Test vector of enums: auto colors = monster->vector_of_enums(); if (colors) { TEST_EQ(colors->size(), 2); TEST_EQ(colors->Get(0), Color_Blue); TEST_EQ(colors->Get(1), Color_Green); } // Since Flatbuffers uses explicit mechanisms to override the default // compiler alignment, double check that the compiler indeed obeys them: // (Test consists of a short and byte): TEST_EQ(flatbuffers::AlignOf(), 2UL); TEST_EQ(sizeof(Test), 4UL); const flatbuffers::Vector *tests_array[] = { monster->test4(), monster->test5(), }; for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) { auto tests = tests_array[i]; TEST_NOTNULL(tests); auto test_0 = tests->Get(0); auto test_1 = tests->Get(1); TEST_EQ(test_0->a(), 10); TEST_EQ(test_0->b(), 20); TEST_EQ(test_1->a(), 30); TEST_EQ(test_1->b(), 40); for (auto it = tests->begin(); it != tests->end(); ++it) { TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators. } } // Checking for presence of fields: TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true); TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false); // Obtaining a buffer from a root: TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf); } // Change a FlatBuffer in-place, after it has been constructed. void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) { // Get non-const pointer to root. auto monster = GetMutableMonster(flatbuf); // Each of these tests mutates, then tests, then set back to the original, // so we can test that the buffer in the end still passes our original test. auto hp_ok = monster->mutate_hp(10); TEST_EQ(hp_ok, true); // Field was present. TEST_EQ(monster->hp(), 10); // Mutate to default value auto hp_ok_default = monster->mutate_hp(100); TEST_EQ(hp_ok_default, true); // Field was present. TEST_EQ(monster->hp(), 100); // Test that mutate to default above keeps field valid for further mutations auto hp_ok_2 = monster->mutate_hp(20); TEST_EQ(hp_ok_2, true); TEST_EQ(monster->hp(), 20); monster->mutate_hp(80); // Monster originally at 150 mana (default value) auto mana_default_ok = monster->mutate_mana(150); // Mutate to default value. TEST_EQ(mana_default_ok, true); // Mutation should succeed, because default value. TEST_EQ(monster->mana(), 150); auto mana_ok = monster->mutate_mana(10); TEST_EQ(mana_ok, false); // Field was NOT present, because default value. TEST_EQ(monster->mana(), 150); // Mutate structs. auto pos = monster->mutable_pos(); auto test3 = pos->mutable_test3(); // Struct inside a struct. test3.mutate_a(50); // Struct fields never fail. TEST_EQ(test3.a(), 50); test3.mutate_a(10); // Mutate vectors. auto inventory = monster->mutable_inventory(); inventory->Mutate(9, 100); TEST_EQ(inventory->Get(9), 100); inventory->Mutate(9, 9); auto tables = monster->mutable_testarrayoftables(); auto first = tables->GetMutableObject(0); TEST_EQ(first->hp(), 1000); first->mutate_hp(0); TEST_EQ(first->hp(), 0); first->mutate_hp(1000); // Run the verifier and the regular test to make sure we didn't trample on // anything. AccessFlatBufferTest(flatbuf, length); } // Unpack a FlatBuffer into objects. void ObjectFlatBuffersTest(uint8_t *flatbuf) { // Optional: we can specify resolver and rehasher functions to turn hashed // strings into object pointers and back, to implement remote references // and such. auto resolver = flatbuffers::resolver_function_t( [](void **pointer_adr, flatbuffers::hash_value_t hash) { (void)pointer_adr; (void)hash; // Don't actually do anything, leave variable null. }); auto rehasher = flatbuffers::rehasher_function_t( [](void *pointer) -> flatbuffers::hash_value_t { (void)pointer; return 0; }); // Turn a buffer into C++ objects. auto monster1 = UnPackMonster(flatbuf, &resolver); // Re-serialize the data. flatbuffers::FlatBufferBuilder fbb1; fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher), MonsterIdentifier()); // Unpack again, and re-serialize again. auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver); flatbuffers::FlatBufferBuilder fbb2; fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher), MonsterIdentifier()); // Now we've gone full round-trip, the two buffers should match. auto len1 = fbb1.GetSize(); auto len2 = fbb2.GetSize(); TEST_EQ(len1, len2); TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(), len1), 0); // Test it with the original buffer test to make sure all data survived. AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false); // Test accessing fields, similar to AccessFlatBufferTest above. TEST_EQ(monster2->hp, 80); TEST_EQ(monster2->mana, 150); // default TEST_EQ_STR(monster2->name.c_str(), "MyMonster"); auto &pos = monster2->pos; TEST_NOTNULL(pos); TEST_EQ(pos->z(), 3); TEST_EQ(pos->test3().a(), 10); TEST_EQ(pos->test3().b(), 20); auto &inventory = monster2->inventory; TEST_EQ(inventory.size(), 10UL); unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; for (auto it = inventory.begin(); it != inventory.end(); ++it) TEST_EQ(*it, inv_data[it - inventory.begin()]); TEST_EQ(monster2->color, Color_Blue); auto monster3 = monster2->test.AsMonster(); TEST_NOTNULL(monster3); TEST_EQ_STR(monster3->name.c_str(), "Fred"); auto &vecofstrings = monster2->testarrayofstring; TEST_EQ(vecofstrings.size(), 4U); TEST_EQ_STR(vecofstrings[0].c_str(), "bob"); TEST_EQ_STR(vecofstrings[1].c_str(), "fred"); auto &vecofstrings2 = monster2->testarrayofstring2; TEST_EQ(vecofstrings2.size(), 2U); TEST_EQ_STR(vecofstrings2[0].c_str(), "jane"); TEST_EQ_STR(vecofstrings2[1].c_str(), "mary"); auto &vecoftables = monster2->testarrayoftables; TEST_EQ(vecoftables.size(), 3U); TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney"); TEST_EQ(vecoftables[0]->hp, 1000); TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred"); TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma"); auto &tests = monster2->test4; TEST_EQ(tests[0].a(), 10); TEST_EQ(tests[0].b(), 20); TEST_EQ(tests[1].a(), 30); TEST_EQ(tests[1].b(), 40); } // Prefix a FlatBuffer with a size field. void SizePrefixedTest() { // Create size prefixed buffer. flatbuffers::FlatBufferBuilder fbb; FinishSizePrefixedMonsterBuffer( fbb, CreateMonster(fbb, 0, 200, 300, fbb.CreateString("bob"))); // Verify it. flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize()); TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier), true); // Access it. auto m = GetSizePrefixedMonster(fbb.GetBufferPointer()); TEST_EQ(m->mana(), 200); TEST_EQ(m->hp(), 300); TEST_EQ_STR(m->name()->c_str(), "bob"); } void TriviallyCopyableTest() { // clang-format off #if __GNUG__ && __GNUC__ < 5 TEST_EQ(__has_trivial_copy(Vec3), true); #else #if __cplusplus >= 201103L TEST_EQ(std::is_trivially_copyable::value, true); #endif #endif // clang-format on } // Check stringify of an default enum value to json void JsonDefaultTest() { // load FlatBuffer schema (.fbs) from disk std::string schemafile; TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(), false, &schemafile), true); // parse schema first, so we can use it to parse the data after flatbuffers::Parser parser; auto include_test_path = flatbuffers::ConCatPathFileName(test_data_path, "include_test"); const char *include_directories[] = { test_data_path.c_str(), include_test_path.c_str(), nullptr }; TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true); // create incomplete monster and store to json parser.opts.output_default_scalars_in_json = true; parser.opts.output_enum_identifiers = true; flatbuffers::FlatBufferBuilder builder; auto name = builder.CreateString("default_enum"); MonsterBuilder color_monster(builder); color_monster.add_name(name); FinishMonsterBuffer(builder, color_monster.Finish()); std::string jsongen; auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen); TEST_EQ(result, true); // default value of the "color" field is Blue TEST_EQ(std::string::npos != jsongen.find("color: \"Blue\""), true); // default value of the "testf" field is 3.14159 TEST_EQ(std::string::npos != jsongen.find("testf: 3.14159"), true); } // example of parsing text straight into a buffer, and generating // text back from it: void ParseAndGenerateTextTest(bool binary) { // load FlatBuffer schema (.fbs) and JSON from disk std::string schemafile; std::string jsonfile; TEST_EQ(flatbuffers::LoadFile( (test_data_path + "monster_test." + (binary ? "bfbs" : "fbs")) .c_str(), binary, &schemafile), true); TEST_EQ(flatbuffers::LoadFile( (test_data_path + "monsterdata_test.golden").c_str(), false, &jsonfile), true); auto include_test_path = flatbuffers::ConCatPathFileName(test_data_path, "include_test"); const char *include_directories[] = { test_data_path.c_str(), include_test_path.c_str(), nullptr }; // parse schema first, so we can use it to parse the data after flatbuffers::Parser parser; if (binary) { flatbuffers::Verifier verifier( reinterpret_cast(schemafile.c_str()), schemafile.size()); TEST_EQ(reflection::VerifySchemaBuffer(verifier), true); //auto schema = reflection::GetSchema(schemafile.c_str()); TEST_EQ(parser.Deserialize((const uint8_t *)schemafile.c_str(), schemafile.size()), true); } else { TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true); } TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true); // here, parser.builder_ contains a binary buffer that is the parsed data. // First, verify it, just in case: flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(), parser.builder_.GetSize()); TEST_EQ(VerifyMonsterBuffer(verifier), true); AccessFlatBufferTest(parser.builder_.GetBufferPointer(), parser.builder_.GetSize(), false); // to ensure it is correct, we now generate text back from the binary, // and compare the two: std::string jsongen; auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); TEST_EQ(result, true); TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str()); // We can also do the above using the convenient Registry that knows about // a set of file_identifiers mapped to schemas. flatbuffers::Registry registry; // Make sure schemas can find their includes. registry.AddIncludeDirectory(test_data_path.c_str()); registry.AddIncludeDirectory(include_test_path.c_str()); // Call this with many schemas if possible. registry.Register(MonsterIdentifier(), (test_data_path + "monster_test.fbs").c_str()); // Now we got this set up, we can parse by just specifying the identifier, // the correct schema will be loaded on the fly: auto buf = registry.TextToFlatBuffer(jsonfile.c_str(), MonsterIdentifier()); // If this fails, check registry.lasterror_. TEST_NOTNULL(buf.data()); // Test the buffer, to be sure: AccessFlatBufferTest(buf.data(), buf.size(), false); // We can use the registry to turn this back into text, in this case it // will get the file_identifier from the binary: std::string text; auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text); // If this fails, check registry.lasterror_. TEST_EQ(ok, true); TEST_EQ_STR(text.c_str(), jsonfile.c_str()); // Generate text for UTF-8 strings without escapes. std::string jsonfile_utf8; TEST_EQ(flatbuffers::LoadFile((test_data_path + "unicode_test.json").c_str(), false, &jsonfile_utf8), true); TEST_EQ(parser.Parse(jsonfile_utf8.c_str(), include_directories), true); // To ensure it is correct, generate utf-8 text back from the binary. std::string jsongen_utf8; // request natural printing for utf-8 strings parser.opts.natural_utf8 = true; parser.opts.strict_json = true; TEST_EQ( GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen_utf8), true); TEST_EQ_STR(jsongen_utf8.c_str(), jsonfile_utf8.c_str()); } void ReflectionTest(uint8_t *flatbuf, size_t length) { // Load a binary schema. std::string bfbsfile; TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.bfbs").c_str(), true, &bfbsfile), true); // Verify it, just in case: flatbuffers::Verifier verifier( reinterpret_cast(bfbsfile.c_str()), bfbsfile.length()); TEST_EQ(reflection::VerifySchemaBuffer(verifier), true); // Make sure the schema is what we expect it to be. auto &schema = *reflection::GetSchema(bfbsfile.c_str()); auto root_table = schema.root_table(); TEST_EQ_STR(root_table->name()->c_str(), "MyGame.Example.Monster"); auto fields = root_table->fields(); auto hp_field_ptr = fields->LookupByKey("hp"); TEST_NOTNULL(hp_field_ptr); auto &hp_field = *hp_field_ptr; TEST_EQ_STR(hp_field.name()->c_str(), "hp"); TEST_EQ(hp_field.id(), 2); TEST_EQ(hp_field.type()->base_type(), reflection::Short); auto friendly_field_ptr = fields->LookupByKey("friendly"); TEST_NOTNULL(friendly_field_ptr); TEST_NOTNULL(friendly_field_ptr->attributes()); TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority")); // Make sure the table index is what we expect it to be. auto pos_field_ptr = fields->LookupByKey("pos"); TEST_NOTNULL(pos_field_ptr); TEST_EQ(pos_field_ptr->type()->base_type(), reflection::Obj); auto pos_table_ptr = schema.objects()->Get(pos_field_ptr->type()->index()); TEST_NOTNULL(pos_table_ptr); TEST_EQ_STR(pos_table_ptr->name()->c_str(), "MyGame.Example.Vec3"); // Now use it to dynamically access a buffer. auto &root = *flatbuffers::GetAnyRoot(flatbuf); // Verify the buffer first using reflection based verification TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length), true); auto hp = flatbuffers::GetFieldI(root, hp_field); TEST_EQ(hp, 80); // Rather than needing to know the type, we can also get the value of // any field as an int64_t/double/string, regardless of what it actually is. auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); TEST_EQ(hp_int64, 80); auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field); TEST_EQ(hp_double, 80.0); auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema); TEST_EQ_STR(hp_string.c_str(), "80"); // Get struct field through reflection auto pos_struct = flatbuffers::GetFieldStruct(root, *pos_field_ptr); TEST_NOTNULL(pos_struct); TEST_EQ(flatbuffers::GetAnyFieldF(*pos_struct, *pos_table_ptr->fields()->LookupByKey("z")), 3.0f); auto test3_field = pos_table_ptr->fields()->LookupByKey("test3"); auto test3_struct = flatbuffers::GetFieldStruct(*pos_struct, *test3_field); TEST_NOTNULL(test3_struct); auto test3_object = schema.objects()->Get(test3_field->type()->index()); TEST_EQ(flatbuffers::GetAnyFieldF(*test3_struct, *test3_object->fields()->LookupByKey("a")), 10); // We can also modify it. flatbuffers::SetField(&root, hp_field, 200); hp = flatbuffers::GetFieldI(root, hp_field); TEST_EQ(hp, 200); // We can also set fields generically: flatbuffers::SetAnyFieldI(&root, hp_field, 300); hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); TEST_EQ(hp_int64, 300); flatbuffers::SetAnyFieldF(&root, hp_field, 300.5); hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); TEST_EQ(hp_int64, 300); flatbuffers::SetAnyFieldS(&root, hp_field, "300"); hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field); TEST_EQ(hp_int64, 300); // Test buffer is valid after the modifications TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length), true); // Reset it, for further tests. flatbuffers::SetField(&root, hp_field, 80); // More advanced functionality: changing the size of items in-line! // First we put the FlatBuffer inside an std::vector. std::vector resizingbuf(flatbuf, flatbuf + length); // Find the field we want to modify. auto &name_field = *fields->LookupByKey("name"); // Get the root. // This time we wrap the result from GetAnyRoot in a smartpointer that // will keep rroot valid as resizingbuf resizes. auto rroot = flatbuffers::piv( flatbuffers::GetAnyRoot(flatbuffers::vector_data(resizingbuf)), resizingbuf); SetString(schema, "totally new string", GetFieldS(**rroot, name_field), &resizingbuf); // Here resizingbuf has changed, but rroot is still valid. TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string"); // Now lets extend a vector by 100 elements (10 -> 110). auto &inventory_field = *fields->LookupByKey("inventory"); auto rinventory = flatbuffers::piv( flatbuffers::GetFieldV(**rroot, inventory_field), resizingbuf); flatbuffers::ResizeVector(schema, 110, 50, *rinventory, &resizingbuf); // rinventory still valid, so lets read from it. TEST_EQ(rinventory->Get(10), 50); // For reflection uses not covered already, there is a more powerful way: // we can simply generate whatever object we want to add/modify in a // FlatBuffer of its own, then add that to an existing FlatBuffer: // As an example, let's add a string to an array of strings. // First, find our field: auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring"); // Find the vector value: auto rtestarrayofstring = flatbuffers::piv( flatbuffers::GetFieldV>( **rroot, testarrayofstring_field), resizingbuf); // It's a vector of 2 strings, to which we add one more, initialized to // offset 0. flatbuffers::ResizeVector>( schema, 3, 0, *rtestarrayofstring, &resizingbuf); // Here we just create a buffer that contans a single string, but this // could also be any complex set of tables and other values. flatbuffers::FlatBufferBuilder stringfbb; stringfbb.Finish(stringfbb.CreateString("hank")); // Add the contents of it to our existing FlatBuffer. // We do this last, so the pointer doesn't get invalidated (since it is // at the end of the buffer): auto string_ptr = flatbuffers::AddFlatBuffer( resizingbuf, stringfbb.GetBufferPointer(), stringfbb.GetSize()); // Finally, set the new value in the vector. rtestarrayofstring->MutateOffset(2, string_ptr); TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob"); TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank"); // Test integrity of all resize operations above. flatbuffers::Verifier resize_verifier( reinterpret_cast(flatbuffers::vector_data(resizingbuf)), resizingbuf.size()); TEST_EQ(VerifyMonsterBuffer(resize_verifier), true); // Test buffer is valid using reflection as well TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuffers::vector_data(resizingbuf), resizingbuf.size()), true); // As an additional test, also set it on the name field. // Note: unlike the name change above, this just overwrites the offset, // rather than changing the string in-place. SetFieldT(*rroot, name_field, string_ptr); TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank"); // Using reflection, rather than mutating binary FlatBuffers, we can also copy // tables and other things out of other FlatBuffers into a FlatBufferBuilder, // either part or whole. flatbuffers::FlatBufferBuilder fbb; auto root_offset = flatbuffers::CopyTable( fbb, schema, *root_table, *flatbuffers::GetAnyRoot(flatbuf), true); fbb.Finish(root_offset, MonsterIdentifier()); // Test that it was copied correctly: AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize()); // Test buffer is valid using reflection as well TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), fbb.GetBufferPointer(), fbb.GetSize()), true); } void MiniReflectFlatBuffersTest(uint8_t *flatbuf) { auto s = flatbuffers::FlatBufferToString(flatbuf, Monster::MiniReflectTypeTable()); TEST_EQ_STR( s.c_str(), "{ " "pos: { x: 1.0, y: 2.0, z: 3.0, test1: 0.0, test2: Red, test3: " "{ a: 10, b: 20 } }, " "hp: 80, " "name: \"MyMonster\", " "inventory: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], " "test_type: Monster, " "test: { name: \"Fred\" }, " "test4: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], " "testarrayofstring: [ \"bob\", \"fred\", \"bob\", \"fred\" ], " "testarrayoftables: [ { hp: 1000, name: \"Barney\" }, { name: \"Fred\" " "}, " "{ name: \"Wilma\" } ], " // TODO(wvo): should really print this nested buffer correctly. "testnestedflatbuffer: [ 20, 0, 0, 0, 77, 79, 78, 83, 12, 0, 12, 0, 0, " "0, " "4, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 78, " "101, 115, 116, 101, 100, 77, 111, 110, 115, 116, 101, 114, 0, 0, 0 ], " "testarrayofstring2: [ \"jane\", \"mary\" ], " "testarrayofsortedstruct: [ { id: 1, distance: 10 }, " "{ id: 2, distance: 20 }, { id: 3, distance: 30 }, " "{ id: 4, distance: 40 } ], " "flex: [ 210, 4, 5, 2 ], " "test5: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], " "vector_of_enums: [ Blue, Green ] " "}"); } // Parse a .proto schema, output as .fbs void ParseProtoTest() { // load the .proto and the golden file from disk std::string protofile; std::string goldenfile; std::string goldenunionfile; TEST_EQ( flatbuffers::LoadFile((test_data_path + "prototest/test.proto").c_str(), false, &protofile), true); TEST_EQ( flatbuffers::LoadFile((test_data_path + "prototest/test.golden").c_str(), false, &goldenfile), true); TEST_EQ( flatbuffers::LoadFile((test_data_path + "prototest/test_union.golden").c_str(), false, &goldenunionfile), true); flatbuffers::IDLOptions opts; opts.include_dependence_headers = false; opts.proto_mode = true; // Parse proto. flatbuffers::Parser parser(opts); auto protopath = test_data_path + "prototest/"; const char *include_directories[] = { protopath.c_str(), nullptr }; TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true); // Generate fbs. auto fbs = flatbuffers::GenerateFBS(parser, "test"); // Ensure generated file is parsable. flatbuffers::Parser parser2; TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true); TEST_EQ_STR(fbs.c_str(), goldenfile.c_str()); // Parse proto with --oneof-union option. opts.proto_oneof_union = true; flatbuffers::Parser parser3(opts); TEST_EQ(parser3.Parse(protofile.c_str(), include_directories), true); // Generate fbs. auto fbs_union = flatbuffers::GenerateFBS(parser3, "test"); // Ensure generated file is parsable. flatbuffers::Parser parser4; TEST_EQ(parser4.Parse(fbs_union.c_str(), nullptr), true); TEST_EQ_STR(fbs_union.c_str(), goldenunionfile.c_str()); } template void CompareTableFieldValue(flatbuffers::Table *table, flatbuffers::voffset_t voffset, T val) { T read = table->GetField(voffset, static_cast(0)); TEST_EQ(read, val); } // Low level stress/fuzz test: serialize/deserialize a variety of // different kinds of data in different combinations void FuzzTest1() { // Values we're testing against: chosen to ensure no bits get chopped // off anywhere, and also be different from eachother. const uint8_t bool_val = true; const int8_t char_val = -127; // 0x81 const uint8_t uchar_val = 0xFF; const int16_t short_val = -32222; // 0x8222; const uint16_t ushort_val = 0xFEEE; const int32_t int_val = 0x83333333; const uint32_t uint_val = 0xFDDDDDDD; const int64_t long_val = 0x8444444444444444LL; const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL; const float float_val = 3.14159f; const double double_val = 3.14159265359; const int test_values_max = 11; const flatbuffers::voffset_t fields_per_object = 4; const int num_fuzz_objects = 10000; // The higher, the more thorough :) flatbuffers::FlatBufferBuilder builder; lcg_reset(); // Keep it deterministic. flatbuffers::uoffset_t objects[num_fuzz_objects]; // Generate num_fuzz_objects random objects each consisting of // fields_per_object fields, each of a random type. for (int i = 0; i < num_fuzz_objects; i++) { auto start = builder.StartTable(); for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) { int choice = lcg_rand() % test_values_max; auto off = flatbuffers::FieldIndexToOffset(f); switch (choice) { case 0: builder.AddElement(off, bool_val, 0); break; case 1: builder.AddElement(off, char_val, 0); break; case 2: builder.AddElement(off, uchar_val, 0); break; case 3: builder.AddElement(off, short_val, 0); break; case 4: builder.AddElement(off, ushort_val, 0); break; case 5: builder.AddElement(off, int_val, 0); break; case 6: builder.AddElement(off, uint_val, 0); break; case 7: builder.AddElement(off, long_val, 0); break; case 8: builder.AddElement(off, ulong_val, 0); break; case 9: builder.AddElement(off, float_val, 0); break; case 10: builder.AddElement(off, double_val, 0); break; } } objects[i] = builder.EndTable(start); } builder.PreAlign(0); // Align whole buffer. lcg_reset(); // Reset. uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize(); // Test that all objects we generated are readable and return the // expected values. We generate random objects in the same order // so this is deterministic. for (int i = 0; i < num_fuzz_objects; i++) { auto table = reinterpret_cast(eob - objects[i]); for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) { int choice = lcg_rand() % test_values_max; flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f); switch (choice) { case 0: CompareTableFieldValue(table, off, bool_val); break; case 1: CompareTableFieldValue(table, off, char_val); break; case 2: CompareTableFieldValue(table, off, uchar_val); break; case 3: CompareTableFieldValue(table, off, short_val); break; case 4: CompareTableFieldValue(table, off, ushort_val); break; case 5: CompareTableFieldValue(table, off, int_val); break; case 6: CompareTableFieldValue(table, off, uint_val); break; case 7: CompareTableFieldValue(table, off, long_val); break; case 8: CompareTableFieldValue(table, off, ulong_val); break; case 9: CompareTableFieldValue(table, off, float_val); break; case 10: CompareTableFieldValue(table, off, double_val); break; } } } } // High level stress/fuzz test: generate a big schema and // matching json data in random combinations, then parse both, // generate json back from the binary, and compare with the original. void FuzzTest2() { lcg_reset(); // Keep it deterministic. const int num_definitions = 30; const int num_struct_definitions = 5; // Subset of num_definitions. const int fields_per_definition = 15; const int instances_per_definition = 5; const int deprecation_rate = 10; // 1 in deprecation_rate fields will // be deprecated. std::string schema = "namespace test;\n\n"; struct RndDef { std::string instances[instances_per_definition]; // Since we're generating schema and corresponding data in tandem, // this convenience function adds strings to both at once. static void Add(RndDef (&definitions_l)[num_definitions], std::string &schema_l, const int instances_per_definition_l, const char *schema_add, const char *instance_add, int definition) { schema_l += schema_add; for (int i = 0; i < instances_per_definition_l; i++) definitions_l[definition].instances[i] += instance_add; } }; // clang-format off #define AddToSchemaAndInstances(schema_add, instance_add) \ RndDef::Add(definitions, schema, instances_per_definition, \ schema_add, instance_add, definition) #define Dummy() \ RndDef::Add(definitions, schema, instances_per_definition, \ "byte", "1", definition) // clang-format on RndDef definitions[num_definitions]; // We are going to generate num_definitions, the first // num_struct_definitions will be structs, the rest tables. For each // generate random fields, some of which may be struct/table types // referring to previously generated structs/tables. // Simultanenously, we generate instances_per_definition JSON data // definitions, which will have identical structure to the schema // being generated. We generate multiple instances such that when creating // hierarchy, we get some variety by picking one randomly. for (int definition = 0; definition < num_definitions; definition++) { std::string definition_name = "D" + flatbuffers::NumToString(definition); bool is_struct = definition < num_struct_definitions; AddToSchemaAndInstances( ((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(), "{\n"); for (int field = 0; field < fields_per_definition; field++) { const bool is_last_field = field == fields_per_definition - 1; // Deprecate 1 in deprecation_rate fields. Only table fields can be // deprecated. // Don't deprecate the last field to avoid dangling commas in JSON. const bool deprecated = !is_struct && !is_last_field && (lcg_rand() % deprecation_rate == 0); std::string field_name = "f" + flatbuffers::NumToString(field); AddToSchemaAndInstances((" " + field_name + ":").c_str(), deprecated ? "" : (field_name + ": ").c_str()); // Pick random type: auto base_type = static_cast( lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1)); switch (base_type) { case flatbuffers::BASE_TYPE_STRING: if (is_struct) { Dummy(); // No strings in structs. } else { AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\""); } break; case flatbuffers::BASE_TYPE_VECTOR: if (is_struct) { Dummy(); // No vectors in structs. } else { AddToSchemaAndInstances("[ubyte]", deprecated ? "" : "[\n0,\n1,\n255\n]"); } break; case flatbuffers::BASE_TYPE_NONE: case flatbuffers::BASE_TYPE_UTYPE: case flatbuffers::BASE_TYPE_STRUCT: case flatbuffers::BASE_TYPE_UNION: if (definition) { // Pick a random previous definition and random data instance of // that definition. int defref = lcg_rand() % definition; int instance = lcg_rand() % instances_per_definition; AddToSchemaAndInstances( ("D" + flatbuffers::NumToString(defref)).c_str(), deprecated ? "" : definitions[defref].instances[instance].c_str()); } else { // If this is the first definition, we have no definition we can // refer to. Dummy(); } break; case flatbuffers::BASE_TYPE_BOOL: AddToSchemaAndInstances( "bool", deprecated ? "" : (lcg_rand() % 2 ? "true" : "false")); break; default: // All the scalar types. schema += flatbuffers::kTypeNames[base_type]; if (!deprecated) { // We want each instance to use its own random value. for (int inst = 0; inst < instances_per_definition; inst++) definitions[definition].instances[inst] += flatbuffers::IsFloat(base_type) ? flatbuffers::NumToString(lcg_rand() % 128) .c_str() : flatbuffers::NumToString(lcg_rand() % 128).c_str(); } } AddToSchemaAndInstances(deprecated ? "(deprecated);\n" : ";\n", deprecated ? "" : is_last_field ? "\n" : ",\n"); } AddToSchemaAndInstances("}\n\n", "}"); } schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1); schema += ";\n"; flatbuffers::Parser parser; // Will not compare against the original if we don't write defaults parser.builder_.ForceDefaults(true); // Parse the schema, parse the generated data, then generate text back // from the binary and compare against the original. TEST_EQ(parser.Parse(schema.c_str()), true); const std::string &json = definitions[num_definitions - 1].instances[0] + "\n"; TEST_EQ(parser.Parse(json.c_str()), true); std::string jsongen; parser.opts.indent_step = 0; auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); TEST_EQ(result, true); if (jsongen != json) { // These strings are larger than a megabyte, so we show the bytes around // the first bytes that are different rather than the whole string. size_t len = std::min(json.length(), jsongen.length()); for (size_t i = 0; i < len; i++) { if (json[i] != jsongen[i]) { i -= std::min(static_cast(10), i); // show some context; size_t end = std::min(len, i + 20); for (; i < end; i++) TEST_OUTPUT_LINE("at %d: found \"%c\", expected \"%c\"\n", static_cast(i), jsongen[i], json[i]); break; } } TEST_NOTNULL(NULL); } // clang-format off #ifdef FLATBUFFERS_TEST_VERBOSE TEST_OUTPUT_LINE("%dk schema tested with %dk of json\n", static_cast(schema.length() / 1024), static_cast(json.length() / 1024)); #endif // clang-format on } // Test that parser errors are actually generated. void TestError_(const char *src, const char *error_substr, bool strict_json, const char *file, int line, const char *func) { flatbuffers::IDLOptions opts; opts.strict_json = strict_json; flatbuffers::Parser parser(opts); if (parser.Parse(src)) { TestFail("true", "false", ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line, func); } else if (!strstr(parser.error_.c_str(), error_substr)) { TestFail(parser.error_.c_str(), error_substr, ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line, func); } } void TestError_(const char *src, const char *error_substr, const char *file, int line, const char *func) { TestError_(src, error_substr, false, file, line, func); } #ifdef _WIN32 # define TestError(src, ...) \ TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__) #else # define TestError(src, ...) \ TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__) #endif // Test that parsing errors occur as we'd expect. // Also useful for coverage, making sure these paths are run. void ErrorTest() { // In order they appear in idl_parser.cpp TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit"); TestError("\"\0", "illegal"); TestError("\"\\q", "escape code"); TestError("table ///", "documentation"); TestError("@", "illegal"); TestError("table 1", "expecting"); TestError("table X { Y:[[int]]; }", "nested vector"); TestError("table X { Y:1; }", "illegal type"); TestError("table X { Y:int; Y:int; }", "field already"); TestError("table Y {} table X { Y:int; }", "same as table"); TestError("struct X { Y:string; }", "only scalar"); TestError("table X { Y:string = \"\"; }", "default values"); TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum"); TestError("struct X { Y:int (deprecated); }", "deprecate"); TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }", "missing type field"); TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {", "type id"); TestError("table X { Y:int; } root_type X; { Z:", "unknown field"); TestError("table X { Y:int; } root_type X; { Y:", "string constant", true); TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant", true); TestError( "struct X { Y:int; Z:int; } table W { V:X; } root_type W; " "{ V:{ Y:1 } }", "wrong number"); TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }", "unknown enum value"); TestError("table X { Y:byte; } root_type X; { Y:; }", "starting"); TestError("enum X:byte { Y } enum X {", "enum already"); TestError("enum X:float {}", "underlying"); TestError("enum X:byte { Y, Y }", "value already"); TestError("enum X:byte { Y=2, Z=1 }", "ascending"); TestError("enum X:byte (bit_flags) { Y=8 }", "bit flag out"); TestError("table X { Y:int; } table X {", "datatype already"); TestError("struct X (force_align: 7) { Y:int; }", "force_align"); TestError("struct X {}", "size 0"); TestError("{}", "no root"); TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file"); TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }", "end of file"); TestError("root_type X;", "unknown root"); TestError("struct X { Y:int; } root_type X;", "a table"); TestError("union X { Y }", "referenced"); TestError("union Z { X } struct X { Y:int; }", "only tables"); TestError("table X { Y:[int]; YLength:int; }", "clash"); TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once"); // float to integer conversion is forbidden TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float"); TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float"); TestError("enum X:bool { Y = true }", "must be integral"); } template T TestValue(const char *json, const char *type_name) { flatbuffers::Parser parser; parser.builder_.ForceDefaults(true); // return defaults auto check_default = json ? false : true; if (check_default) { parser.opts.output_default_scalars_in_json = true; } // Simple schema. std::string schema = "table X { Y:" + std::string(type_name) + "; } root_type X;"; TEST_EQ(parser.Parse(schema.c_str()), true); auto done = parser.Parse(check_default ? "{}" : json); TEST_EQ_STR(parser.error_.c_str(), ""); TEST_EQ(done, true); // Check with print. std::string print_back; parser.opts.indent_step = -1; TEST_EQ(GenerateText(parser, parser.builder_.GetBufferPointer(), &print_back), true); // restore value from its default if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); } auto root = flatbuffers::GetRoot( parser.builder_.GetBufferPointer()); return root->GetField(flatbuffers::FieldIndexToOffset(0), 0); } bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; } // Additional parser testing not covered elsewhere. void ValueTest() { // Test scientific notation numbers. TEST_EQ(FloatCompare(TestValue("{ Y:0.0314159e+2 }", "float"), 3.14159f), true); // number in string TEST_EQ(FloatCompare(TestValue("{ Y:\"0.0314159e+2\" }", "float"), 3.14159f), true); // Test conversion functions. TEST_EQ(FloatCompare(TestValue("{ Y:cos(rad(180)) }", "float"), -1), true); // int embedded to string TEST_EQ(TestValue("{ Y:\"-876\" }", "int=-123"), -876); TEST_EQ(TestValue("{ Y:\"876\" }", "int=-123"), 876); // Test negative hex constant. TEST_EQ(TestValue("{ Y:-0x8ea0 }", "int=-0x8ea0"), -36512); TEST_EQ(TestValue(nullptr, "int=-0x8ea0"), -36512); // positive hex constant TEST_EQ(TestValue("{ Y:0x1abcdef }", "int=0x1"), 0x1abcdef); // with optional '+' sign TEST_EQ(TestValue("{ Y:+0x1abcdef }", "int=+0x1"), 0x1abcdef); // hex in string TEST_EQ(TestValue("{ Y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef); // Make sure we do unsigned 64bit correctly. TEST_EQ(TestValue("{ Y:12335089644688340133 }", "ulong"), 12335089644688340133ULL); // bool in string TEST_EQ(TestValue("{ Y:\"false\" }", "bool=true"), false); TEST_EQ(TestValue("{ Y:\"true\" }", "bool=\"true\""), true); TEST_EQ(TestValue("{ Y:'false' }", "bool=true"), false); TEST_EQ(TestValue("{ Y:'true' }", "bool=\"true\""), true); // check comments before and after json object TEST_EQ(TestValue("/*before*/ { Y:1 } /*after*/", "int"), 1); TEST_EQ(TestValue("//before \n { Y:1 } //after", "int"), 1); } void NestedListTest() { flatbuffers::Parser parser1; TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }" "root_type T;" "{ F:[ [10,20], [30,40]] }"), true); } void EnumStringsTest() { flatbuffers::Parser parser1; TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }" "root_type T;" "{ F:[ A, B, \"C\", \"A B C\" ] }"), true); flatbuffers::Parser parser2; TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }" "root_type T;" "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"), true); } void EnumNamesTest() { TEST_EQ_STR("Red", EnumNameColor(Color_Red)); TEST_EQ_STR("Green", EnumNameColor(Color_Green)); TEST_EQ_STR("Blue", EnumNameColor(Color_Blue)); // Check that Color to string don't crash while decode a mixture of Colors. // 1) Example::Color enum is enum with unfixed underlying type. // 2) Valid enum range: [0; 2^(ceil(log2(Color_ANY))) - 1]. // Consequence: A value is out of this range will lead to UB (since C++17). // For details see C++17 standard or explanation on the SO: // stackoverflow.com/questions/18195312/what-happens-if-you-static-cast-invalid-value-to-enum-class TEST_EQ_STR("", EnumNameColor(static_cast(0))); TEST_EQ_STR("", EnumNameColor(static_cast(Color_ANY-1))); TEST_EQ_STR("", EnumNameColor(static_cast(Color_ANY+1))); } void EnumOutOfRangeTest() { TestError("enum X:byte { Y = 128 }", "enum value does not fit"); TestError("enum X:byte { Y = -129 }", "enum value does not fit"); TestError("enum X:byte { Y = 127, Z }", "enum value does not fit"); TestError("enum X:ubyte { Y = -1 }", "enum value does not fit"); TestError("enum X:ubyte { Y = 256 }", "enum value does not fit"); // Unions begin with an implicit "NONE = 0". TestError("table Y{} union X { Y = -1 }", "enum values must be specified in ascending order"); TestError("table Y{} union X { Y = 256 }", "enum value does not fit"); TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit"); TestError("enum X:int { Y = -2147483649 }", "enum value does not fit"); TestError("enum X:int { Y = 2147483648 }", "enum value does not fit"); TestError("enum X:uint { Y = -1 }", "enum value does not fit"); TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit"); TestError("enum X:long { Y = 9223372036854775808 }", "constant does not fit"); TestError("enum X:long { Y = 9223372036854775807, Z }", "enum value overflows"); TestError("enum X:ulong { Y = -1 }", "enum value does not fit"); // TODO: these are perfectly valid constants that shouldn't fail TestError("enum X:ulong { Y = 13835058055282163712 }", "constant does not fit"); TestError("enum X:ulong { Y = 18446744073709551615 }", "constant does not fit"); } void IntegerOutOfRangeTest() { TestError("table T { F:byte; } root_type T; { F:128 }", "constant does not fit"); TestError("table T { F:byte; } root_type T; { F:-129 }", "constant does not fit"); TestError("table T { F:ubyte; } root_type T; { F:256 }", "constant does not fit"); TestError("table T { F:ubyte; } root_type T; { F:-1 }", "constant does not fit"); TestError("table T { F:short; } root_type T; { F:32768 }", "constant does not fit"); TestError("table T { F:short; } root_type T; { F:-32769 }", "constant does not fit"); TestError("table T { F:ushort; } root_type T; { F:65536 }", "constant does not fit"); TestError("table T { F:ushort; } root_type T; { F:-1 }", "constant does not fit"); TestError("table T { F:int; } root_type T; { F:2147483648 }", "constant does not fit"); TestError("table T { F:int; } root_type T; { F:-2147483649 }", "constant does not fit"); TestError("table T { F:uint; } root_type T; { F:4294967296 }", "constant does not fit"); TestError("table T { F:uint; } root_type T; { F:-1 }", "constant does not fit"); // Check fixed width aliases TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit"); TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit"); TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit"); TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit"); TestError("table X { Y:uint32; } root_type X; { Y: -1 }", ""); TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }", "does not fit"); TestError("table X { Y:uint64; } root_type X; { Y: -1 }", ""); TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }", "does not fit"); TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }", "does not fit"); TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit"); TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit"); TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit"); TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit"); TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", ""); TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }", "does not fit"); TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }", "does not fit"); TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }", "does not fit"); // check out-of-int64 as int8 TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }", "does not fit"); TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }", "does not fit"); // Check default values TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}", "does not fit"); TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}", "does not fit"); TestError("table X { Y:uint64; } root_type X; { Y: -1 }", ""); TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}", "does not fit"); TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}", "does not fit"); } void IntegerBoundaryTest() { TEST_EQ(TestValue("{ Y:127 }", "byte"), 127); TEST_EQ(TestValue("{ Y:-128 }", "byte"), -128); TEST_EQ(TestValue("{ Y:255 }", "ubyte"), 255); TEST_EQ(TestValue("{ Y:0 }", "ubyte"), 0); TEST_EQ(TestValue("{ Y:32767 }", "short"), 32767); TEST_EQ(TestValue("{ Y:-32768 }", "short"), -32768); TEST_EQ(TestValue("{ Y:65535 }", "ushort"), 65535); TEST_EQ(TestValue("{ Y:0 }", "ushort"), 0); TEST_EQ(TestValue("{ Y:2147483647 }", "int"), 2147483647); TEST_EQ(TestValue("{ Y:-2147483648 }", "int"), (-2147483647 - 1)); TEST_EQ(TestValue("{ Y:4294967295 }", "uint"), 4294967295); TEST_EQ(TestValue("{ Y:0 }", "uint"), 0); TEST_EQ(TestValue("{ Y:9223372036854775807 }", "long"), 9223372036854775807); TEST_EQ(TestValue("{ Y:-9223372036854775808 }", "long"), (-9223372036854775807 - 1)); TEST_EQ(TestValue("{ Y:18446744073709551615 }", "ulong"), 18446744073709551615U); TEST_EQ(TestValue("{ Y:0 }", "ulong"), 0); TEST_EQ(TestValue("{ Y: 18446744073709551615 }", "uint64"), 18446744073709551615ULL); // check that the default works TEST_EQ(TestValue(nullptr, "uint64 = 18446744073709551615"), 18446744073709551615ULL); } void ValidFloatTest() { const auto infinityf = flatbuffers::numeric_limits::infinity(); const auto infinityd = flatbuffers::numeric_limits::infinity(); // check rounding to infinity TEST_EQ(TestValue("{ Y:+3.4029e+38 }", "float"), +infinityf); TEST_EQ(TestValue("{ Y:-3.4029e+38 }", "float"), -infinityf); TEST_EQ(TestValue("{ Y:+1.7977e+308 }", "double"), +infinityd); TEST_EQ(TestValue("{ Y:-1.7977e+308 }", "double"), -infinityd); TEST_EQ( FloatCompare(TestValue("{ Y:0.0314159e+2 }", "float"), 3.14159f), true); // float in string TEST_EQ(FloatCompare(TestValue("{ Y:\" 0.0314159e+2 \" }", "float"), 3.14159f), true); TEST_EQ(TestValue("{ Y:1 }", "float"), 1.0f); TEST_EQ(TestValue("{ Y:1.0 }", "float"), 1.0f); TEST_EQ(TestValue("{ Y:1. }", "float"), 1.0f); TEST_EQ(TestValue("{ Y:+1. }", "float"), 1.0f); TEST_EQ(TestValue("{ Y:-1. }", "float"), -1.0f); TEST_EQ(TestValue("{ Y:1.e0 }", "float"), 1.0f); TEST_EQ(TestValue("{ Y:1.e+0 }", "float"), 1.0f); TEST_EQ(TestValue("{ Y:1.e-0 }", "float"), 1.0f); TEST_EQ(TestValue("{ Y:0.125 }", "float"), 0.125f); TEST_EQ(TestValue("{ Y:.125 }", "float"), 0.125f); TEST_EQ(TestValue("{ Y:-.125 }", "float"), -0.125f); TEST_EQ(TestValue("{ Y:+.125 }", "float"), +0.125f); TEST_EQ(TestValue("{ Y:5 }", "float"), 5.0f); TEST_EQ(TestValue("{ Y:\"5\" }", "float"), 5.0f); #if defined(FLATBUFFERS_HAS_NEW_STRTOD) // Old MSVC versions may have problem with this check. // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/ TEST_EQ(TestValue("{ Y:6.9294956446009195e15 }", "double"), 6929495644600920.0); // check nan's TEST_EQ(std::isnan(TestValue("{ Y:nan }", "double")), true); TEST_EQ(std::isnan(TestValue("{ Y:nan }", "float")), true); TEST_EQ(std::isnan(TestValue("{ Y:\"nan\" }", "float")), true); TEST_EQ(std::isnan(TestValue("{ Y:+nan }", "float")), true); TEST_EQ(std::isnan(TestValue("{ Y:-nan }", "float")), true); TEST_EQ(std::isnan(TestValue(nullptr, "float=nan")), true); TEST_EQ(std::isnan(TestValue(nullptr, "float=-nan")), true); // check inf TEST_EQ(TestValue("{ Y:inf }", "float"), infinityf); TEST_EQ(TestValue("{ Y:\"inf\" }", "float"), infinityf); TEST_EQ(TestValue("{ Y:+inf }", "float"), infinityf); TEST_EQ(TestValue("{ Y:-inf }", "float"), -infinityf); TEST_EQ(TestValue(nullptr, "float=inf"), infinityf); TEST_EQ(TestValue(nullptr, "float=-inf"), -infinityf); TestValue( "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, " "3.0e2] }", "[double]"); TestValue( "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, " "3.0e2] }", "[float]"); // Test binary format of float point. // https://en.cppreference.com/w/cpp/language/floating_literal // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 = TEST_EQ(TestValue("{ Y:0x12.34p-1 }", "double"), 9.1015625); // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0 TEST_EQ(TestValue("{ Y:-0x0.2p0 }", "float"), -0.125f); TEST_EQ(TestValue("{ Y:-0x.2p1 }", "float"), -0.25f); TEST_EQ(TestValue("{ Y:0x1.2p3 }", "float"), 9.0f); TEST_EQ(TestValue("{ Y:0x10.1p0 }", "float"), 16.0625f); TEST_EQ(TestValue("{ Y:0x1.2p3 }", "double"), 9.0); TEST_EQ(TestValue("{ Y:0x10.1p0 }", "double"), 16.0625); TEST_EQ(TestValue("{ Y:0xC.68p+2 }", "double"), 49.625); TestValue("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]"); TestValue("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]"); #else // FLATBUFFERS_HAS_NEW_STRTOD TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped"); #endif // FLATBUFFERS_HAS_NEW_STRTOD } void InvalidFloatTest() { auto invalid_msg = "invalid number"; auto comma_msg = "expecting: ,"; TestError("table T { F:float; } root_type T; { F:1,0 }", ""); TestError("table T { F:float; } root_type T; { F:. }", ""); TestError("table T { F:float; } root_type T; { F:- }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg); TestError("table T { F:float; } root_type T; { F:.e }", ""); TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg); TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg); TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg); // exponent pP is mandatory for hex-float TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg); // eE not exponent in hex-float! TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg); TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg); TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg); TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg); // floats in string TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg); // disable escapes for "number-in-string" TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid"); TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid"); TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid"); TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid"); TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid"); TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg); // null is not a number constant! TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg); TestError("table T { F:float; } root_type T; { F:null }", invalid_msg); } template void NumericUtilsTestInteger(const char *lower, const char *upper) { T x; TEST_EQ(flatbuffers::StringToNumber("1q", &x), false); TEST_EQ(x, 0); TEST_EQ(flatbuffers::StringToNumber(upper, &x), false); TEST_EQ(x, flatbuffers::numeric_limits::max()); TEST_EQ(flatbuffers::StringToNumber(lower, &x), false); auto expval = flatbuffers::is_unsigned::value ? flatbuffers::numeric_limits::max() : flatbuffers::numeric_limits::lowest(); TEST_EQ(x, expval); } template void NumericUtilsTestFloat(const char *lower, const char *upper) { T f; TEST_EQ(flatbuffers::StringToNumber("", &f), false); TEST_EQ(flatbuffers::StringToNumber("1q", &f), false); TEST_EQ(f, 0); TEST_EQ(flatbuffers::StringToNumber(upper, &f), true); TEST_EQ(f, +flatbuffers::numeric_limits::infinity()); TEST_EQ(flatbuffers::StringToNumber(lower, &f), true); TEST_EQ(f, -flatbuffers::numeric_limits::infinity()); } void NumericUtilsTest() { NumericUtilsTestInteger("-1", "18446744073709551616"); NumericUtilsTestInteger("-1", "256"); NumericUtilsTestInteger("-9223372036854775809", "9223372036854775808"); NumericUtilsTestInteger("-129", "128"); NumericUtilsTestFloat("-3.4029e+38", "+3.4029e+38"); NumericUtilsTestFloat("-1.7977e+308", "+1.7977e+308"); } void IsAsciiUtilsTest() { char c = -128; for (int cnt = 0; cnt < 256; cnt++) { auto alpha = (('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= 'Z')); auto dec = (('0' <= c) && (c <= '9')); auto hex = (('a' <= c) && (c <= 'f')) || (('A' <= c) && (c <= 'F')); TEST_EQ(flatbuffers::is_alpha(c), alpha); TEST_EQ(flatbuffers::is_alnum(c), alpha || dec); TEST_EQ(flatbuffers::is_digit(c), dec); TEST_EQ(flatbuffers::is_xdigit(c), dec || hex); c += 1; } } void UnicodeTest() { flatbuffers::Parser parser; // Without setting allow_non_utf8 = true, we treat \x sequences as byte // sequences which are then validated as UTF-8. TEST_EQ(parser.Parse("table T { F:string; }" "root_type T;" "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8" "3D\\uDE0E\" }"), true); std::string jsongen; parser.opts.indent_step = -1; auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); TEST_EQ(result, true); TEST_EQ_STR(jsongen.c_str(), "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}"); } void UnicodeTestAllowNonUTF8() { flatbuffers::Parser parser; parser.opts.allow_non_utf8 = true; TEST_EQ( parser.Parse( "table T { F:string; }" "root_type T;" "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), true); std::string jsongen; parser.opts.indent_step = -1; auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); TEST_EQ(result, true); TEST_EQ_STR( jsongen.c_str(), "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}"); } void UnicodeTestGenerateTextFailsOnNonUTF8() { flatbuffers::Parser parser; // Allow non-UTF-8 initially to model what happens when we load a binary // flatbuffer from disk which contains non-UTF-8 strings. parser.opts.allow_non_utf8 = true; TEST_EQ( parser.Parse( "table T { F:string; }" "root_type T;" "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC" "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"), true); std::string jsongen; parser.opts.indent_step = -1; // Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates // failure. parser.opts.allow_non_utf8 = false; auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); TEST_EQ(result, false); } void UnicodeSurrogatesTest() { flatbuffers::Parser parser; TEST_EQ(parser.Parse("table T { F:string (id: 0); }" "root_type T;" "{ F:\"\\uD83D\\uDCA9\"}"), true); auto root = flatbuffers::GetRoot( parser.builder_.GetBufferPointer()); auto string = root->GetPointer( flatbuffers::FieldIndexToOffset(0)); TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9"); } void UnicodeInvalidSurrogatesTest() { TestError( "table T { F:string; }" "root_type T;" "{ F:\"\\uD800\"}", "unpaired high surrogate"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\\uD800abcd\"}", "unpaired high surrogate"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\\uD800\\n\"}", "unpaired high surrogate"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\\uD800\\uD800\"}", "multiple high surrogates"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\\uDC00\"}", "unpaired low surrogate"); } void InvalidUTF8Test() { // "1 byte" pattern, under min length of 2 bytes TestError( "table T { F:string; }" "root_type T;" "{ F:\"\x80\"}", "illegal UTF-8 sequence"); // 2 byte pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xDF\"}", "illegal UTF-8 sequence"); // 3 byte pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xEF\xBF\"}", "illegal UTF-8 sequence"); // 4 byte pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xF7\xBF\xBF\"}", "illegal UTF-8 sequence"); // "5 byte" pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFB\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // "6 byte" pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // "7 byte" pattern, string too short TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // "5 byte" pattern, over max length of 4 bytes TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // "6 byte" pattern, over max length of 4 bytes TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // "7 byte" pattern, over max length of 4 bytes TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}", "illegal UTF-8 sequence"); // Three invalid encodings for U+000A (\n, aka NEWLINE) TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xC0\x8A\"}", "illegal UTF-8 sequence"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xE0\x80\x8A\"}", "illegal UTF-8 sequence"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xF0\x80\x80\x8A\"}", "illegal UTF-8 sequence"); // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL) TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xE0\x81\xA9\"}", "illegal UTF-8 sequence"); TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xF0\x80\x81\xA9\"}", "illegal UTF-8 sequence"); // Invalid encoding for U+20AC (EURO SYMBOL) TestError( "table T { F:string; }" "root_type T;" "{ F:\"\xF0\x82\x82\xAC\"}", "illegal UTF-8 sequence"); // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in // UTF-8 TestError( "table T { F:string; }" "root_type T;" // U+10400 "encoded" as U+D801 U+DC00 "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}", "illegal UTF-8 sequence"); // Check independence of identifier from locale. std::string locale_ident; locale_ident += "table T { F"; locale_ident += static_cast(-32); // unsigned 0xE0 locale_ident += " :string; }"; locale_ident += "root_type T;"; locale_ident += "{}"; TestError(locale_ident.c_str(), ""); } void UnknownFieldsTest() { flatbuffers::IDLOptions opts; opts.skip_unexpected_fields_in_json = true; flatbuffers::Parser parser(opts); TEST_EQ(parser.Parse("table T { str:string; i:int;}" "root_type T;" "{ str:\"test\"," "unknown_string:\"test\"," "\"unknown_string\":\"test\"," "unknown_int:10," "unknown_float:1.0," "unknown_array: [ 1, 2, 3, 4]," "unknown_object: { i: 10 }," "\"unknown_object\": { \"i\": 10 }," "i:10}"), true); std::string jsongen; parser.opts.indent_step = -1; auto result = GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen); TEST_EQ(result, true); TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}"); } void ParseUnionTest() { // Unions must be parseable with the type field following the object. flatbuffers::Parser parser; TEST_EQ(parser.Parse("table T { A:int; }" "union U { T }" "table V { X:U; }" "root_type V;" "{ X:{ A:1 }, X_type: T }"), true); // Unions must be parsable with prefixed namespace. flatbuffers::Parser parser2; TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }" "table B { e:U; } root_type B;" "{ e_type: N_A, e: {} }"), true); } void InvalidNestedFlatbufferTest() { // First, load and parse FlatBuffer schema (.fbs) std::string schemafile; TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(), false, &schemafile), true); auto include_test_path = flatbuffers::ConCatPathFileName(test_data_path, "include_test"); const char *include_directories[] = { test_data_path.c_str(), include_test_path.c_str(), nullptr }; flatbuffers::Parser parser1; TEST_EQ(parser1.Parse(schemafile.c_str(), include_directories), true); // "color" inside nested flatbuffer contains invalid enum value TEST_EQ(parser1.Parse("{ name: \"Bender\", testnestedflatbuffer: { name: " "\"Leela\", color: \"nonexistent\"}}"), false); // Check that Parser is destroyed correctly after parsing invalid json } void UnionVectorTest() { // load FlatBuffer fbs schema. // TODO: load a JSON file with such a vector when JSON support is ready. std::string schemafile; TEST_EQ(flatbuffers::LoadFile( (test_data_path + "union_vector/union_vector.fbs").c_str(), false, &schemafile), true); // parse schema. flatbuffers::IDLOptions idl_opts; idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kCpp; flatbuffers::Parser parser(idl_opts); TEST_EQ(parser.Parse(schemafile.c_str()), true); flatbuffers::FlatBufferBuilder fbb; // union types. std::vector types; types.push_back(static_cast(Character_Belle)); types.push_back(static_cast(Character_MuLan)); types.push_back(static_cast(Character_BookFan)); types.push_back(static_cast(Character_Other)); types.push_back(static_cast(Character_Unused)); // union values. std::vector> characters; characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/7)).Union()); characters.push_back(CreateAttacker(fbb, /*sword_attack_damage=*/5).Union()); characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/2)).Union()); characters.push_back(fbb.CreateString("Other").Union()); characters.push_back(fbb.CreateString("Unused").Union()); // create Movie. const auto movie_offset = CreateMovie(fbb, Character_Rapunzel, fbb.CreateStruct(Rapunzel(/*hair_length=*/6)).Union(), fbb.CreateVector(types), fbb.CreateVector(characters)); FinishMovieBuffer(fbb, movie_offset); auto buf = fbb.GetBufferPointer(); flatbuffers::Verifier verifier(buf, fbb.GetSize()); TEST_EQ(VerifyMovieBuffer(verifier), true); auto flat_movie = GetMovie(buf); auto TestMovie = [](const Movie *movie) { TEST_EQ(movie->main_character_type() == Character_Rapunzel, true); auto cts = movie->characters_type(); TEST_EQ(movie->characters_type()->size(), 5); TEST_EQ(cts->GetEnum(0) == Character_Belle, true); TEST_EQ(cts->GetEnum(1) == Character_MuLan, true); TEST_EQ(cts->GetEnum(2) == Character_BookFan, true); TEST_EQ(cts->GetEnum(3) == Character_Other, true); TEST_EQ(cts->GetEnum(4) == Character_Unused, true); auto rapunzel = movie->main_character_as_Rapunzel(); TEST_NOTNULL(rapunzel); TEST_EQ(rapunzel->hair_length(), 6); auto cs = movie->characters(); TEST_EQ(cs->size(), 5); auto belle = cs->GetAs(0); TEST_EQ(belle->books_read(), 7); auto mu_lan = cs->GetAs(1); TEST_EQ(mu_lan->sword_attack_damage(), 5); auto book_fan = cs->GetAs(2); TEST_EQ(book_fan->books_read(), 2); auto other = cs->GetAsString(3); TEST_EQ_STR(other->c_str(), "Other"); auto unused = cs->GetAsString(4); TEST_EQ_STR(unused->c_str(), "Unused"); }; TestMovie(flat_movie); auto movie_object = flat_movie->UnPack(); TEST_EQ(movie_object->main_character.AsRapunzel()->hair_length(), 6); TEST_EQ(movie_object->characters[0].AsBelle()->books_read(), 7); TEST_EQ(movie_object->characters[1].AsMuLan()->sword_attack_damage, 5); TEST_EQ(movie_object->characters[2].AsBookFan()->books_read(), 2); TEST_EQ_STR(movie_object->characters[3].AsOther()->c_str(), "Other"); TEST_EQ_STR(movie_object->characters[4].AsUnused()->c_str(), "Unused"); fbb.Clear(); fbb.Finish(Movie::Pack(fbb, movie_object)); delete movie_object; auto repacked_movie = GetMovie(fbb.GetBufferPointer()); TestMovie(repacked_movie); auto s = flatbuffers::FlatBufferToString(fbb.GetBufferPointer(), MovieTypeTable()); TEST_EQ_STR( s.c_str(), "{ main_character_type: Rapunzel, main_character: { hair_length: 6 }, " "characters_type: [ Belle, MuLan, BookFan, Other, Unused ], " "characters: [ { books_read: 7 }, { sword_attack_damage: 5 }, " "{ books_read: 2 }, \"Other\", \"Unused\" ] }"); flatbuffers::ToStringVisitor visitor("\n", true, " "); IterateFlatBuffer(fbb.GetBufferPointer(), MovieTypeTable(), &visitor); TEST_EQ_STR( visitor.s.c_str(), "{\n" " \"main_character_type\": \"Rapunzel\",\n" " \"main_character\": {\n" " \"hair_length\": 6\n" " },\n" " \"characters_type\": [\n" " \"Belle\",\n" " \"MuLan\",\n" " \"BookFan\",\n" " \"Other\",\n" " \"Unused\"\n" " ],\n" " \"characters\": [\n" " {\n" " \"books_read\": 7\n" " },\n" " {\n" " \"sword_attack_damage\": 5\n" " },\n" " {\n" " \"books_read\": 2\n" " },\n" " \"Other\",\n" " \"Unused\"\n" " ]\n" "}"); } void ConformTest() { flatbuffers::Parser parser; TEST_EQ(parser.Parse("table T { A:int; } enum E:byte { A }"), true); auto test_conform = [](flatbuffers::Parser &parser1, const char *test, const char *expected_err) { flatbuffers::Parser parser2; TEST_EQ(parser2.Parse(test), true); auto err = parser2.ConformTo(parser1); TEST_NOTNULL(strstr(err.c_str(), expected_err)); }; test_conform(parser, "table T { A:byte; }", "types differ for field"); test_conform(parser, "table T { B:int; A:int; }", "offsets differ for field"); test_conform(parser, "table T { A:int = 1; }", "defaults differ for field"); test_conform(parser, "table T { B:float; }", "field renamed to different type"); test_conform(parser, "enum E:byte { B, A }", "values differ for enum"); } void ParseProtoBufAsciiTest() { // We can put the parser in a mode where it will accept JSON that looks more // like Protobuf ASCII, for users that have data in that format. // This uses no "" for field names (which we already support by default, // omits `,`, `:` before `{` and a couple of other features. flatbuffers::Parser parser; parser.opts.protobuf_ascii_alike = true; TEST_EQ( parser.Parse("table S { B:int; } table T { A:[int]; C:S; } root_type T;"), true); TEST_EQ(parser.Parse("{ A [1 2] C { B:2 }}"), true); // Similarly, in text output, it should omit these. std::string text; auto ok = flatbuffers::GenerateText( parser, parser.builder_.GetBufferPointer(), &text); TEST_EQ(ok, true); TEST_EQ_STR(text.c_str(), "{\n A [\n 1\n 2\n ]\n C {\n B: 2\n }\n}\n"); } void FlexBuffersTest() { flexbuffers::Builder slb(512, flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS); // Write the equivalent of: // { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ], // foo: 100, bool: true, mymap: { foo: "Fred" } } // clang-format off #ifndef FLATBUFFERS_CPP98_STL // It's possible to do this without std::function support as well. slb.Map([&]() { slb.Vector("vec", [&]() { slb += -100; // Equivalent to slb.Add(-100) or slb.Int(-100); slb += "Fred"; slb.IndirectFloat(4.0f); uint8_t blob[] = { 77 }; slb.Blob(blob, 1); slb += false; }); int ints[] = { 1, 2, 3 }; slb.Vector("bar", ints, 3); slb.FixedTypedVector("bar3", ints, 3); bool bools[] = {true, false, true, false}; slb.Vector("bools", bools, 4); slb.Bool("bool", true); slb.Double("foo", 100); slb.Map("mymap", [&]() { slb.String("foo", "Fred"); // Testing key and string reuse. }); }); slb.Finish(); #else // It's possible to do this without std::function support as well. slb.Map([](flexbuffers::Builder& slb2) { slb2.Vector("vec", [](flexbuffers::Builder& slb3) { slb3 += -100; // Equivalent to slb.Add(-100) or slb.Int(-100); slb3 += "Fred"; slb3.IndirectFloat(4.0f); uint8_t blob[] = { 77 }; slb3.Blob(blob, 1); slb3 += false; }, slb2); int ints[] = { 1, 2, 3 }; slb2.Vector("bar", ints, 3); slb2.FixedTypedVector("bar3", ints, 3); slb2.Bool("bool", true); slb2.Double("foo", 100); slb2.Map("mymap", [](flexbuffers::Builder& slb3) { slb3.String("foo", "Fred"); // Testing key and string reuse. }, slb2); }, slb); slb.Finish(); #endif // FLATBUFFERS_CPP98_STL #ifdef FLATBUFFERS_TEST_VERBOSE for (size_t i = 0; i < slb.GetBuffer().size(); i++) printf("%d ", flatbuffers::vector_data(slb.GetBuffer())[i]); printf("\n"); #endif // clang-format on auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap(); TEST_EQ(map.size(), 7); auto vec = map["vec"].AsVector(); TEST_EQ(vec.size(), 5); TEST_EQ(vec[0].AsInt64(), -100); TEST_EQ_STR(vec[1].AsString().c_str(), "Fred"); TEST_EQ(vec[1].AsInt64(), 0); // Number parsing failed. TEST_EQ(vec[2].AsDouble(), 4.0); TEST_EQ(vec[2].AsString().IsTheEmptyString(), true); // Wrong Type. TEST_EQ_STR(vec[2].AsString().c_str(), ""); // This still works though. TEST_EQ_STR(vec[2].ToString().c_str(), "4.0"); // Or have it converted. // Few tests for templated version of As. TEST_EQ(vec[0].As(), -100); TEST_EQ_STR(vec[1].As().c_str(), "Fred"); TEST_EQ(vec[1].As(), 0); // Number parsing failed. TEST_EQ(vec[2].As(), 4.0); // Test that the blob can be accessed. TEST_EQ(vec[3].IsBlob(), true); auto blob = vec[3].AsBlob(); TEST_EQ(blob.size(), 1); TEST_EQ(blob.data()[0], 77); TEST_EQ(vec[4].IsBool(), true); // Check if type is a bool TEST_EQ(vec[4].AsBool(), false); // Check if value is false auto tvec = map["bar"].AsTypedVector(); TEST_EQ(tvec.size(), 3); TEST_EQ(tvec[2].AsInt8(), 3); auto tvec3 = map["bar3"].AsFixedTypedVector(); TEST_EQ(tvec3.size(), 3); TEST_EQ(tvec3[2].AsInt8(), 3); TEST_EQ(map["bool"].AsBool(), true); auto tvecb = map["bools"].AsTypedVector(); TEST_EQ(tvecb.ElementType(), flexbuffers::FBT_BOOL); TEST_EQ(map["foo"].AsUInt8(), 100); TEST_EQ(map["unknown"].IsNull(), true); auto mymap = map["mymap"].AsMap(); // These should be equal by pointer equality, since key and value are shared. TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey()); TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str()); // We can mutate values in the buffer. TEST_EQ(vec[0].MutateInt(-99), true); TEST_EQ(vec[0].AsInt64(), -99); TEST_EQ(vec[1].MutateString("John"), true); // Size must match. TEST_EQ_STR(vec[1].AsString().c_str(), "John"); TEST_EQ(vec[1].MutateString("Alfred"), false); // Too long. TEST_EQ(vec[2].MutateFloat(2.0f), true); TEST_EQ(vec[2].AsFloat(), 2.0f); TEST_EQ(vec[2].MutateFloat(3.14159), false); // Double does not fit in float. TEST_EQ(vec[4].AsBool(), false); // Is false before change TEST_EQ(vec[4].MutateBool(true), true); // Can change a bool TEST_EQ(vec[4].AsBool(), true); // Changed bool is now true // Parse from JSON: flatbuffers::Parser parser; slb.Clear(); auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }"; TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb), true); auto jroot = flexbuffers::GetRoot(slb.GetBuffer()); auto jmap = jroot.AsMap(); auto jvec = jmap["a"].AsVector(); TEST_EQ(jvec[0].AsInt64(), 123); TEST_EQ(jvec[1].AsDouble(), 456.0); TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello"); TEST_EQ(jmap["c"].IsBool(), true); // Parsed correctly to a bool TEST_EQ(jmap["c"].AsBool(), true); // Parsed correctly to true TEST_EQ(jmap["d"].IsBool(), true); // Parsed correctly to a bool TEST_EQ(jmap["d"].AsBool(), false); // Parsed correctly to false // And from FlexBuffer back to JSON: auto jsonback = jroot.ToString(); TEST_EQ_STR(jsontest, jsonback.c_str()); } void TypeAliasesTest() { flatbuffers::FlatBufferBuilder builder; builder.Finish(CreateTypeAliases( builder, flatbuffers::numeric_limits::min(), flatbuffers::numeric_limits::max(), flatbuffers::numeric_limits::min(), flatbuffers::numeric_limits::max(), flatbuffers::numeric_limits::min(), flatbuffers::numeric_limits::max(), flatbuffers::numeric_limits::min(), flatbuffers::numeric_limits::max(), 2.3f, 2.3)); auto p = builder.GetBufferPointer(); auto ta = flatbuffers::GetRoot(p); TEST_EQ(ta->i8(), flatbuffers::numeric_limits::min()); TEST_EQ(ta->u8(), flatbuffers::numeric_limits::max()); TEST_EQ(ta->i16(), flatbuffers::numeric_limits::min()); TEST_EQ(ta->u16(), flatbuffers::numeric_limits::max()); TEST_EQ(ta->i32(), flatbuffers::numeric_limits::min()); TEST_EQ(ta->u32(), flatbuffers::numeric_limits::max()); TEST_EQ(ta->i64(), flatbuffers::numeric_limits::min()); TEST_EQ(ta->u64(), flatbuffers::numeric_limits::max()); TEST_EQ(ta->f32(), 2.3f); TEST_EQ(ta->f64(), 2.3); using namespace flatbuffers; // is_same static_assert(is_samei8()), int8_t>::value, "invalid type"); static_assert(is_samei16()), int16_t>::value, "invalid type"); static_assert(is_samei32()), int32_t>::value, "invalid type"); static_assert(is_samei64()), int64_t>::value, "invalid type"); static_assert(is_sameu8()), uint8_t>::value, "invalid type"); static_assert(is_sameu16()), uint16_t>::value, "invalid type"); static_assert(is_sameu32()), uint32_t>::value, "invalid type"); static_assert(is_sameu64()), uint64_t>::value, "invalid type"); static_assert(is_samef32()), float>::value, "invalid type"); static_assert(is_samef64()), double>::value, "invalid type"); } void EndianSwapTest() { TEST_EQ(flatbuffers::EndianSwap(static_cast(0x1234)), 0x3412); TEST_EQ(flatbuffers::EndianSwap(static_cast(0x12345678)), 0x78563412); TEST_EQ(flatbuffers::EndianSwap(static_cast(0x1234567890ABCDEF)), 0xEFCDAB9078563412); TEST_EQ(flatbuffers::EndianSwap(flatbuffers::EndianSwap(3.14f)), 3.14f); } void UninitializedVectorTest() { flatbuffers::FlatBufferBuilder builder; Test *buf = nullptr; auto vector_offset = builder.CreateUninitializedVectorOfStructs(2, &buf); TEST_NOTNULL(buf); buf[0] = Test(10, 20); buf[1] = Test(30, 40); auto required_name = builder.CreateString("myMonster"); auto monster_builder = MonsterBuilder(builder); monster_builder.add_name(required_name); // required field mandated for monster. monster_builder.add_test4(vector_offset); builder.Finish(monster_builder.Finish()); auto p = builder.GetBufferPointer(); auto uvt = flatbuffers::GetRoot(p); TEST_NOTNULL(uvt); auto vec = uvt->test4(); TEST_NOTNULL(vec); auto test_0 = vec->Get(0); auto test_1 = vec->Get(1); TEST_EQ(test_0->a(), 10); TEST_EQ(test_0->b(), 20); TEST_EQ(test_1->a(), 30); TEST_EQ(test_1->b(), 40); } void EqualOperatorTest() { MonsterT a; MonsterT b; TEST_EQ(b == a, true); b.mana = 33; TEST_EQ(b == a, false); b.mana = 150; TEST_EQ(b == a, true); b.inventory.push_back(3); TEST_EQ(b == a, false); b.inventory.clear(); TEST_EQ(b == a, true); b.test.type = Any_Monster; TEST_EQ(b == a, false); } // For testing any binaries, e.g. from fuzzing. void LoadVerifyBinaryTest() { std::string binary; if (flatbuffers::LoadFile((test_data_path + "fuzzer/your-filename-here").c_str(), true, &binary)) { flatbuffers::Verifier verifier( reinterpret_cast(binary.data()), binary.size()); TEST_EQ(VerifyMonsterBuffer(verifier), true); } } void CreateSharedStringTest() { flatbuffers::FlatBufferBuilder builder; const auto one1 = builder.CreateSharedString("one"); const auto two = builder.CreateSharedString("two"); const auto one2 = builder.CreateSharedString("one"); TEST_EQ(one1.o, one2.o); const auto onetwo = builder.CreateSharedString("onetwo"); TEST_EQ(onetwo.o != one1.o, true); TEST_EQ(onetwo.o != two.o, true); // Support for embedded nulls const char chars_b[] = {'a', '\0', 'b'}; const char chars_c[] = {'a', '\0', 'c'}; const auto null_b1 = builder.CreateSharedString(chars_b, sizeof(chars_b)); const auto null_c = builder.CreateSharedString(chars_c, sizeof(chars_c)); const auto null_b2 = builder.CreateSharedString(chars_b, sizeof(chars_b)); TEST_EQ(null_b1.o != null_c.o, true); // Issue#5058 repro TEST_EQ(null_b1.o, null_b2.o); // Put the strings into an array for round trip verification. const flatbuffers::Offset array[7] = { one1, two, one2, onetwo, null_b1, null_c, null_b2 }; const auto vector_offset = builder.CreateVector(array, flatbuffers::uoffset_t(7)); MonsterBuilder monster_builder(builder); monster_builder.add_name(two); monster_builder.add_testarrayofstring(vector_offset); builder.Finish(monster_builder.Finish()); // Read the Monster back. const auto *monster = flatbuffers::GetRoot(builder.GetBufferPointer()); TEST_EQ_STR(monster->name()->c_str(), "two"); const auto *testarrayofstring = monster->testarrayofstring(); TEST_EQ(testarrayofstring->size(), flatbuffers::uoffset_t(7)); const auto &a = *testarrayofstring; TEST_EQ_STR(a[0]->c_str(), "one"); TEST_EQ_STR(a[1]->c_str(), "two"); TEST_EQ_STR(a[2]->c_str(), "one"); TEST_EQ_STR(a[3]->c_str(), "onetwo"); TEST_EQ(a[4]->str(), (std::string(chars_b, sizeof(chars_b)))); TEST_EQ(a[5]->str(), (std::string(chars_c, sizeof(chars_c)))); TEST_EQ(a[6]->str(), (std::string(chars_b, sizeof(chars_b)))); // Make sure String::operator< works, too, since it is related to StringOffsetCompare. TEST_EQ((*a[0]) < (*a[1]), true); TEST_EQ((*a[1]) < (*a[0]), false); TEST_EQ((*a[1]) < (*a[2]), false); TEST_EQ((*a[2]) < (*a[1]), true); TEST_EQ((*a[4]) < (*a[3]), true); TEST_EQ((*a[5]) < (*a[4]), false); TEST_EQ((*a[5]) < (*a[4]), false); TEST_EQ((*a[6]) < (*a[5]), true); } int FlatBufferTests() { // clang-format off // Run our various test suites: std::string rawbuf; auto flatbuf1 = CreateFlatBufferTest(rawbuf); #if !defined(FLATBUFFERS_CPP98_STL) auto flatbuf = std::move(flatbuf1); // Test move assignment. #else auto &flatbuf = flatbuf1; #endif // !defined(FLATBUFFERS_CPP98_STL) TriviallyCopyableTest(); AccessFlatBufferTest(reinterpret_cast(rawbuf.c_str()), rawbuf.length()); AccessFlatBufferTest(flatbuf.data(), flatbuf.size()); MutateFlatBuffersTest(flatbuf.data(), flatbuf.size()); ObjectFlatBuffersTest(flatbuf.data()); MiniReflectFlatBuffersTest(flatbuf.data()); SizePrefixedTest(); #ifndef FLATBUFFERS_NO_FILE_TESTS #ifdef FLATBUFFERS_TEST_PATH_PREFIX test_data_path = FLATBUFFERS_STRING(FLATBUFFERS_TEST_PATH_PREFIX) + test_data_path; #endif ParseAndGenerateTextTest(false); ParseAndGenerateTextTest(true); ReflectionTest(flatbuf.data(), flatbuf.size()); ParseProtoTest(); UnionVectorTest(); LoadVerifyBinaryTest(); #endif // clang-format on FuzzTest1(); FuzzTest2(); ErrorTest(); ValueTest(); EnumStringsTest(); EnumNamesTest(); EnumOutOfRangeTest(); IntegerOutOfRangeTest(); IntegerBoundaryTest(); UnicodeTest(); UnicodeTestAllowNonUTF8(); UnicodeTestGenerateTextFailsOnNonUTF8(); UnicodeSurrogatesTest(); UnicodeInvalidSurrogatesTest(); InvalidUTF8Test(); UnknownFieldsTest(); ParseUnionTest(); InvalidNestedFlatbufferTest(); ConformTest(); ParseProtoBufAsciiTest(); TypeAliasesTest(); EndianSwapTest(); CreateSharedStringTest(); JsonDefaultTest(); FlexBuffersTest(); UninitializedVectorTest(); EqualOperatorTest(); NumericUtilsTest(); IsAsciiUtilsTest(); ValidFloatTest(); InvalidFloatTest(); return 0; } int main(int /*argc*/, const char * /*argv*/ []) { InitTestEngine(); std::string req_locale; if (flatbuffers::ReadEnvironmentVariable("FLATBUFFERS_TEST_LOCALE", &req_locale)) { TEST_OUTPUT_LINE("The environment variable FLATBUFFERS_TEST_LOCALE=%s", req_locale.c_str()); req_locale = flatbuffers::RemoveStringQuotes(req_locale); std::string the_locale; TEST_ASSERT_FUNC( flatbuffers::SetGlobalTestLocale(req_locale.c_str(), &the_locale)); TEST_OUTPUT_LINE("The global C-locale changed: %s", the_locale.c_str()); } FlatBufferTests(); FlatBufferBuilderTest(); if (!testing_fails) { TEST_OUTPUT_LINE("ALL TESTS PASSED"); } else { TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails); } return CloseTestEngine(); }