// Copyright 2015 The Gemmlowp Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // output.h: processing the 32-bit accumulators output by the unpack // stage, obtaining the final result matrix entries and storing them into // the destination matrix. #ifndef GEMMLOWP_INTERNAL_OUTPUT_H_ #define GEMMLOWP_INTERNAL_OUTPUT_H_ #include #include #include #include "../fixedpoint/fixedpoint.h" #include "../public/output_stages.h" #include "simd_wrappers.h" namespace gemmlowp { template struct OutputStageEvalBufferImpl { // This generic template body should never be hit. static_assert( std::is_same::value, "Unimplemented: missing implementation of this output pipeline stage " "for this data type. This would happen if some architecture-specific " "SIMD back-end (output_$arch.h) were incomplete."); }; template struct OutputStageEvalImpl { static constexpr int kRows = InputType::kRows; static constexpr int kCols = InputType::kCols; using InputBufferType = typename InputType::BufferType; using BufferEvalImplType = OutputStageEvalBufferImpl; using OutputBufferType = typename BufferEvalImplType::OutputType; using OutputScalarType = typename OutputBufferType::ScalarType; using OutputType = RegisterBlock; OutputStageEvalImpl(const OutputStage& s) : buffer_eval_impl(s) {} OutputType Eval(InputType input, int, int) const { OutputType output; output.buf = buffer_eval_impl.Eval(input.buf); return output; } const BufferEvalImplType buffer_eval_impl; }; template struct OutputStageEvalBufferImpl> { using InputType = RegisterBuffer; using OutputType = RegisterBuffer; typedef OutputStageQuantizeDownInt32ToUint8Scale OutputStage; OutputStageEvalBufferImpl(const OutputStage& s) : output_stage(s) {} OutputType Eval(InputType input) const { const int result_shift = output_stage.result_shift; const std::int32_t result_mult_int = output_stage.result_mult_int; using RegisterType = typename InputType::RegisterType; const RegisterType result_offset = Dup(output_stage.result_offset); OutputType output; for (int i = 0; i < InputType::kRegisterCount; i++) { output.reg[i] = RoundingDivideByPOT( Mul(Add(input.reg[i], result_offset), result_mult_int), result_shift); } return output; } const OutputStage& output_stage; }; template struct OutputStageEvalImpl, RegisterBlock> { typedef RegisterBlock InputType; typedef RegisterBlock OutputType; typedef OutputStageQuantizeDownInt32ToUint8ScalePC OutputStage; OutputStageEvalImpl(const OutputStage& s) : output_stage(s) {} OutputType Eval(InputType input, int row, int col) const { OutputType output; const int result_shift = output_stage.result_shift; const int pos = Shape == VectorShape::Col ? row : col; const auto result_mult_int = LoadForBroadcasting(output_stage.result_mult_int, pos); const auto result_offset = LoadForBroadcasting(output_stage.result_offset, pos); const auto dividend = BroadcastMul( BroadcastAdd(input, result_offset), result_mult_int); for (int i = 0; i < InputType::kRegisterCount; i++) { output.buf.reg[i] = RoundingDivideByPOT(dividend.buf.reg[i], result_shift); } return output; } const OutputStage& output_stage; }; template struct OutputStageEvalBufferImpl< OutputStageQuantizeDownInt32ByFixedPoint, RegisterBuffer> { typedef RegisterBuffer InputType; typedef RegisterBuffer OutputType; typedef OutputStageQuantizeDownInt32ByFixedPoint OutputStage; OutputStageEvalBufferImpl(const OutputStage& s) : output_stage(s) {} OutputType Eval(InputType input) const { OutputType output; using RegisterType = typename InputType::RegisterType; const RegisterType result_offset_after_shift = Dup(output_stage.result_offset_after_shift); for (int i = 0; i < InputType::kRegisterCount; i++) { const RegisterType mulhigh_val = SaturatingRoundingDoublingHighMul( input.reg[i], output_stage.result_fixedpoint_multiplier); output.reg[i] = Add(RoundingDivideByPOT(mulhigh_val, output_stage.result_shift), result_offset_after_shift); } return output; } const OutputStage& output_stage; }; template struct OutputStageEvalBufferImpl> { typedef RegisterBuffer InputType; typedef RegisterBuffer OutputType; typedef OutputStageScaleInt32ByFixedPointAndExponent OutputStage; OutputStageEvalBufferImpl(const OutputStage& s) : output_stage(s) { left_shift = std::max(0, output_stage.result_exponent); right_shift = std::max(0, -output_stage.result_exponent); } OutputType Eval(InputType input) const { OutputType output; using RegisterType = typename InputType::RegisterType; const RegisterType result_offset_after_shift = Dup(output_stage.result_offset_after_shift); for (int i = 0; i < InputType::kRegisterCount; i++) { const RegisterType mulhigh_val = SaturatingRoundingDoublingHighMul( ShiftLeft(input.reg[i], left_shift), output_stage.result_fixedpoint_multiplier); output.reg[i] = Add(RoundingDivideByPOT(mulhigh_val, right_shift), result_offset_after_shift); } return output; } const OutputStage& output_stage; int left_shift; int right_shift; }; // Implementation of OutputStageSaturatingCastToUint8 for scalar data template struct OutputStageEvalBufferImpl> { typedef RegisterBuffer InputType; typedef RegisterBuffer OutputType; static_assert(InputType::kRegisterLanes == 1, "This path is only for scalar values"); typedef OutputStageSaturatingCastToUint8 OutputStage; OutputStageEvalBufferImpl(const OutputStage&) {} OutputType Eval(InputType input) const { OutputType output; for (int i = 0; i < InputType::kRegisterCount; i++) { std::int32_t data = input.reg[i]; output.reg[i] = data > 255 ? 255 : data < 0 ? 0 : data; } return output; } }; // Implementation of OutputStageSaturatingCastToInt16 for scalar data template struct OutputStageEvalBufferImpl> { typedef RegisterBuffer InputType; typedef RegisterBuffer OutputType; static_assert(InputType::kRegisterLanes == 1, "This path is only for scalar values"); typedef OutputStageSaturatingCastToInt16 OutputStage; OutputStageEvalBufferImpl(const OutputStage&) {} OutputType Eval(InputType input) const { OutputType output; for (int i = 0; i < InputType::kRegisterCount; i++) { std::int32_t data = input.reg[i]; output.reg[i] = data > 32767 ? 32767 : data < -32768 ? -32768 : data; } return output; } }; template struct OutputStageEvalImpl, RegisterBlock> { typedef RegisterBlock InputType; typedef RegisterBlock OutputType; typedef OutputStageBiasAddition OutputStage; OutputStageEvalImpl(const OutputStage& s) : output_stage(s) {} OutputType Eval(InputType input, int row, int col) const { const int pos = VectorType::kShape == VectorShape::Row ? col : row; return BroadcastAdd( input, LoadForBroadcasting(output_stage.bias_vector, pos)); } const OutputStage& output_stage; }; template struct OutputStageEvalBufferImpl> { typedef RegisterBuffer InputType; typedef RegisterBuffer OutputType; typedef OutputStageClamp OutputStage; OutputStageEvalBufferImpl(const OutputStage& s) : output_stage(s) {} OutputType Eval(InputType input) const { using RegisterType = typename InputType::RegisterType; const RegisterType min = Dup(output_stage.min); const RegisterType max = Dup(output_stage.max); OutputType output; for (int i = 0; i < InputType::kRegisterCount; i++) { output.reg[i] = Min(Max(input.reg[i], min), max); } return output; } const OutputStage& output_stage; }; template struct OutputStageEvalBufferImpl> { typedef RegisterBuffer InputType; typedef RegisterBuffer OutputType; using RegisterType = typename InputType::RegisterType; typedef RegisterType DataType; typedef OutputStageTanh OutputStage; OutputStageEvalBufferImpl(const OutputStage& s) : output_stage(s) { const std::int32_t real_zero_as_int32 = output_stage.real_zero_as_int32; const std::int32_t real_amplitude_as_int32 = output_stage.real_amplitude_as_int32; input_cutoff_min = real_zero_as_int32 - 8 * real_amplitude_as_int32; input_cutoff_max = real_zero_as_int32 + 8 * real_amplitude_as_int32; output_min = real_zero_as_int32 - real_amplitude_as_int32; output_max = real_zero_as_int32 + real_amplitude_as_int32; double inverse_amplitude_normalized_double = 1.0 / real_amplitude_as_int32; inverse_amplitude_neg_exponent = 0; while (inverse_amplitude_normalized_double < 0.5) { inverse_amplitude_normalized_double *= 2; inverse_amplitude_neg_exponent++; } inverse_amplitude_normalized = FixedPoint::FromDouble( inverse_amplitude_normalized_double); double amplitude_normalized_double = real_amplitude_as_int32; amplitude_exponent = 0; while (amplitude_normalized_double >= 1.0) { amplitude_normalized_double *= 0.5; amplitude_exponent++; } amplitude_normalized = FixedPoint::FromDouble(amplitude_normalized_double); } OutputType Eval(InputType input) const { const std::int32_t real_zero_as_int32 = output_stage.real_zero_as_int32; typedef FixedPoint F3; typedef FixedPoint F0; OutputType output; for (int i = 0; i < OutputType::kRegisterCount; i++) { // fixed-point affine transformation DataType input_centered = Sub(input.reg[i], Dup(real_zero_as_int32)); F3 fixedpoint_input = F3::FromRaw(input_centered) * inverse_amplitude_normalized; // left shift fixedpoint_input.raw() = ShiftLeft(fixedpoint_input.raw(), 28 - inverse_amplitude_neg_exponent); // fixed-point tanh and multiplication F0 fixedpoint_output = tanh(fixedpoint_input) * amplitude_normalized; // right shift DataType int32_output = Add(Dup(real_zero_as_int32), ShiftRight(fixedpoint_output.raw(), 31 - amplitude_exponent)); DataType mask_if_below_cutoff_min = MaskIfLessThanOrEqual(input.reg[i], Dup(input_cutoff_min)); DataType mask_if_above_cutoff_max = MaskIfGreaterThanOrEqual( input.reg[i], Dup(input_cutoff_max)); output.reg[i] = SelectUsingMask( mask_if_below_cutoff_min, Dup(output_min), SelectUsingMask(mask_if_above_cutoff_max, Dup(output_max), int32_output)); } return output; } const OutputStage& output_stage; std::int32_t input_cutoff_min, input_cutoff_max; std::int32_t output_min, output_max; FixedPoint inverse_amplitude_normalized; int inverse_amplitude_neg_exponent; FixedPoint amplitude_normalized; int amplitude_exponent; }; // OutputPipelineOutputType is a helper to determine the output data type of a // pipeline, for a // given input data type. It is a recursive template; see the explanation on // OutputPipelineEvalImpl below. template ::value> struct OutputPipelineOutputType { typedef typename std::tuple_element::type FirstStageType; typedef typename OutputStageEvalImpl::OutputType FirstStageOutputType; typedef typename OutputPipelineOutputType::Type Type; }; template struct OutputPipelineOutputType { typedef InputType Type; }; // OutputPipelineEvalImpl is a helper to implement the evaluation of // the whole pipeline. It is a recursive template to implement compile-time // unrolling of the loop over all pipeline stages. The 'FirstStage' parameter // is how we implement recursion: each specialization implements only // evaluation starting at 'FirstStage'. The StopRecursion parameter is just a // helper to implement the termination of the recursion as a partial // specialization below. template ::value> struct OutputPipelineEvalImpl { typedef typename std::tuple_element::type FirstStageType; typedef typename OutputStageEvalImpl::OutputType FirstStageOutputType; typedef typename OutputPipelineOutputType::Type OutputType; OutputPipelineEvalImpl(const OutputPipelineType& output_pipeline) : head_impl(std::get(output_pipeline)), tail_impl(output_pipeline) {} OutputType Eval(InputType input, int row, int col) const { // Evaluate the first stage. FirstStageOutputType first_stage_output = head_impl.Eval(input, row, col); // Recurse into the remaining stages. return tail_impl.Eval(first_stage_output, row, col); } const OutputStageEvalImpl head_impl; const OutputPipelineEvalImpl tail_impl; }; // Specialization on 'StopRecursion' for terminating the recursion. template struct OutputPipelineEvalImpl { OutputPipelineEvalImpl(const OutputPipelineType&) {} InputType Eval(InputType input, int, int) const { // Terminating the recursion. return input; } }; template struct StoreFinalOutputImpl { static_assert(std::is_same::value, "This generic impl should never be hit"); }; template struct StoreFinalOutputImpl, DstType> { using RegisterBlockType = RegisterBlock; static void Run(const RegisterBlockType& src, DstType* dst, int row, int col) { for (int r = 0; r < Rows; r++) { for (int c = 0; c < Cols; c++) { *dst->data(row + r, col + c) = src.buf.reg[r + c * Rows]; } } } }; // StoreFinalOutput takes the final value at the end of the output pipeline and // stores it into the destination matrix. It can be specialized for different // data types; the generic implementation here is typically used only for plain // old scalar (not SIMD) types. template void StoreFinalOutput(RegisterBlockType src, DstType* dst, int row, int col) { StoreFinalOutputImpl::Run(src, dst, row, col); } template struct OutputPipelineExecutor { OutputPipelineExecutor(const OutputPipelineType& output_pipeline) : output_pipeline_eval_impl_(output_pipeline) {} // RunOutputPipeline is the entry point into the output pipeline evaluation // code. It should be the only thing that unpack code calls. It takes the // result // of the unpack stage and stores it into the destination matrix. template void Execute(InputType input, DstType* dst, int src_global_row, int src_global_col, int dst_row, int dst_col) const { // Statically assert that the output pipeline matches the given destination // matrix's scalar type. typedef typename OutputPipelineOutputType< OutputPipelineType, 0, InputType>::Type::BufferType::ScalarType ScalarOutputType; typedef typename DstType::Scalar ScalarDstType; static_assert(std::is_same::value, "mismatched destination scalar type and output pipeline"); // Evaluate the output pipeline. auto output = output_pipeline_eval_impl_.Eval(input, src_global_row, src_global_col); // Store the result into the destination matrix. StoreFinalOutput(output, dst, dst_row, dst_col); } const OutputPipelineEvalImpl output_pipeline_eval_impl_; }; } // namespace gemmlowp #ifdef GEMMLOWP_NEON #include "output_neon.h" #elif defined(GEMMLOWP_SSE4) #include "output_sse.h" #elif defined(GEMMLOWP_MSA) #include "output_msa.h" #endif #endif // GEMMLOWP_INTERNAL_OUTPUT_H_