// Copyright 2015 The Gemmlowp Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // single_thread_gemm.h: Single-threaded GEMM implementation. // This is a good place to start reading code, as it shows the overall // structure of a GEMM and is much simpler than multi_thread_gemm.h. #ifndef GEMMLOWP_INTERNAL_SINGLE_THREAD_GEMM_H_ #define GEMMLOWP_INTERNAL_SINGLE_THREAD_GEMM_H_ #include #include "../public/map.h" #include "allocator.h" #include "compute.h" #include "kernel.h" #include "pack.h" #include "unpack.h" #ifdef GEMMLOWP_PROFILING_SIZES #ifndef GEMMLOWP_PROFILING #error GEMMLOWP_PROFILING_SIZES without GEMMLOWP_PROFILING #endif #include #include #endif namespace gemmlowp { class SingleThreadGemmContext { public: Allocator* allocator() { return &allocator_; } void set_l1_bytes_to_use(int n) { l1_bytes_to_use_ = n; } void set_l2_bytes_to_use(int n) { l2_bytes_to_use_ = n; } void set_l2_rhs_factor(float n) { l2_rhs_factor_ = n; } int l1_bytes_to_use() const { return l1_bytes_to_use_; } int l2_bytes_to_use() const { return l2_bytes_to_use_; } float l2_rhs_factor() const { return l2_rhs_factor_; } protected: Allocator allocator_; // The cache configurationt to use. int l1_bytes_to_use_ = kDefaultL1CacheSize; int l2_bytes_to_use_ = kDefaultL2CacheSize; float l2_rhs_factor_ = kDefaultL2RhsFactor; }; template void SingleThreadGemm(SingleThreadGemmContext* context, const KernelBase& kernel, const MatrixMap& lhs, const MatrixMap& rhs, MatrixMap* result, const LhsOffset& lhs_offset, const RhsOffset& rhs_offset, const OutputPipelineType& output_pipeline) { ScopedProfilingLabel label("gemmlowp::SingleThreadGemm"); assert(lhs.cols() == rhs.rows()); int rows = result->rows(); int cols = result->cols(); int depth = lhs.cols(); // zero sizes should have been caught earlier and early-returned. assert(rows > 0); assert(cols > 0); assert(depth > 0); // The case of rows= cols); Allocator* allocator = context->allocator(); BlockParams block_params; block_params.Init( rows, cols, depth, 1, context->l1_bytes_to_use(), context->l2_bytes_to_use(), context->l2_rhs_factor()); #ifdef GEMMLOWP_PROFILING_SIZES // Using a static map of label strings. Not reentrant at all! static std::unordered_map labels_map; std::uint64_t sizes_hash = static_cast(rows) ^ (static_cast(depth) << 16) ^ (static_cast(cols) << 32); if (!labels_map.count(sizes_hash)) { char label[256]; snprintf(label, sizeof(label), "(rows = %d, depth = %d, cols = %d, l2_rows = %d, l2_depth = %d, " "l2_cols = %d, l1_rows = %d, l1_depth = %d, l1_cols = %d)", rows, depth, cols, block_params.l2_rows, block_params.l2_depth, block_params.l2_cols, block_params.l1_rows, block_params.l1_depth, block_params.l1_cols); labels_map[sizes_hash] = label; } ScopedProfilingLabel size_label(labels_map[sizes_hash].c_str()); #endif PackedSideBlock packed_lhs(Side::Lhs, allocator, block_params); PackedSideBlock packed_rhs(Side::Rhs, allocator, block_params); PackedResult packed_result(allocator, block_params); allocator->Commit(); const bool pack_rhs_once = block_params.l2_cols >= cols; if (pack_rhs_once) { PackRhs(&packed_rhs, rhs); } for (int r = 0; r < rows; r += block_params.l2_rows) { int rs = std::min(block_params.l2_rows, rows - r); PackLhs(&packed_lhs, lhs.block(r, 0, rs, depth)); for (int c = 0; c < cols; c += block_params.l2_cols) { int cs = std::min(block_params.l2_cols, cols - c); if (!pack_rhs_once) { PackRhs(&packed_rhs, rhs.block(0, c, depth, cs)); } Compute(kernel, block_params, &packed_result, packed_lhs, packed_rhs, depth); UnpackResult( result, MatrixBlockBounds(r, c, rs, cs), packed_result, depth, packed_lhs.sums_of_each_slice(), packed_rhs.sums_of_each_slice(), lhs_offset.block(r, rs), rhs_offset.block(c, cs), output_pipeline); } } allocator->Decommit(); } } // namespace gemmlowp #endif // GEMMLOWP_INTERNAL_SINGLE_THREAD_GEMM_H_