// © 2018 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING // Allow implicit conversion from char16_t* to UnicodeString for this file: // Helpful in toString methods and elsewhere. #define UNISTR_FROM_STRING_EXPLICIT #include "number_decnum.h" #include "number_skeletons.h" #include "umutex.h" #include "ucln_in.h" #include "patternprops.h" #include "unicode/ucharstriebuilder.h" #include "number_utils.h" #include "number_decimalquantity.h" #include "unicode/numberformatter.h" #include "uinvchar.h" #include "charstr.h" using namespace icu; using namespace icu::number; using namespace icu::number::impl; using namespace icu::number::impl::skeleton; namespace { icu::UInitOnce gNumberSkeletonsInitOnce = U_INITONCE_INITIALIZER; char16_t* kSerializedStemTrie = nullptr; UBool U_CALLCONV cleanupNumberSkeletons() { uprv_free(kSerializedStemTrie); kSerializedStemTrie = nullptr; gNumberSkeletonsInitOnce.reset(); return TRUE; } void U_CALLCONV initNumberSkeletons(UErrorCode& status) { ucln_i18n_registerCleanup(UCLN_I18N_NUMBER_SKELETONS, cleanupNumberSkeletons); UCharsTrieBuilder b(status); if (U_FAILURE(status)) { return; } // Section 1: b.add(u"compact-short", STEM_COMPACT_SHORT, status); b.add(u"compact-long", STEM_COMPACT_LONG, status); b.add(u"scientific", STEM_SCIENTIFIC, status); b.add(u"engineering", STEM_ENGINEERING, status); b.add(u"notation-simple", STEM_NOTATION_SIMPLE, status); b.add(u"base-unit", STEM_BASE_UNIT, status); b.add(u"percent", STEM_PERCENT, status); b.add(u"permille", STEM_PERMILLE, status); b.add(u"precision-integer", STEM_PRECISION_INTEGER, status); b.add(u"precision-unlimited", STEM_PRECISION_UNLIMITED, status); b.add(u"precision-currency-standard", STEM_PRECISION_CURRENCY_STANDARD, status); b.add(u"precision-currency-cash", STEM_PRECISION_CURRENCY_CASH, status); b.add(u"rounding-mode-ceiling", STEM_ROUNDING_MODE_CEILING, status); b.add(u"rounding-mode-floor", STEM_ROUNDING_MODE_FLOOR, status); b.add(u"rounding-mode-down", STEM_ROUNDING_MODE_DOWN, status); b.add(u"rounding-mode-up", STEM_ROUNDING_MODE_UP, status); b.add(u"rounding-mode-half-even", STEM_ROUNDING_MODE_HALF_EVEN, status); b.add(u"rounding-mode-half-down", STEM_ROUNDING_MODE_HALF_DOWN, status); b.add(u"rounding-mode-half-up", STEM_ROUNDING_MODE_HALF_UP, status); b.add(u"rounding-mode-unnecessary", STEM_ROUNDING_MODE_UNNECESSARY, status); b.add(u"group-off", STEM_GROUP_OFF, status); b.add(u"group-min2", STEM_GROUP_MIN2, status); b.add(u"group-auto", STEM_GROUP_AUTO, status); b.add(u"group-on-aligned", STEM_GROUP_ON_ALIGNED, status); b.add(u"group-thousands", STEM_GROUP_THOUSANDS, status); b.add(u"latin", STEM_LATIN, status); b.add(u"unit-width-narrow", STEM_UNIT_WIDTH_NARROW, status); b.add(u"unit-width-short", STEM_UNIT_WIDTH_SHORT, status); b.add(u"unit-width-full-name", STEM_UNIT_WIDTH_FULL_NAME, status); b.add(u"unit-width-iso-code", STEM_UNIT_WIDTH_ISO_CODE, status); b.add(u"unit-width-hidden", STEM_UNIT_WIDTH_HIDDEN, status); b.add(u"sign-auto", STEM_SIGN_AUTO, status); b.add(u"sign-always", STEM_SIGN_ALWAYS, status); b.add(u"sign-never", STEM_SIGN_NEVER, status); b.add(u"sign-accounting", STEM_SIGN_ACCOUNTING, status); b.add(u"sign-accounting-always", STEM_SIGN_ACCOUNTING_ALWAYS, status); b.add(u"sign-except-zero", STEM_SIGN_EXCEPT_ZERO, status); b.add(u"sign-accounting-except-zero", STEM_SIGN_ACCOUNTING_EXCEPT_ZERO, status); b.add(u"decimal-auto", STEM_DECIMAL_AUTO, status); b.add(u"decimal-always", STEM_DECIMAL_ALWAYS, status); if (U_FAILURE(status)) { return; } // Section 2: b.add(u"precision-increment", STEM_PRECISION_INCREMENT, status); b.add(u"measure-unit", STEM_MEASURE_UNIT, status); b.add(u"per-measure-unit", STEM_PER_MEASURE_UNIT, status); b.add(u"currency", STEM_CURRENCY, status); b.add(u"integer-width", STEM_INTEGER_WIDTH, status); b.add(u"numbering-system", STEM_NUMBERING_SYSTEM, status); b.add(u"scale", STEM_SCALE, status); if (U_FAILURE(status)) { return; } // Build the CharsTrie // TODO: Use SLOW or FAST here? UnicodeString result; b.buildUnicodeString(USTRINGTRIE_BUILD_FAST, result, status); if (U_FAILURE(status)) { return; } // Copy the result into the global constant pointer size_t numBytes = result.length() * sizeof(char16_t); kSerializedStemTrie = static_cast(uprv_malloc(numBytes)); uprv_memcpy(kSerializedStemTrie, result.getBuffer(), numBytes); } inline void appendMultiple(UnicodeString& sb, UChar32 cp, int32_t count) { for (int i = 0; i < count; i++) { sb.append(cp); } } #define CHECK_NULL(seen, field, status) (void)(seen); /* for auto-format line wrapping */ \ { \ if ((seen).field) { \ (status) = U_NUMBER_SKELETON_SYNTAX_ERROR; \ return STATE_NULL; \ } \ (seen).field = true; \ } #define SKELETON_UCHAR_TO_CHAR(dest, src, start, end, status) (void)(dest); \ { \ UErrorCode conversionStatus = U_ZERO_ERROR; \ (dest).appendInvariantChars({FALSE, (src).getBuffer() + (start), (end) - (start)}, conversionStatus); \ if (conversionStatus == U_INVARIANT_CONVERSION_ERROR) { \ /* Don't propagate the invariant conversion error; it is a skeleton syntax error */ \ (status) = U_NUMBER_SKELETON_SYNTAX_ERROR; \ return; \ } else if (U_FAILURE(conversionStatus)) { \ (status) = conversionStatus; \ return; \ } \ } } // anonymous namespace Notation stem_to_object::notation(skeleton::StemEnum stem) { switch (stem) { case STEM_COMPACT_SHORT: return Notation::compactShort(); case STEM_COMPACT_LONG: return Notation::compactLong(); case STEM_SCIENTIFIC: return Notation::scientific(); case STEM_ENGINEERING: return Notation::engineering(); case STEM_NOTATION_SIMPLE: return Notation::simple(); default: U_ASSERT(false); return Notation::simple(); // return a value: silence compiler warning } } MeasureUnit stem_to_object::unit(skeleton::StemEnum stem) { switch (stem) { case STEM_BASE_UNIT: // Slicing is okay return NoUnit::base(); // NOLINT case STEM_PERCENT: // Slicing is okay return NoUnit::percent(); // NOLINT case STEM_PERMILLE: // Slicing is okay return NoUnit::permille(); // NOLINT default: U_ASSERT(false); return {}; // return a value: silence compiler warning } } Precision stem_to_object::precision(skeleton::StemEnum stem) { switch (stem) { case STEM_PRECISION_INTEGER: return Precision::integer(); case STEM_PRECISION_UNLIMITED: return Precision::unlimited(); case STEM_PRECISION_CURRENCY_STANDARD: return Precision::currency(UCURR_USAGE_STANDARD); case STEM_PRECISION_CURRENCY_CASH: return Precision::currency(UCURR_USAGE_CASH); default: U_ASSERT(false); return Precision::integer(); // return a value: silence compiler warning } } UNumberFormatRoundingMode stem_to_object::roundingMode(skeleton::StemEnum stem) { switch (stem) { case STEM_ROUNDING_MODE_CEILING: return UNUM_ROUND_CEILING; case STEM_ROUNDING_MODE_FLOOR: return UNUM_ROUND_FLOOR; case STEM_ROUNDING_MODE_DOWN: return UNUM_ROUND_DOWN; case STEM_ROUNDING_MODE_UP: return UNUM_ROUND_UP; case STEM_ROUNDING_MODE_HALF_EVEN: return UNUM_ROUND_HALFEVEN; case STEM_ROUNDING_MODE_HALF_DOWN: return UNUM_ROUND_HALFDOWN; case STEM_ROUNDING_MODE_HALF_UP: return UNUM_ROUND_HALFUP; case STEM_ROUNDING_MODE_UNNECESSARY: return UNUM_ROUND_UNNECESSARY; default: U_ASSERT(false); return UNUM_ROUND_UNNECESSARY; } } UGroupingStrategy stem_to_object::groupingStrategy(skeleton::StemEnum stem) { switch (stem) { case STEM_GROUP_OFF: return UNUM_GROUPING_OFF; case STEM_GROUP_MIN2: return UNUM_GROUPING_MIN2; case STEM_GROUP_AUTO: return UNUM_GROUPING_AUTO; case STEM_GROUP_ON_ALIGNED: return UNUM_GROUPING_ON_ALIGNED; case STEM_GROUP_THOUSANDS: return UNUM_GROUPING_THOUSANDS; default: return UNUM_GROUPING_COUNT; // for objects, throw; for enums, return COUNT } } UNumberUnitWidth stem_to_object::unitWidth(skeleton::StemEnum stem) { switch (stem) { case STEM_UNIT_WIDTH_NARROW: return UNUM_UNIT_WIDTH_NARROW; case STEM_UNIT_WIDTH_SHORT: return UNUM_UNIT_WIDTH_SHORT; case STEM_UNIT_WIDTH_FULL_NAME: return UNUM_UNIT_WIDTH_FULL_NAME; case STEM_UNIT_WIDTH_ISO_CODE: return UNUM_UNIT_WIDTH_ISO_CODE; case STEM_UNIT_WIDTH_HIDDEN: return UNUM_UNIT_WIDTH_HIDDEN; default: return UNUM_UNIT_WIDTH_COUNT; // for objects, throw; for enums, return COUNT } } UNumberSignDisplay stem_to_object::signDisplay(skeleton::StemEnum stem) { switch (stem) { case STEM_SIGN_AUTO: return UNUM_SIGN_AUTO; case STEM_SIGN_ALWAYS: return UNUM_SIGN_ALWAYS; case STEM_SIGN_NEVER: return UNUM_SIGN_NEVER; case STEM_SIGN_ACCOUNTING: return UNUM_SIGN_ACCOUNTING; case STEM_SIGN_ACCOUNTING_ALWAYS: return UNUM_SIGN_ACCOUNTING_ALWAYS; case STEM_SIGN_EXCEPT_ZERO: return UNUM_SIGN_EXCEPT_ZERO; case STEM_SIGN_ACCOUNTING_EXCEPT_ZERO: return UNUM_SIGN_ACCOUNTING_EXCEPT_ZERO; default: return UNUM_SIGN_COUNT; // for objects, throw; for enums, return COUNT } } UNumberDecimalSeparatorDisplay stem_to_object::decimalSeparatorDisplay(skeleton::StemEnum stem) { switch (stem) { case STEM_DECIMAL_AUTO: return UNUM_DECIMAL_SEPARATOR_AUTO; case STEM_DECIMAL_ALWAYS: return UNUM_DECIMAL_SEPARATOR_ALWAYS; default: return UNUM_DECIMAL_SEPARATOR_COUNT; // for objects, throw; for enums, return COUNT } } void enum_to_stem_string::roundingMode(UNumberFormatRoundingMode value, UnicodeString& sb) { switch (value) { case UNUM_ROUND_CEILING: sb.append(u"rounding-mode-ceiling", -1); break; case UNUM_ROUND_FLOOR: sb.append(u"rounding-mode-floor", -1); break; case UNUM_ROUND_DOWN: sb.append(u"rounding-mode-down", -1); break; case UNUM_ROUND_UP: sb.append(u"rounding-mode-up", -1); break; case UNUM_ROUND_HALFEVEN: sb.append(u"rounding-mode-half-even", -1); break; case UNUM_ROUND_HALFDOWN: sb.append(u"rounding-mode-half-down", -1); break; case UNUM_ROUND_HALFUP: sb.append(u"rounding-mode-half-up", -1); break; case UNUM_ROUND_UNNECESSARY: sb.append(u"rounding-mode-unnecessary", -1); break; default: U_ASSERT(false); } } void enum_to_stem_string::groupingStrategy(UGroupingStrategy value, UnicodeString& sb) { switch (value) { case UNUM_GROUPING_OFF: sb.append(u"group-off", -1); break; case UNUM_GROUPING_MIN2: sb.append(u"group-min2", -1); break; case UNUM_GROUPING_AUTO: sb.append(u"group-auto", -1); break; case UNUM_GROUPING_ON_ALIGNED: sb.append(u"group-on-aligned", -1); break; case UNUM_GROUPING_THOUSANDS: sb.append(u"group-thousands", -1); break; default: U_ASSERT(false); } } void enum_to_stem_string::unitWidth(UNumberUnitWidth value, UnicodeString& sb) { switch (value) { case UNUM_UNIT_WIDTH_NARROW: sb.append(u"unit-width-narrow", -1); break; case UNUM_UNIT_WIDTH_SHORT: sb.append(u"unit-width-short", -1); break; case UNUM_UNIT_WIDTH_FULL_NAME: sb.append(u"unit-width-full-name", -1); break; case UNUM_UNIT_WIDTH_ISO_CODE: sb.append(u"unit-width-iso-code", -1); break; case UNUM_UNIT_WIDTH_HIDDEN: sb.append(u"unit-width-hidden", -1); break; default: U_ASSERT(false); } } void enum_to_stem_string::signDisplay(UNumberSignDisplay value, UnicodeString& sb) { switch (value) { case UNUM_SIGN_AUTO: sb.append(u"sign-auto", -1); break; case UNUM_SIGN_ALWAYS: sb.append(u"sign-always", -1); break; case UNUM_SIGN_NEVER: sb.append(u"sign-never", -1); break; case UNUM_SIGN_ACCOUNTING: sb.append(u"sign-accounting", -1); break; case UNUM_SIGN_ACCOUNTING_ALWAYS: sb.append(u"sign-accounting-always", -1); break; case UNUM_SIGN_EXCEPT_ZERO: sb.append(u"sign-except-zero", -1); break; case UNUM_SIGN_ACCOUNTING_EXCEPT_ZERO: sb.append(u"sign-accounting-except-zero", -1); break; default: U_ASSERT(false); } } void enum_to_stem_string::decimalSeparatorDisplay(UNumberDecimalSeparatorDisplay value, UnicodeString& sb) { switch (value) { case UNUM_DECIMAL_SEPARATOR_AUTO: sb.append(u"decimal-auto", -1); break; case UNUM_DECIMAL_SEPARATOR_ALWAYS: sb.append(u"decimal-always", -1); break; default: U_ASSERT(false); } } UnlocalizedNumberFormatter skeleton::create(const UnicodeString& skeletonString, UErrorCode& status) { umtx_initOnce(gNumberSkeletonsInitOnce, &initNumberSkeletons, status); MacroProps macros = parseSkeleton(skeletonString, status); return NumberFormatter::with().macros(macros); } UnicodeString skeleton::generate(const MacroProps& macros, UErrorCode& status) { umtx_initOnce(gNumberSkeletonsInitOnce, &initNumberSkeletons, status); UnicodeString sb; GeneratorHelpers::generateSkeleton(macros, sb, status); return sb; } MacroProps skeleton::parseSkeleton(const UnicodeString& skeletonString, UErrorCode& status) { if (U_FAILURE(status)) { return MacroProps(); } // Add a trailing whitespace to the end of the skeleton string to make code cleaner. UnicodeString tempSkeletonString(skeletonString); tempSkeletonString.append(u' '); SeenMacroProps seen; MacroProps macros; StringSegment segment(tempSkeletonString, false); UCharsTrie stemTrie(kSerializedStemTrie); ParseState stem = STATE_NULL; int32_t offset = 0; // Primary skeleton parse loop: while (offset < segment.length()) { UChar32 cp = segment.codePointAt(offset); bool isTokenSeparator = PatternProps::isWhiteSpace(cp); bool isOptionSeparator = (cp == u'/'); if (!isTokenSeparator && !isOptionSeparator) { // Non-separator token; consume it. offset += U16_LENGTH(cp); if (stem == STATE_NULL) { // We are currently consuming a stem. // Go to the next state in the stem trie. stemTrie.nextForCodePoint(cp); } continue; } // We are looking at a token or option separator. // If the segment is nonempty, parse it and reset the segment. // Otherwise, make sure it is a valid repeating separator. if (offset != 0) { segment.setLength(offset); if (stem == STATE_NULL) { // The first separator after the start of a token. Parse it as a stem. stem = parseStem(segment, stemTrie, seen, macros, status); stemTrie.reset(); } else { // A separator after the first separator of a token. Parse it as an option. stem = parseOption(stem, segment, macros, status); } segment.resetLength(); if (U_FAILURE(status)) { return macros; } // Consume the segment: segment.adjustOffset(offset); offset = 0; } else if (stem != STATE_NULL) { // A separator ('/' or whitespace) following an option separator ('/') // segment.setLength(U16_LENGTH(cp)); // for error message // throw new SkeletonSyntaxException("Unexpected separator character", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return macros; } else { // Two spaces in a row; this is OK. } // Does the current stem forbid options? if (isOptionSeparator && stem == STATE_NULL) { // segment.setLength(U16_LENGTH(cp)); // for error message // throw new SkeletonSyntaxException("Unexpected option separator", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return macros; } // Does the current stem require an option? if (isTokenSeparator && stem != STATE_NULL) { switch (stem) { case STATE_INCREMENT_PRECISION: case STATE_MEASURE_UNIT: case STATE_PER_MEASURE_UNIT: case STATE_CURRENCY_UNIT: case STATE_INTEGER_WIDTH: case STATE_NUMBERING_SYSTEM: case STATE_SCALE: // segment.setLength(U16_LENGTH(cp)); // for error message // throw new SkeletonSyntaxException("Stem requires an option", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return macros; default: break; } stem = STATE_NULL; } // Consume the separator: segment.adjustOffset(U16_LENGTH(cp)); } U_ASSERT(stem == STATE_NULL); return macros; } ParseState skeleton::parseStem(const StringSegment& segment, const UCharsTrie& stemTrie, SeenMacroProps& seen, MacroProps& macros, UErrorCode& status) { // First check for "blueprint" stems, which start with a "signal char" switch (segment.charAt(0)) { case u'.': CHECK_NULL(seen, precision, status); blueprint_helpers::parseFractionStem(segment, macros, status); return STATE_FRACTION_PRECISION; case u'@': CHECK_NULL(seen, precision, status); blueprint_helpers::parseDigitsStem(segment, macros, status); return STATE_NULL; default: break; } // Now look at the stemsTrie, which is already be pointing at our stem. UStringTrieResult stemResult = stemTrie.current(); if (stemResult != USTRINGTRIE_INTERMEDIATE_VALUE && stemResult != USTRINGTRIE_FINAL_VALUE) { // throw new SkeletonSyntaxException("Unknown stem", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return STATE_NULL; } auto stem = static_cast(stemTrie.getValue()); switch (stem) { // Stems with meaning on their own, not requiring an option: case STEM_COMPACT_SHORT: case STEM_COMPACT_LONG: case STEM_SCIENTIFIC: case STEM_ENGINEERING: case STEM_NOTATION_SIMPLE: CHECK_NULL(seen, notation, status); macros.notation = stem_to_object::notation(stem); switch (stem) { case STEM_SCIENTIFIC: case STEM_ENGINEERING: return STATE_SCIENTIFIC; // allows for scientific options default: return STATE_NULL; } case STEM_BASE_UNIT: case STEM_PERCENT: case STEM_PERMILLE: CHECK_NULL(seen, unit, status); macros.unit = stem_to_object::unit(stem); return STATE_NULL; case STEM_PRECISION_INTEGER: case STEM_PRECISION_UNLIMITED: case STEM_PRECISION_CURRENCY_STANDARD: case STEM_PRECISION_CURRENCY_CASH: CHECK_NULL(seen, precision, status); macros.precision = stem_to_object::precision(stem); switch (stem) { case STEM_PRECISION_INTEGER: return STATE_FRACTION_PRECISION; // allows for "precision-integer/@##" default: return STATE_NULL; } case STEM_ROUNDING_MODE_CEILING: case STEM_ROUNDING_MODE_FLOOR: case STEM_ROUNDING_MODE_DOWN: case STEM_ROUNDING_MODE_UP: case STEM_ROUNDING_MODE_HALF_EVEN: case STEM_ROUNDING_MODE_HALF_DOWN: case STEM_ROUNDING_MODE_HALF_UP: case STEM_ROUNDING_MODE_UNNECESSARY: CHECK_NULL(seen, roundingMode, status); macros.roundingMode = stem_to_object::roundingMode(stem); return STATE_NULL; case STEM_GROUP_OFF: case STEM_GROUP_MIN2: case STEM_GROUP_AUTO: case STEM_GROUP_ON_ALIGNED: case STEM_GROUP_THOUSANDS: CHECK_NULL(seen, grouper, status); macros.grouper = Grouper::forStrategy(stem_to_object::groupingStrategy(stem)); return STATE_NULL; case STEM_LATIN: CHECK_NULL(seen, symbols, status); macros.symbols.setTo(NumberingSystem::createInstanceByName("latn", status)); return STATE_NULL; case STEM_UNIT_WIDTH_NARROW: case STEM_UNIT_WIDTH_SHORT: case STEM_UNIT_WIDTH_FULL_NAME: case STEM_UNIT_WIDTH_ISO_CODE: case STEM_UNIT_WIDTH_HIDDEN: CHECK_NULL(seen, unitWidth, status); macros.unitWidth = stem_to_object::unitWidth(stem); return STATE_NULL; case STEM_SIGN_AUTO: case STEM_SIGN_ALWAYS: case STEM_SIGN_NEVER: case STEM_SIGN_ACCOUNTING: case STEM_SIGN_ACCOUNTING_ALWAYS: case STEM_SIGN_EXCEPT_ZERO: case STEM_SIGN_ACCOUNTING_EXCEPT_ZERO: CHECK_NULL(seen, sign, status); macros.sign = stem_to_object::signDisplay(stem); return STATE_NULL; case STEM_DECIMAL_AUTO: case STEM_DECIMAL_ALWAYS: CHECK_NULL(seen, decimal, status); macros.decimal = stem_to_object::decimalSeparatorDisplay(stem); return STATE_NULL; // Stems requiring an option: case STEM_PRECISION_INCREMENT: CHECK_NULL(seen, precision, status); return STATE_INCREMENT_PRECISION; case STEM_MEASURE_UNIT: CHECK_NULL(seen, unit, status); return STATE_MEASURE_UNIT; case STEM_PER_MEASURE_UNIT: CHECK_NULL(seen, perUnit, status); return STATE_PER_MEASURE_UNIT; case STEM_CURRENCY: CHECK_NULL(seen, unit, status); return STATE_CURRENCY_UNIT; case STEM_INTEGER_WIDTH: CHECK_NULL(seen, integerWidth, status); return STATE_INTEGER_WIDTH; case STEM_NUMBERING_SYSTEM: CHECK_NULL(seen, symbols, status); return STATE_NUMBERING_SYSTEM; case STEM_SCALE: CHECK_NULL(seen, scale, status); return STATE_SCALE; default: U_ASSERT(false); return STATE_NULL; // return a value: silence compiler warning } } ParseState skeleton::parseOption(ParseState stem, const StringSegment& segment, MacroProps& macros, UErrorCode& status) { ///// Required options: ///// switch (stem) { case STATE_CURRENCY_UNIT: blueprint_helpers::parseCurrencyOption(segment, macros, status); return STATE_NULL; case STATE_MEASURE_UNIT: blueprint_helpers::parseMeasureUnitOption(segment, macros, status); return STATE_NULL; case STATE_PER_MEASURE_UNIT: blueprint_helpers::parseMeasurePerUnitOption(segment, macros, status); return STATE_NULL; case STATE_INCREMENT_PRECISION: blueprint_helpers::parseIncrementOption(segment, macros, status); return STATE_NULL; case STATE_INTEGER_WIDTH: blueprint_helpers::parseIntegerWidthOption(segment, macros, status); return STATE_NULL; case STATE_NUMBERING_SYSTEM: blueprint_helpers::parseNumberingSystemOption(segment, macros, status); return STATE_NULL; case STATE_SCALE: blueprint_helpers::parseScaleOption(segment, macros, status); return STATE_NULL; default: break; } ///// Non-required options: ///// // Scientific options switch (stem) { case STATE_SCIENTIFIC: if (blueprint_helpers::parseExponentWidthOption(segment, macros, status)) { return STATE_SCIENTIFIC; } if (U_FAILURE(status)) { return {}; } if (blueprint_helpers::parseExponentSignOption(segment, macros, status)) { return STATE_SCIENTIFIC; } if (U_FAILURE(status)) { return {}; } break; default: break; } // Frac-sig option switch (stem) { case STATE_FRACTION_PRECISION: if (blueprint_helpers::parseFracSigOption(segment, macros, status)) { return STATE_NULL; } if (U_FAILURE(status)) { return {}; } break; default: break; } // Unknown option // throw new SkeletonSyntaxException("Invalid option", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return STATE_NULL; } void GeneratorHelpers::generateSkeleton(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) { if (U_FAILURE(status)) { return; } // Supported options if (GeneratorHelpers::notation(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } if (GeneratorHelpers::unit(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } if (GeneratorHelpers::perUnit(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } if (GeneratorHelpers::precision(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } if (GeneratorHelpers::roundingMode(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } if (GeneratorHelpers::grouping(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } if (GeneratorHelpers::integerWidth(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } if (GeneratorHelpers::symbols(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } if (GeneratorHelpers::unitWidth(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } if (GeneratorHelpers::sign(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } if (GeneratorHelpers::decimal(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } if (GeneratorHelpers::scale(macros, sb, status)) { sb.append(u' '); } if (U_FAILURE(status)) { return; } // Unsupported options if (!macros.padder.isBogus()) { status = U_UNSUPPORTED_ERROR; return; } if (macros.affixProvider != nullptr) { status = U_UNSUPPORTED_ERROR; return; } if (macros.rules != nullptr) { status = U_UNSUPPORTED_ERROR; return; } if (macros.currencySymbols != nullptr) { status = U_UNSUPPORTED_ERROR; return; } // Remove the trailing space if (sb.length() > 0) { sb.truncate(sb.length() - 1); } } bool blueprint_helpers::parseExponentWidthOption(const StringSegment& segment, MacroProps& macros, UErrorCode&) { if (segment.charAt(0) != u'+') { return false; } int32_t offset = 1; int32_t minExp = 0; for (; offset < segment.length(); offset++) { if (segment.charAt(offset) == u'e') { minExp++; } else { break; } } if (offset < segment.length()) { return false; } // Use the public APIs to enforce bounds checking macros.notation = static_cast(macros.notation).withMinExponentDigits(minExp); return true; } void blueprint_helpers::generateExponentWidthOption(int32_t minExponentDigits, UnicodeString& sb, UErrorCode&) { sb.append(u'+'); appendMultiple(sb, u'e', minExponentDigits); } bool blueprint_helpers::parseExponentSignOption(const StringSegment& segment, MacroProps& macros, UErrorCode&) { // Get the sign display type out of the CharsTrie data structure. UCharsTrie tempStemTrie(kSerializedStemTrie); UStringTrieResult result = tempStemTrie.next( segment.toTempUnicodeString().getBuffer(), segment.length()); if (result != USTRINGTRIE_INTERMEDIATE_VALUE && result != USTRINGTRIE_FINAL_VALUE) { return false; } auto sign = stem_to_object::signDisplay(static_cast(tempStemTrie.getValue())); if (sign == UNUM_SIGN_COUNT) { return false; } macros.notation = static_cast(macros.notation).withExponentSignDisplay(sign); return true; } void blueprint_helpers::parseCurrencyOption(const StringSegment& segment, MacroProps& macros, UErrorCode& status) { // Unlike ICU4J, have to check length manually because ICU4C CurrencyUnit does not check it for us if (segment.length() != 3) { status = U_NUMBER_SKELETON_SYNTAX_ERROR; return; } const UChar* currencyCode = segment.toTempUnicodeString().getBuffer(); UErrorCode localStatus = U_ZERO_ERROR; CurrencyUnit currency(currencyCode, localStatus); if (U_FAILURE(localStatus)) { // Not 3 ascii chars // throw new SkeletonSyntaxException("Invalid currency", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return; } // Slicing is OK macros.unit = currency; // NOLINT } void blueprint_helpers::generateCurrencyOption(const CurrencyUnit& currency, UnicodeString& sb, UErrorCode&) { sb.append(currency.getISOCurrency(), -1); } void blueprint_helpers::parseMeasureUnitOption(const StringSegment& segment, MacroProps& macros, UErrorCode& status) { const UnicodeString stemString = segment.toTempUnicodeString(); // NOTE: The category (type) of the unit is guaranteed to be a valid subtag (alphanumeric) // http://unicode.org/reports/tr35/#Validity_Data int firstHyphen = 0; while (firstHyphen < stemString.length() && stemString.charAt(firstHyphen) != '-') { firstHyphen++; } if (firstHyphen == stemString.length()) { // throw new SkeletonSyntaxException("Invalid measure unit option", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return; } // Need to do char <-> UChar conversion... U_ASSERT(U_SUCCESS(status)); CharString type; SKELETON_UCHAR_TO_CHAR(type, stemString, 0, firstHyphen, status); CharString subType; SKELETON_UCHAR_TO_CHAR(subType, stemString, firstHyphen + 1, stemString.length(), status); // Note: the largest type as of this writing (March 2018) is "volume", which has 24 units. static constexpr int32_t CAPACITY = 30; MeasureUnit units[CAPACITY]; UErrorCode localStatus = U_ZERO_ERROR; int32_t numUnits = MeasureUnit::getAvailable(type.data(), units, CAPACITY, localStatus); if (U_FAILURE(localStatus)) { // More than 30 units in this type? status = U_INTERNAL_PROGRAM_ERROR; return; } for (int32_t i = 0; i < numUnits; i++) { auto& unit = units[i]; if (uprv_strcmp(subType.data(), unit.getSubtype()) == 0) { macros.unit = unit; return; } } // throw new SkeletonSyntaxException("Unknown measure unit", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; } void blueprint_helpers::generateMeasureUnitOption(const MeasureUnit& measureUnit, UnicodeString& sb, UErrorCode&) { // Need to do char <-> UChar conversion... sb.append(UnicodeString(measureUnit.getType(), -1, US_INV)); sb.append(u'-'); sb.append(UnicodeString(measureUnit.getSubtype(), -1, US_INV)); } void blueprint_helpers::parseMeasurePerUnitOption(const StringSegment& segment, MacroProps& macros, UErrorCode& status) { // A little bit of a hack: safe the current unit (numerator), call the main measure unit // parsing code, put back the numerator unit, and put the new unit into per-unit. MeasureUnit numerator = macros.unit; parseMeasureUnitOption(segment, macros, status); if (U_FAILURE(status)) { return; } macros.perUnit = macros.unit; macros.unit = numerator; } void blueprint_helpers::parseFractionStem(const StringSegment& segment, MacroProps& macros, UErrorCode& status) { U_ASSERT(segment.charAt(0) == u'.'); int32_t offset = 1; int32_t minFrac = 0; int32_t maxFrac; for (; offset < segment.length(); offset++) { if (segment.charAt(offset) == u'0') { minFrac++; } else { break; } } if (offset < segment.length()) { if (segment.charAt(offset) == u'+') { maxFrac = -1; offset++; } else { maxFrac = minFrac; for (; offset < segment.length(); offset++) { if (segment.charAt(offset) == u'#') { maxFrac++; } else { break; } } } } else { maxFrac = minFrac; } if (offset < segment.length()) { // throw new SkeletonSyntaxException("Invalid fraction stem", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return; } // Use the public APIs to enforce bounds checking if (maxFrac == -1) { macros.precision = Precision::minFraction(minFrac); } else { macros.precision = Precision::minMaxFraction(minFrac, maxFrac); } } void blueprint_helpers::generateFractionStem(int32_t minFrac, int32_t maxFrac, UnicodeString& sb, UErrorCode&) { if (minFrac == 0 && maxFrac == 0) { sb.append(u"precision-integer", -1); return; } sb.append(u'.'); appendMultiple(sb, u'0', minFrac); if (maxFrac == -1) { sb.append(u'+'); } else { appendMultiple(sb, u'#', maxFrac - minFrac); } } void blueprint_helpers::parseDigitsStem(const StringSegment& segment, MacroProps& macros, UErrorCode& status) { U_ASSERT(segment.charAt(0) == u'@'); int offset = 0; int minSig = 0; int maxSig; for (; offset < segment.length(); offset++) { if (segment.charAt(offset) == u'@') { minSig++; } else { break; } } if (offset < segment.length()) { if (segment.charAt(offset) == u'+') { maxSig = -1; offset++; } else { maxSig = minSig; for (; offset < segment.length(); offset++) { if (segment.charAt(offset) == u'#') { maxSig++; } else { break; } } } } else { maxSig = minSig; } if (offset < segment.length()) { // throw new SkeletonSyntaxException("Invalid significant digits stem", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return; } // Use the public APIs to enforce bounds checking if (maxSig == -1) { macros.precision = Precision::minSignificantDigits(minSig); } else { macros.precision = Precision::minMaxSignificantDigits(minSig, maxSig); } } void blueprint_helpers::generateDigitsStem(int32_t minSig, int32_t maxSig, UnicodeString& sb, UErrorCode&) { appendMultiple(sb, u'@', minSig); if (maxSig == -1) { sb.append(u'+'); } else { appendMultiple(sb, u'#', maxSig - minSig); } } bool blueprint_helpers::parseFracSigOption(const StringSegment& segment, MacroProps& macros, UErrorCode& status) { if (segment.charAt(0) != u'@') { return false; } int offset = 0; int minSig = 0; int maxSig; for (; offset < segment.length(); offset++) { if (segment.charAt(offset) == u'@') { minSig++; } else { break; } } // For the frac-sig option, there must be minSig or maxSig but not both. // Valid: @+, @@+, @@@+ // Valid: @#, @##, @### // Invalid: @, @@, @@@ // Invalid: @@#, @@##, @@@# if (offset < segment.length()) { if (segment.charAt(offset) == u'+') { maxSig = -1; offset++; } else if (minSig > 1) { // @@#, @@##, @@@# // throw new SkeletonSyntaxException("Invalid digits option for fraction rounder", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return false; } else { maxSig = minSig; for (; offset < segment.length(); offset++) { if (segment.charAt(offset) == u'#') { maxSig++; } else { break; } } } } else { // @, @@, @@@ // throw new SkeletonSyntaxException("Invalid digits option for fraction rounder", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return false; } if (offset < segment.length()) { // throw new SkeletonSyntaxException("Invalid digits option for fraction rounder", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return false; } auto& oldPrecision = static_cast(macros.precision); if (maxSig == -1) { macros.precision = oldPrecision.withMinDigits(minSig); } else { macros.precision = oldPrecision.withMaxDigits(maxSig); } return true; } void blueprint_helpers::parseIncrementOption(const StringSegment& segment, MacroProps& macros, UErrorCode& status) { // Need to do char <-> UChar conversion... U_ASSERT(U_SUCCESS(status)); CharString buffer; SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status); // Utilize DecimalQuantity/decNumber to parse this for us. DecimalQuantity dq; UErrorCode localStatus = U_ZERO_ERROR; dq.setToDecNumber({buffer.data(), buffer.length()}, localStatus); if (U_FAILURE(localStatus)) { // throw new SkeletonSyntaxException("Invalid rounding increment", segment, e); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return; } double increment = dq.toDouble(); // We also need to figure out how many digits. Do a brute force string operation. int decimalOffset = 0; while (decimalOffset < segment.length() && segment.charAt(decimalOffset) != '.') { decimalOffset++; } if (decimalOffset == segment.length()) { macros.precision = Precision::increment(increment); } else { int32_t fractionLength = segment.length() - decimalOffset - 1; macros.precision = Precision::increment(increment).withMinFraction(fractionLength); } } void blueprint_helpers::generateIncrementOption(double increment, int32_t trailingZeros, UnicodeString& sb, UErrorCode&) { // Utilize DecimalQuantity/double_conversion to format this for us. DecimalQuantity dq; dq.setToDouble(increment); dq.roundToInfinity(); sb.append(dq.toPlainString()); // We might need to append extra trailing zeros for min fraction... if (trailingZeros > 0) { appendMultiple(sb, u'0', trailingZeros); } } void blueprint_helpers::parseIntegerWidthOption(const StringSegment& segment, MacroProps& macros, UErrorCode& status) { int32_t offset = 0; int32_t minInt = 0; int32_t maxInt; if (segment.charAt(0) == u'+') { maxInt = -1; offset++; } else { maxInt = 0; } for (; offset < segment.length(); offset++) { if (segment.charAt(offset) == u'#') { maxInt++; } else { break; } } if (offset < segment.length()) { for (; offset < segment.length(); offset++) { if (segment.charAt(offset) == u'0') { minInt++; } else { break; } } } if (maxInt != -1) { maxInt += minInt; } if (offset < segment.length()) { // throw new SkeletonSyntaxException("Invalid integer width stem", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return; } // Use the public APIs to enforce bounds checking if (maxInt == -1) { macros.integerWidth = IntegerWidth::zeroFillTo(minInt); } else { macros.integerWidth = IntegerWidth::zeroFillTo(minInt).truncateAt(maxInt); } } void blueprint_helpers::generateIntegerWidthOption(int32_t minInt, int32_t maxInt, UnicodeString& sb, UErrorCode&) { if (maxInt == -1) { sb.append(u'+'); } else { appendMultiple(sb, u'#', maxInt - minInt); } appendMultiple(sb, u'0', minInt); } void blueprint_helpers::parseNumberingSystemOption(const StringSegment& segment, MacroProps& macros, UErrorCode& status) { // Need to do char <-> UChar conversion... U_ASSERT(U_SUCCESS(status)); CharString buffer; SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status); NumberingSystem* ns = NumberingSystem::createInstanceByName(buffer.data(), status); if (ns == nullptr || U_FAILURE(status)) { // This is a skeleton syntax error; don't bubble up the low-level NumberingSystem error // throw new SkeletonSyntaxException("Unknown numbering system", segment); status = U_NUMBER_SKELETON_SYNTAX_ERROR; return; } macros.symbols.setTo(ns); } void blueprint_helpers::generateNumberingSystemOption(const NumberingSystem& ns, UnicodeString& sb, UErrorCode&) { // Need to do char <-> UChar conversion... sb.append(UnicodeString(ns.getName(), -1, US_INV)); } void blueprint_helpers::parseScaleOption(const StringSegment& segment, MacroProps& macros, UErrorCode& status) { // Need to do char <-> UChar conversion... U_ASSERT(U_SUCCESS(status)); CharString buffer; SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status); LocalPointer decnum(new DecNum(), status); if (U_FAILURE(status)) { return; } decnum->setTo({buffer.data(), buffer.length()}, status); if (U_FAILURE(status)) { // This is a skeleton syntax error; don't let the low-level decnum error bubble up status = U_NUMBER_SKELETON_SYNTAX_ERROR; return; } // NOTE: The constructor will optimize the decnum for us if possible. macros.scale = {0, decnum.orphan()}; } void blueprint_helpers::generateScaleOption(int32_t magnitude, const DecNum* arbitrary, UnicodeString& sb, UErrorCode& status) { // Utilize DecimalQuantity/double_conversion to format this for us. DecimalQuantity dq; if (arbitrary != nullptr) { dq.setToDecNum(*arbitrary, status); if (U_FAILURE(status)) { return; } } else { dq.setToInt(1); } dq.adjustMagnitude(magnitude); dq.roundToInfinity(); sb.append(dq.toPlainString()); } bool GeneratorHelpers::notation(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) { if (macros.notation.fType == Notation::NTN_COMPACT) { UNumberCompactStyle style = macros.notation.fUnion.compactStyle; if (style == UNumberCompactStyle::UNUM_LONG) { sb.append(u"compact-long", -1); return true; } else if (style == UNumberCompactStyle::UNUM_SHORT) { sb.append(u"compact-short", -1); return true; } else { // Compact notation generated from custom data (not supported in skeleton) // The other compact notations are literals status = U_UNSUPPORTED_ERROR; return false; } } else if (macros.notation.fType == Notation::NTN_SCIENTIFIC) { const Notation::ScientificSettings& impl = macros.notation.fUnion.scientific; if (impl.fEngineeringInterval == 3) { sb.append(u"engineering", -1); } else { sb.append(u"scientific", -1); } if (impl.fMinExponentDigits > 1) { sb.append(u'/'); blueprint_helpers::generateExponentWidthOption(impl.fMinExponentDigits, sb, status); if (U_FAILURE(status)) { return false; } } if (impl.fExponentSignDisplay != UNUM_SIGN_AUTO) { sb.append(u'/'); enum_to_stem_string::signDisplay(impl.fExponentSignDisplay, sb); } return true; } else { // Default value is not shown in normalized form return false; } } bool GeneratorHelpers::unit(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) { if (utils::unitIsCurrency(macros.unit)) { sb.append(u"currency/", -1); CurrencyUnit currency(macros.unit, status); if (U_FAILURE(status)) { return false; } blueprint_helpers::generateCurrencyOption(currency, sb, status); return true; } else if (utils::unitIsNoUnit(macros.unit)) { if (utils::unitIsPercent(macros.unit)) { sb.append(u"percent", -1); return true; } else if (utils::unitIsPermille(macros.unit)) { sb.append(u"permille", -1); return true; } else { // Default value is not shown in normalized form return false; } } else { sb.append(u"measure-unit/", -1); blueprint_helpers::generateMeasureUnitOption(macros.unit, sb, status); return true; } } bool GeneratorHelpers::perUnit(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) { // Per-units are currently expected to be only MeasureUnits. if (utils::unitIsNoUnit(macros.perUnit)) { if (utils::unitIsPercent(macros.perUnit) || utils::unitIsPermille(macros.perUnit)) { status = U_UNSUPPORTED_ERROR; return false; } else { // Default value: ok to ignore return false; } } else if (utils::unitIsCurrency(macros.perUnit)) { status = U_UNSUPPORTED_ERROR; return false; } else { sb.append(u"per-measure-unit/", -1); blueprint_helpers::generateMeasureUnitOption(macros.perUnit, sb, status); return true; } } bool GeneratorHelpers::precision(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) { if (macros.precision.fType == Precision::RND_NONE) { sb.append(u"precision-unlimited", -1); } else if (macros.precision.fType == Precision::RND_FRACTION) { const Precision::FractionSignificantSettings& impl = macros.precision.fUnion.fracSig; blueprint_helpers::generateFractionStem(impl.fMinFrac, impl.fMaxFrac, sb, status); } else if (macros.precision.fType == Precision::RND_SIGNIFICANT) { const Precision::FractionSignificantSettings& impl = macros.precision.fUnion.fracSig; blueprint_helpers::generateDigitsStem(impl.fMinSig, impl.fMaxSig, sb, status); } else if (macros.precision.fType == Precision::RND_FRACTION_SIGNIFICANT) { const Precision::FractionSignificantSettings& impl = macros.precision.fUnion.fracSig; blueprint_helpers::generateFractionStem(impl.fMinFrac, impl.fMaxFrac, sb, status); sb.append(u'/'); if (impl.fMinSig == -1) { blueprint_helpers::generateDigitsStem(1, impl.fMaxSig, sb, status); } else { blueprint_helpers::generateDigitsStem(impl.fMinSig, -1, sb, status); } } else if (macros.precision.fType == Precision::RND_INCREMENT) { const Precision::IncrementSettings& impl = macros.precision.fUnion.increment; sb.append(u"precision-increment/", -1); blueprint_helpers::generateIncrementOption( impl.fIncrement, impl.fMinFrac - impl.fMaxFrac, sb, status); } else if (macros.precision.fType == Precision::RND_CURRENCY) { UCurrencyUsage usage = macros.precision.fUnion.currencyUsage; if (usage == UCURR_USAGE_STANDARD) { sb.append(u"precision-currency-standard", -1); } else { sb.append(u"precision-currency-cash", -1); } } else { // Bogus or Error return false; } // NOTE: Always return true for rounding because the default value depends on other options. return true; } bool GeneratorHelpers::roundingMode(const MacroProps& macros, UnicodeString& sb, UErrorCode&) { if (macros.roundingMode == kDefaultMode) { return false; // Default } enum_to_stem_string::roundingMode(macros.roundingMode, sb); return true; } bool GeneratorHelpers::grouping(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) { if (macros.grouper.isBogus()) { return false; // No value } else if (macros.grouper.fStrategy == UNUM_GROUPING_COUNT) { status = U_UNSUPPORTED_ERROR; return false; } else if (macros.grouper.fStrategy == UNUM_GROUPING_AUTO) { return false; // Default value } else { enum_to_stem_string::groupingStrategy(macros.grouper.fStrategy, sb); return true; } } bool GeneratorHelpers::integerWidth(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) { if (macros.integerWidth.fHasError || macros.integerWidth.isBogus() || macros.integerWidth == IntegerWidth::standard()) { // Error or Default return false; } sb.append(u"integer-width/", -1); blueprint_helpers::generateIntegerWidthOption( macros.integerWidth.fUnion.minMaxInt.fMinInt, macros.integerWidth.fUnion.minMaxInt.fMaxInt, sb, status); return true; } bool GeneratorHelpers::symbols(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) { if (macros.symbols.isNumberingSystem()) { const NumberingSystem& ns = *macros.symbols.getNumberingSystem(); if (uprv_strcmp(ns.getName(), "latn") == 0) { sb.append(u"latin", -1); } else { sb.append(u"numbering-system/", -1); blueprint_helpers::generateNumberingSystemOption(ns, sb, status); } return true; } else if (macros.symbols.isDecimalFormatSymbols()) { status = U_UNSUPPORTED_ERROR; return false; } else { // No custom symbols return false; } } bool GeneratorHelpers::unitWidth(const MacroProps& macros, UnicodeString& sb, UErrorCode&) { if (macros.unitWidth == UNUM_UNIT_WIDTH_SHORT || macros.unitWidth == UNUM_UNIT_WIDTH_COUNT) { return false; // Default or Bogus } enum_to_stem_string::unitWidth(macros.unitWidth, sb); return true; } bool GeneratorHelpers::sign(const MacroProps& macros, UnicodeString& sb, UErrorCode&) { if (macros.sign == UNUM_SIGN_AUTO || macros.sign == UNUM_SIGN_COUNT) { return false; // Default or Bogus } enum_to_stem_string::signDisplay(macros.sign, sb); return true; } bool GeneratorHelpers::decimal(const MacroProps& macros, UnicodeString& sb, UErrorCode&) { if (macros.decimal == UNUM_DECIMAL_SEPARATOR_AUTO || macros.decimal == UNUM_DECIMAL_SEPARATOR_COUNT) { return false; // Default or Bogus } enum_to_stem_string::decimalSeparatorDisplay(macros.decimal, sb); return true; } bool GeneratorHelpers::scale(const MacroProps& macros, UnicodeString& sb, UErrorCode& status) { if (!macros.scale.isValid()) { return false; // Default or Bogus } sb.append(u"scale/", -1); blueprint_helpers::generateScaleOption( macros.scale.fMagnitude, macros.scale.fArbitrary, sb, status); return true; } #endif /* #if !UCONFIG_NO_FORMATTING */