/* * ss.c "sockstat", socket statistics * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "utils.h" #include "rt_names.h" #include "ll_map.h" #include "libnetlink.h" #include "namespace.h" #include "SNAPSHOT.h" #include #include #include #include #include /* for MAX_ADDR_LEN */ #include #include #include #include #define MAGIC_SEQ 123456 #define DIAG_REQUEST(_req, _r) \ struct { \ struct nlmsghdr nlh; \ _r; \ } _req = { \ .nlh = { \ .nlmsg_type = SOCK_DIAG_BY_FAMILY, \ .nlmsg_flags = NLM_F_ROOT|NLM_F_MATCH|NLM_F_REQUEST,\ .nlmsg_seq = MAGIC_SEQ, \ .nlmsg_len = sizeof(_req), \ }, \ } #if HAVE_SELINUX #include #else /* Stubs for SELinux functions */ static int is_selinux_enabled(void) { return -1; } static int getpidcon(pid_t pid, char **context) { *context = NULL; return -1; } static int getfilecon(char *path, char **context) { *context = NULL; return -1; } static int security_get_initial_context(char *name, char **context) { *context = NULL; return -1; } #endif int resolve_services = 1; int preferred_family = AF_UNSPEC; int show_options; int show_details; int show_users; int show_mem; int show_tcpinfo; int show_bpf; int show_proc_ctx; int show_sock_ctx; int show_header = 1; int follow_events; int sctp_ino; int netid_width; int state_width; int addr_width; int serv_width; char *odd_width_pad = ""; static const char *TCP_PROTO = "tcp"; static const char *SCTP_PROTO = "sctp"; static const char *UDP_PROTO = "udp"; static const char *RAW_PROTO = "raw"; static const char *dg_proto; enum { TCP_DB, DCCP_DB, UDP_DB, RAW_DB, UNIX_DG_DB, UNIX_ST_DB, UNIX_SQ_DB, PACKET_DG_DB, PACKET_R_DB, NETLINK_DB, SCTP_DB, MAX_DB }; #define PACKET_DBM ((1<states |= default_dbs[db].states; f->dbs |= 1 << db; do_default = 0; } static void filter_af_set(struct filter *f, int af) { f->states |= default_afs[af].states; f->families |= 1 << af; do_default = 0; preferred_family = af; } static int filter_af_get(struct filter *f, int af) { return f->families & (1 << af); } static void filter_default_dbs(struct filter *f) { filter_db_set(f, UDP_DB); filter_db_set(f, DCCP_DB); filter_db_set(f, TCP_DB); filter_db_set(f, RAW_DB); filter_db_set(f, UNIX_ST_DB); filter_db_set(f, UNIX_DG_DB); filter_db_set(f, UNIX_SQ_DB); filter_db_set(f, PACKET_R_DB); filter_db_set(f, PACKET_DG_DB); filter_db_set(f, NETLINK_DB); filter_db_set(f, SCTP_DB); } static void filter_states_set(struct filter *f, int states) { if (states) f->states = states; } static void filter_merge_defaults(struct filter *f) { int db; int af; for (db = 0; db < MAX_DB; db++) { if (!(f->dbs & (1 << db))) continue; if (!(default_dbs[db].families & f->families)) f->families |= default_dbs[db].families; } for (af = 0; af < AF_MAX; af++) { if (!(f->families & (1 << af))) continue; if (!(default_afs[af].dbs & f->dbs)) f->dbs |= default_afs[af].dbs; } } static FILE *generic_proc_open(const char *env, const char *name) { const char *p = getenv(env); char store[128]; if (!p) { p = getenv("PROC_ROOT") ? : "/proc"; snprintf(store, sizeof(store)-1, "%s/%s", p, name); p = store; } return fopen(p, "r"); } #define net_tcp_open() generic_proc_open("PROC_NET_TCP", "net/tcp") #define net_tcp6_open() generic_proc_open("PROC_NET_TCP6", "net/tcp6") #define net_udp_open() generic_proc_open("PROC_NET_UDP", "net/udp") #define net_udp6_open() generic_proc_open("PROC_NET_UDP6", "net/udp6") #define net_raw_open() generic_proc_open("PROC_NET_RAW", "net/raw") #define net_raw6_open() generic_proc_open("PROC_NET_RAW6", "net/raw6") #define net_unix_open() generic_proc_open("PROC_NET_UNIX", "net/unix") #define net_packet_open() generic_proc_open("PROC_NET_PACKET", \ "net/packet") #define net_netlink_open() generic_proc_open("PROC_NET_NETLINK", \ "net/netlink") #define slabinfo_open() generic_proc_open("PROC_SLABINFO", "slabinfo") #define net_sockstat_open() generic_proc_open("PROC_NET_SOCKSTAT", \ "net/sockstat") #define net_sockstat6_open() generic_proc_open("PROC_NET_SOCKSTAT6", \ "net/sockstat6") #define net_snmp_open() generic_proc_open("PROC_NET_SNMP", "net/snmp") #define ephemeral_ports_open() generic_proc_open("PROC_IP_LOCAL_PORT_RANGE", \ "sys/net/ipv4/ip_local_port_range") struct user_ent { struct user_ent *next; unsigned int ino; int pid; int fd; char *process; char *process_ctx; char *socket_ctx; }; #define USER_ENT_HASH_SIZE 256 struct user_ent *user_ent_hash[USER_ENT_HASH_SIZE]; static int user_ent_hashfn(unsigned int ino) { int val = (ino >> 24) ^ (ino >> 16) ^ (ino >> 8) ^ ino; return val & (USER_ENT_HASH_SIZE - 1); } static void user_ent_add(unsigned int ino, char *process, int pid, int fd, char *proc_ctx, char *sock_ctx) { struct user_ent *p, **pp; p = malloc(sizeof(struct user_ent)); if (!p) { fprintf(stderr, "ss: failed to malloc buffer\n"); abort(); } p->next = NULL; p->ino = ino; p->pid = pid; p->fd = fd; p->process = strdup(process); p->process_ctx = strdup(proc_ctx); p->socket_ctx = strdup(sock_ctx); pp = &user_ent_hash[user_ent_hashfn(ino)]; p->next = *pp; *pp = p; } static void user_ent_destroy(void) { struct user_ent *p, *p_next; int cnt = 0; while (cnt != USER_ENT_HASH_SIZE) { p = user_ent_hash[cnt]; while (p) { free(p->process); free(p->process_ctx); free(p->socket_ctx); p_next = p->next; free(p); p = p_next; } cnt++; } } static void user_ent_hash_build(void) { const char *root = getenv("PROC_ROOT") ? : "/proc/"; struct dirent *d; char name[1024]; int nameoff; DIR *dir; char *pid_context; char *sock_context; const char *no_ctx = "unavailable"; static int user_ent_hash_build_init; /* If show_users & show_proc_ctx set only do this once */ if (user_ent_hash_build_init != 0) return; user_ent_hash_build_init = 1; strlcpy(name, root, sizeof(name)); if (strlen(name) == 0 || name[strlen(name)-1] != '/') strcat(name, "/"); nameoff = strlen(name); dir = opendir(name); if (!dir) return; while ((d = readdir(dir)) != NULL) { struct dirent *d1; char process[16]; char *p; int pid, pos; DIR *dir1; char crap; if (sscanf(d->d_name, "%d%c", &pid, &crap) != 1) continue; if (getpidcon(pid, &pid_context) != 0) pid_context = strdup(no_ctx); snprintf(name + nameoff, sizeof(name) - nameoff, "%d/fd/", pid); pos = strlen(name); if ((dir1 = opendir(name)) == NULL) { free(pid_context); continue; } process[0] = '\0'; p = process; while ((d1 = readdir(dir1)) != NULL) { const char *pattern = "socket:["; unsigned int ino; char lnk[64]; int fd; ssize_t link_len; char tmp[1024]; if (sscanf(d1->d_name, "%d%c", &fd, &crap) != 1) continue; snprintf(name+pos, sizeof(name) - pos, "%d", fd); link_len = readlink(name, lnk, sizeof(lnk)-1); if (link_len == -1) continue; lnk[link_len] = '\0'; if (strncmp(lnk, pattern, strlen(pattern))) continue; sscanf(lnk, "socket:[%u]", &ino); snprintf(tmp, sizeof(tmp), "%s/%d/fd/%s", root, pid, d1->d_name); if (getfilecon(tmp, &sock_context) <= 0) sock_context = strdup(no_ctx); if (*p == '\0') { FILE *fp; snprintf(tmp, sizeof(tmp), "%s/%d/stat", root, pid); if ((fp = fopen(tmp, "r")) != NULL) { if (fscanf(fp, "%*d (%[^)])", p) < 1) ; /* ignore */ fclose(fp); } } user_ent_add(ino, p, pid, fd, pid_context, sock_context); free(sock_context); } free(pid_context); closedir(dir1); } closedir(dir); } enum entry_types { USERS, PROC_CTX, PROC_SOCK_CTX }; #define ENTRY_BUF_SIZE 512 static int find_entry(unsigned int ino, char **buf, int type) { struct user_ent *p; int cnt = 0; char *ptr; char *new_buf; int len, new_buf_len; int buf_used = 0; int buf_len = 0; if (!ino) return 0; p = user_ent_hash[user_ent_hashfn(ino)]; ptr = *buf = NULL; while (p) { if (p->ino != ino) goto next; while (1) { ptr = *buf + buf_used; switch (type) { case USERS: len = snprintf(ptr, buf_len - buf_used, "(\"%s\",pid=%d,fd=%d),", p->process, p->pid, p->fd); break; case PROC_CTX: len = snprintf(ptr, buf_len - buf_used, "(\"%s\",pid=%d,proc_ctx=%s,fd=%d),", p->process, p->pid, p->process_ctx, p->fd); break; case PROC_SOCK_CTX: len = snprintf(ptr, buf_len - buf_used, "(\"%s\",pid=%d,proc_ctx=%s,fd=%d,sock_ctx=%s),", p->process, p->pid, p->process_ctx, p->fd, p->socket_ctx); break; default: fprintf(stderr, "ss: invalid type: %d\n", type); abort(); } if (len < 0 || len >= buf_len - buf_used) { new_buf_len = buf_len + ENTRY_BUF_SIZE; new_buf = realloc(*buf, new_buf_len); if (!new_buf) { fprintf(stderr, "ss: failed to malloc buffer\n"); abort(); } *buf = new_buf; buf_len = new_buf_len; continue; } else { buf_used += len; break; } } cnt++; next: p = p->next; } if (buf_used) { ptr = *buf + buf_used; ptr[-1] = '\0'; } return cnt; } /* Get stats from slab */ struct slabstat { int socks; int tcp_ports; int tcp_tws; int tcp_syns; int skbs; }; static struct slabstat slabstat; static int get_slabstat(struct slabstat *s) { char buf[256]; FILE *fp; int cnt; static int slabstat_valid; static const char * const slabstat_ids[] = { "sock", "tcp_bind_bucket", "tcp_tw_bucket", "tcp_open_request", "skbuff_head_cache", }; if (slabstat_valid) return 0; memset(s, 0, sizeof(*s)); fp = slabinfo_open(); if (!fp) return -1; cnt = sizeof(*s)/sizeof(int); if (!fgets(buf, sizeof(buf), fp)) { fclose(fp); return -1; } while (fgets(buf, sizeof(buf), fp) != NULL) { int i; for (i = 0; i < ARRAY_SIZE(slabstat_ids); i++) { if (memcmp(buf, slabstat_ids[i], strlen(slabstat_ids[i])) == 0) { sscanf(buf, "%*s%d", ((int *)s) + i); cnt--; break; } } if (cnt <= 0) break; } slabstat_valid = 1; fclose(fp); return 0; } static unsigned long long cookie_sk_get(const uint32_t *cookie) { return (((unsigned long long)cookie[1] << 31) << 1) | cookie[0]; } static const char *sctp_sstate_name[] = { [SCTP_STATE_CLOSED] = "CLOSED", [SCTP_STATE_COOKIE_WAIT] = "COOKIE_WAIT", [SCTP_STATE_COOKIE_ECHOED] = "COOKIE_ECHOED", [SCTP_STATE_ESTABLISHED] = "ESTAB", [SCTP_STATE_SHUTDOWN_PENDING] = "SHUTDOWN_PENDING", [SCTP_STATE_SHUTDOWN_SENT] = "SHUTDOWN_SENT", [SCTP_STATE_SHUTDOWN_RECEIVED] = "SHUTDOWN_RECEIVED", [SCTP_STATE_SHUTDOWN_ACK_SENT] = "ACK_SENT", }; struct sockstat { struct sockstat *next; unsigned int type; uint16_t prot; uint16_t raw_prot; inet_prefix local; inet_prefix remote; int lport; int rport; int state; int rq, wq; unsigned int ino; unsigned int uid; int refcnt; unsigned int iface; unsigned long long sk; char *name; char *peer_name; __u32 mark; }; struct dctcpstat { unsigned int ce_state; unsigned int alpha; unsigned int ab_ecn; unsigned int ab_tot; bool enabled; }; struct tcpstat { struct sockstat ss; unsigned int timer; unsigned int timeout; int probes; char cong_alg[16]; double rto, ato, rtt, rttvar; int qack, ssthresh, backoff; double send_bps; int snd_wscale; int rcv_wscale; int mss; int rcv_mss; int advmss; unsigned int cwnd; unsigned int lastsnd; unsigned int lastrcv; unsigned int lastack; double pacing_rate; double pacing_rate_max; double delivery_rate; unsigned long long bytes_acked; unsigned long long bytes_received; unsigned int segs_out; unsigned int segs_in; unsigned int data_segs_out; unsigned int data_segs_in; unsigned int unacked; unsigned int retrans; unsigned int retrans_total; unsigned int lost; unsigned int sacked; unsigned int fackets; unsigned int reordering; unsigned int not_sent; double rcv_rtt; double min_rtt; int rcv_space; unsigned long long busy_time; unsigned long long rwnd_limited; unsigned long long sndbuf_limited; bool has_ts_opt; bool has_sack_opt; bool has_ecn_opt; bool has_ecnseen_opt; bool has_fastopen_opt; bool has_wscale_opt; bool app_limited; struct dctcpstat *dctcp; struct tcp_bbr_info *bbr_info; }; /* SCTP assocs share the same inode number with their parent endpoint. So if we * have seen the inode number before, it must be an assoc instead of the next * endpoint. */ static bool is_sctp_assoc(struct sockstat *s, const char *sock_name) { if (strcmp(sock_name, "sctp")) return false; if (!sctp_ino || sctp_ino != s->ino) return false; return true; } static const char *unix_netid_name(int type) { switch (type) { case SOCK_STREAM: return "u_str"; case SOCK_SEQPACKET: return "u_seq"; case SOCK_DGRAM: default: return "u_dgr"; } } static const char *proto_name(int protocol) { switch (protocol) { case 0: return "raw"; case IPPROTO_UDP: return "udp"; case IPPROTO_TCP: return "tcp"; case IPPROTO_SCTP: return "sctp"; case IPPROTO_DCCP: return "dccp"; case IPPROTO_ICMPV6: return "icmp6"; } return "???"; } static void sock_state_print(struct sockstat *s) { const char *sock_name; static const char * const sstate_name[] = { "UNKNOWN", [SS_ESTABLISHED] = "ESTAB", [SS_SYN_SENT] = "SYN-SENT", [SS_SYN_RECV] = "SYN-RECV", [SS_FIN_WAIT1] = "FIN-WAIT-1", [SS_FIN_WAIT2] = "FIN-WAIT-2", [SS_TIME_WAIT] = "TIME-WAIT", [SS_CLOSE] = "UNCONN", [SS_CLOSE_WAIT] = "CLOSE-WAIT", [SS_LAST_ACK] = "LAST-ACK", [SS_LISTEN] = "LISTEN", [SS_CLOSING] = "CLOSING", }; switch (s->local.family) { case AF_UNIX: sock_name = unix_netid_name(s->type); break; case AF_INET: case AF_INET6: sock_name = proto_name(s->type); break; case AF_PACKET: sock_name = s->type == SOCK_RAW ? "p_raw" : "p_dgr"; break; case AF_NETLINK: sock_name = "nl"; break; default: sock_name = "unknown"; } if (netid_width) printf("%-*s ", netid_width, is_sctp_assoc(s, sock_name) ? "" : sock_name); if (state_width) { if (is_sctp_assoc(s, sock_name)) printf("`- %-*s ", state_width - 3, sctp_sstate_name[s->state]); else printf("%-*s ", state_width, sstate_name[s->state]); } printf("%-6d %-6d %s", s->rq, s->wq, odd_width_pad); } static void sock_details_print(struct sockstat *s) { if (s->uid) printf(" uid:%u", s->uid); printf(" ino:%u", s->ino); printf(" sk:%llx", s->sk); if (s->mark) printf(" fwmark:0x%x", s->mark); } static void sock_addr_print_width(int addr_len, const char *addr, char *delim, int port_len, const char *port, const char *ifname) { if (ifname) { printf("%*s%%%s%s%-*s ", addr_len, addr, ifname, delim, port_len, port); } else { printf("%*s%s%-*s ", addr_len, addr, delim, port_len, port); } } static void sock_addr_print(const char *addr, char *delim, const char *port, const char *ifname) { sock_addr_print_width(addr_width, addr, delim, serv_width, port, ifname); } static const char *print_ms_timer(unsigned int timeout) { static char buf[64]; int secs, msecs, minutes; secs = timeout/1000; minutes = secs/60; secs = secs%60; msecs = timeout%1000; buf[0] = 0; if (minutes) { msecs = 0; snprintf(buf, sizeof(buf)-16, "%dmin", minutes); if (minutes > 9) secs = 0; } if (secs) { if (secs > 9) msecs = 0; sprintf(buf+strlen(buf), "%d%s", secs, msecs ? "." : "sec"); } if (msecs) sprintf(buf+strlen(buf), "%03dms", msecs); return buf; } struct scache { struct scache *next; int port; char *name; const char *proto; }; struct scache *rlist; static void init_service_resolver(void) { char buf[128]; FILE *fp = popen("/usr/sbin/rpcinfo -p 2>/dev/null", "r"); if (!fp) return; if (!fgets(buf, sizeof(buf), fp)) { pclose(fp); return; } while (fgets(buf, sizeof(buf), fp) != NULL) { unsigned int progn, port; char proto[128], prog[128] = "rpc."; struct scache *c; if (sscanf(buf, "%u %*d %s %u %s", &progn, proto, &port, prog+4) != 4) continue; if (!(c = malloc(sizeof(*c)))) continue; c->port = port; c->name = strdup(prog); if (strcmp(proto, TCP_PROTO) == 0) c->proto = TCP_PROTO; else if (strcmp(proto, UDP_PROTO) == 0) c->proto = UDP_PROTO; else if (strcmp(proto, SCTP_PROTO) == 0) c->proto = SCTP_PROTO; else c->proto = NULL; c->next = rlist; rlist = c; } pclose(fp); } /* Even do not try default linux ephemeral port ranges: * default /etc/services contains so much of useless crap * wouldbe "allocated" to this area that resolution * is really harmful. I shrug each time when seeing * "socks" or "cfinger" in dumps. */ static int is_ephemeral(int port) { static int min = 0, max; if (!min) { FILE *f = ephemeral_ports_open(); if (!f || fscanf(f, "%d %d", &min, &max) < 2) { min = 1024; max = 4999; } if (f) fclose(f); } return port >= min && port <= max; } static const char *__resolve_service(int port) { struct scache *c; for (c = rlist; c; c = c->next) { if (c->port == port && c->proto == dg_proto) return c->name; } if (!is_ephemeral(port)) { static int notfirst; struct servent *se; if (!notfirst) { setservent(1); notfirst = 1; } se = getservbyport(htons(port), dg_proto); if (se) return se->s_name; } return NULL; } #define SCACHE_BUCKETS 1024 static struct scache *cache_htab[SCACHE_BUCKETS]; static const char *resolve_service(int port) { static char buf[128]; struct scache *c; const char *res; int hash; if (port == 0) { buf[0] = '*'; buf[1] = 0; return buf; } if (!resolve_services) goto do_numeric; if (dg_proto == RAW_PROTO) return inet_proto_n2a(port, buf, sizeof(buf)); hash = (port^(((unsigned long)dg_proto)>>2)) % SCACHE_BUCKETS; for (c = cache_htab[hash]; c; c = c->next) { if (c->port == port && c->proto == dg_proto) goto do_cache; } c = malloc(sizeof(*c)); if (!c) goto do_numeric; res = __resolve_service(port); c->port = port; c->name = res ? strdup(res) : NULL; c->proto = dg_proto; c->next = cache_htab[hash]; cache_htab[hash] = c; do_cache: if (c->name) return c->name; do_numeric: sprintf(buf, "%u", port); return buf; } static void inet_addr_print(const inet_prefix *a, int port, unsigned int ifindex, bool v6only) { char buf[1024]; const char *ap = buf; int est_len = addr_width; const char *ifname = NULL; if (a->family == AF_INET) { ap = format_host(AF_INET, 4, a->data); } else { if (!v6only && !memcmp(a->data, &in6addr_any, sizeof(in6addr_any))) { buf[0] = '*'; buf[1] = 0; } else { ap = format_host(a->family, 16, a->data); /* Numeric IPv6 addresses should be bracketed */ if (strchr(ap, ':')) { snprintf(buf, sizeof(buf), "[%s]", ap); ap = buf; } est_len = strlen(ap); if (est_len <= addr_width) est_len = addr_width; else est_len = addr_width + ((est_len-addr_width+3)/4)*4; } } if (ifindex) { ifname = ll_index_to_name(ifindex); est_len -= strlen(ifname) + 1; /* +1 for percent char */ if (est_len < 0) est_len = 0; } sock_addr_print_width(est_len, ap, ":", serv_width, resolve_service(port), ifname); } struct aafilter { inet_prefix addr; int port; unsigned int iface; __u32 mark; __u32 mask; struct aafilter *next; }; static int inet2_addr_match(const inet_prefix *a, const inet_prefix *p, int plen) { if (!inet_addr_match(a, p, plen)) return 0; /* Cursed "v4 mapped" addresses: v4 mapped socket matches * pure IPv4 rule, but v4-mapped rule selects only v4-mapped * sockets. Fair? */ if (p->family == AF_INET && a->family == AF_INET6) { if (a->data[0] == 0 && a->data[1] == 0 && a->data[2] == htonl(0xffff)) { inet_prefix tmp = *a; tmp.data[0] = a->data[3]; return inet_addr_match(&tmp, p, plen); } } return 1; } static int unix_match(const inet_prefix *a, const inet_prefix *p) { char *addr, *pattern; memcpy(&addr, a->data, sizeof(addr)); memcpy(&pattern, p->data, sizeof(pattern)); if (pattern == NULL) return 1; if (addr == NULL) addr = ""; return !fnmatch(pattern, addr, 0); } static int run_ssfilter(struct ssfilter *f, struct sockstat *s) { switch (f->type) { case SSF_S_AUTO: { if (s->local.family == AF_UNIX) { char *p; memcpy(&p, s->local.data, sizeof(p)); return p == NULL || (p[0] == '@' && strlen(p) == 6 && strspn(p+1, "0123456789abcdef") == 5); } if (s->local.family == AF_PACKET) return s->lport == 0 && s->local.data[0] == 0; if (s->local.family == AF_NETLINK) return s->lport < 0; return is_ephemeral(s->lport); } case SSF_DCOND: { struct aafilter *a = (void *)f->pred; if (a->addr.family == AF_UNIX) return unix_match(&s->remote, &a->addr); if (a->port != -1 && a->port != s->rport) return 0; if (a->addr.bitlen) { do { if (!inet2_addr_match(&s->remote, &a->addr, a->addr.bitlen)) return 1; } while ((a = a->next) != NULL); return 0; } return 1; } case SSF_SCOND: { struct aafilter *a = (void *)f->pred; if (a->addr.family == AF_UNIX) return unix_match(&s->local, &a->addr); if (a->port != -1 && a->port != s->lport) return 0; if (a->addr.bitlen) { do { if (!inet2_addr_match(&s->local, &a->addr, a->addr.bitlen)) return 1; } while ((a = a->next) != NULL); return 0; } return 1; } case SSF_D_GE: { struct aafilter *a = (void *)f->pred; return s->rport >= a->port; } case SSF_D_LE: { struct aafilter *a = (void *)f->pred; return s->rport <= a->port; } case SSF_S_GE: { struct aafilter *a = (void *)f->pred; return s->lport >= a->port; } case SSF_S_LE: { struct aafilter *a = (void *)f->pred; return s->lport <= a->port; } case SSF_DEVCOND: { struct aafilter *a = (void *)f->pred; return s->iface == a->iface; } case SSF_MARKMASK: { struct aafilter *a = (void *)f->pred; return (s->mark & a->mask) == a->mark; } /* Yup. It is recursion. Sorry. */ case SSF_AND: return run_ssfilter(f->pred, s) && run_ssfilter(f->post, s); case SSF_OR: return run_ssfilter(f->pred, s) || run_ssfilter(f->post, s); case SSF_NOT: return !run_ssfilter(f->pred, s); default: abort(); } } /* Relocate external jumps by reloc. */ static void ssfilter_patch(char *a, int len, int reloc) { while (len > 0) { struct inet_diag_bc_op *op = (struct inet_diag_bc_op *)a; if (op->no == len+4) op->no += reloc; len -= op->yes; a += op->yes; } if (len < 0) abort(); } static int ssfilter_bytecompile(struct ssfilter *f, char **bytecode) { switch (f->type) { case SSF_S_AUTO: { if (!(*bytecode = malloc(4))) abort(); ((struct inet_diag_bc_op *)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_AUTO, 4, 8 }; return 4; } case SSF_DCOND: case SSF_SCOND: { struct aafilter *a = (void *)f->pred; struct aafilter *b; char *ptr; int code = (f->type == SSF_DCOND ? INET_DIAG_BC_D_COND : INET_DIAG_BC_S_COND); int len = 0; for (b = a; b; b = b->next) { len += 4 + sizeof(struct inet_diag_hostcond); if (a->addr.family == AF_INET6) len += 16; else len += 4; if (b->next) len += 4; } if (!(ptr = malloc(len))) abort(); *bytecode = ptr; for (b = a; b; b = b->next) { struct inet_diag_bc_op *op = (struct inet_diag_bc_op *)ptr; int alen = (a->addr.family == AF_INET6 ? 16 : 4); int oplen = alen + 4 + sizeof(struct inet_diag_hostcond); struct inet_diag_hostcond *cond = (struct inet_diag_hostcond *)(ptr+4); *op = (struct inet_diag_bc_op){ code, oplen, oplen+4 }; cond->family = a->addr.family; cond->port = a->port; cond->prefix_len = a->addr.bitlen; memcpy(cond->addr, a->addr.data, alen); ptr += oplen; if (b->next) { op = (struct inet_diag_bc_op *)ptr; *op = (struct inet_diag_bc_op){ INET_DIAG_BC_JMP, 4, len - (ptr-*bytecode)}; ptr += 4; } } return ptr - *bytecode; } case SSF_D_GE: { struct aafilter *x = (void *)f->pred; if (!(*bytecode = malloc(8))) abort(); ((struct inet_diag_bc_op *)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_D_GE, 8, 12 }; ((struct inet_diag_bc_op *)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port }; return 8; } case SSF_D_LE: { struct aafilter *x = (void *)f->pred; if (!(*bytecode = malloc(8))) abort(); ((struct inet_diag_bc_op *)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_D_LE, 8, 12 }; ((struct inet_diag_bc_op *)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port }; return 8; } case SSF_S_GE: { struct aafilter *x = (void *)f->pred; if (!(*bytecode = malloc(8))) abort(); ((struct inet_diag_bc_op *)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_S_GE, 8, 12 }; ((struct inet_diag_bc_op *)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port }; return 8; } case SSF_S_LE: { struct aafilter *x = (void *)f->pred; if (!(*bytecode = malloc(8))) abort(); ((struct inet_diag_bc_op *)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_S_LE, 8, 12 }; ((struct inet_diag_bc_op *)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port }; return 8; } case SSF_AND: { char *a1 = NULL, *a2 = NULL, *a; int l1, l2; l1 = ssfilter_bytecompile(f->pred, &a1); l2 = ssfilter_bytecompile(f->post, &a2); if (!l1 || !l2) { free(a1); free(a2); return 0; } if (!(a = malloc(l1+l2))) abort(); memcpy(a, a1, l1); memcpy(a+l1, a2, l2); free(a1); free(a2); ssfilter_patch(a, l1, l2); *bytecode = a; return l1+l2; } case SSF_OR: { char *a1 = NULL, *a2 = NULL, *a; int l1, l2; l1 = ssfilter_bytecompile(f->pred, &a1); l2 = ssfilter_bytecompile(f->post, &a2); if (!l1 || !l2) { free(a1); free(a2); return 0; } if (!(a = malloc(l1+l2+4))) abort(); memcpy(a, a1, l1); memcpy(a+l1+4, a2, l2); free(a1); free(a2); *(struct inet_diag_bc_op *)(a+l1) = (struct inet_diag_bc_op){ INET_DIAG_BC_JMP, 4, l2+4 }; *bytecode = a; return l1+l2+4; } case SSF_NOT: { char *a1 = NULL, *a; int l1; l1 = ssfilter_bytecompile(f->pred, &a1); if (!l1) { free(a1); return 0; } if (!(a = malloc(l1+4))) abort(); memcpy(a, a1, l1); free(a1); *(struct inet_diag_bc_op *)(a+l1) = (struct inet_diag_bc_op){ INET_DIAG_BC_JMP, 4, 8 }; *bytecode = a; return l1+4; } case SSF_DEVCOND: { /* bytecompile for SSF_DEVCOND not supported yet */ return 0; } case SSF_MARKMASK: { struct aafilter *a = (void *)f->pred; struct instr { struct inet_diag_bc_op op; struct inet_diag_markcond cond; }; int inslen = sizeof(struct instr); if (!(*bytecode = malloc(inslen))) abort(); ((struct instr *)*bytecode)[0] = (struct instr) { { INET_DIAG_BC_MARK_COND, inslen, inslen + 4 }, { a->mark, a->mask}, }; return inslen; } default: abort(); } } static int remember_he(struct aafilter *a, struct hostent *he) { char **ptr = he->h_addr_list; int cnt = 0; int len; if (he->h_addrtype == AF_INET) len = 4; else if (he->h_addrtype == AF_INET6) len = 16; else return 0; while (*ptr) { struct aafilter *b = a; if (a->addr.bitlen) { if ((b = malloc(sizeof(*b))) == NULL) return cnt; *b = *a; a->next = b; } memcpy(b->addr.data, *ptr, len); b->addr.bytelen = len; b->addr.bitlen = len*8; b->addr.family = he->h_addrtype; ptr++; cnt++; } return cnt; } static int get_dns_host(struct aafilter *a, const char *addr, int fam) { static int notfirst; int cnt = 0; struct hostent *he; a->addr.bitlen = 0; if (!notfirst) { sethostent(1); notfirst = 1; } he = gethostbyname2(addr, fam == AF_UNSPEC ? AF_INET : fam); if (he) cnt = remember_he(a, he); if (fam == AF_UNSPEC) { he = gethostbyname2(addr, AF_INET6); if (he) cnt += remember_he(a, he); } return !cnt; } static int xll_initted; static void xll_init(void) { struct rtnl_handle rth; if (rtnl_open(&rth, 0) < 0) exit(1); ll_init_map(&rth); rtnl_close(&rth); xll_initted = 1; } static const char *xll_index_to_name(int index) { if (!xll_initted) xll_init(); return ll_index_to_name(index); } static int xll_name_to_index(const char *dev) { if (!xll_initted) xll_init(); return ll_name_to_index(dev); } void *parse_devcond(char *name) { struct aafilter a = { .iface = 0 }; struct aafilter *res; a.iface = xll_name_to_index(name); if (a.iface == 0) { char *end; unsigned long n; n = strtoul(name, &end, 0); if (!end || end == name || *end || n > UINT_MAX) return NULL; a.iface = n; } res = malloc(sizeof(*res)); *res = a; return res; } void *parse_hostcond(char *addr, bool is_port) { char *port = NULL; struct aafilter a = { .port = -1 }; struct aafilter *res; int fam = preferred_family; struct filter *f = ¤t_filter; if (fam == AF_UNIX || strncmp(addr, "unix:", 5) == 0) { char *p; a.addr.family = AF_UNIX; if (strncmp(addr, "unix:", 5) == 0) addr += 5; p = strdup(addr); a.addr.bitlen = 8*strlen(p); memcpy(a.addr.data, &p, sizeof(p)); fam = AF_UNIX; goto out; } if (fam == AF_PACKET || strncmp(addr, "link:", 5) == 0) { a.addr.family = AF_PACKET; a.addr.bitlen = 0; if (strncmp(addr, "link:", 5) == 0) addr += 5; port = strchr(addr, ':'); if (port) { *port = 0; if (port[1] && strcmp(port+1, "*")) { if (get_integer(&a.port, port+1, 0)) { if ((a.port = xll_name_to_index(port+1)) <= 0) return NULL; } } } if (addr[0] && strcmp(addr, "*")) { unsigned short tmp; a.addr.bitlen = 32; if (ll_proto_a2n(&tmp, addr)) return NULL; a.addr.data[0] = ntohs(tmp); } fam = AF_PACKET; goto out; } if (fam == AF_NETLINK || strncmp(addr, "netlink:", 8) == 0) { a.addr.family = AF_NETLINK; a.addr.bitlen = 0; if (strncmp(addr, "netlink:", 8) == 0) addr += 8; port = strchr(addr, ':'); if (port) { *port = 0; if (port[1] && strcmp(port+1, "*")) { if (get_integer(&a.port, port+1, 0)) { if (strcmp(port+1, "kernel") == 0) a.port = 0; else return NULL; } } } if (addr[0] && strcmp(addr, "*")) { a.addr.bitlen = 32; if (nl_proto_a2n(&a.addr.data[0], addr) == -1) return NULL; } fam = AF_NETLINK; goto out; } if (fam == AF_INET || !strncmp(addr, "inet:", 5)) { fam = AF_INET; if (!strncmp(addr, "inet:", 5)) addr += 5; } else if (fam == AF_INET6 || !strncmp(addr, "inet6:", 6)) { fam = AF_INET6; if (!strncmp(addr, "inet6:", 6)) addr += 6; } /* URL-like literal [] */ if (addr[0] == '[') { addr++; if ((port = strchr(addr, ']')) == NULL) return NULL; *port++ = 0; } else if (addr[0] == '*') { port = addr+1; } else { port = strrchr(strchr(addr, '/') ? : addr, ':'); } if (is_port) port = addr; if (port && *port) { if (*port == ':') *port++ = 0; if (*port && *port != '*') { if (get_integer(&a.port, port, 0)) { struct servent *se1 = NULL; struct servent *se2 = NULL; if (current_filter.dbs&(1<s_port != se2->s_port) { fprintf(stderr, "Error: ambiguous port \"%s\".\n", port); return NULL; } if (!se1) se1 = se2; if (se1) { a.port = ntohs(se1->s_port); } else { struct scache *s; for (s = rlist; s; s = s->next) { if ((s->proto == UDP_PROTO && (current_filter.dbs&(1<proto == TCP_PROTO && (current_filter.dbs&(1<name && strcmp(s->name, port) == 0) { if (a.port > 0 && a.port != s->port) { fprintf(stderr, "Error: ambiguous port \"%s\".\n", port); return NULL; } a.port = s->port; } } } if (a.port <= 0) { fprintf(stderr, "Error: \"%s\" does not look like a port.\n", port); return NULL; } } } } } if (!is_port && *addr && *addr != '*') { if (get_prefix_1(&a.addr, addr, fam)) { if (get_dns_host(&a, addr, fam)) { fprintf(stderr, "Error: an inet prefix is expected rather than \"%s\".\n", addr); return NULL; } } } out: if (fam != AF_UNSPEC) { int states = f->states; f->families = 0; filter_af_set(f, fam); filter_states_set(f, states); } res = malloc(sizeof(*res)); if (res) memcpy(res, &a, sizeof(a)); return res; } void *parse_markmask(const char *markmask) { struct aafilter a, *res; if (strchr(markmask, '/')) { if (sscanf(markmask, "%i/%i", &a.mark, &a.mask) != 2) return NULL; } else { a.mask = 0xffffffff; if (sscanf(markmask, "%i", &a.mark) != 1) return NULL; } res = malloc(sizeof(*res)); if (res) memcpy(res, &a, sizeof(a)); return res; } static void proc_ctx_print(struct sockstat *s) { char *buf; if (show_proc_ctx || show_sock_ctx) { if (find_entry(s->ino, &buf, (show_proc_ctx & show_sock_ctx) ? PROC_SOCK_CTX : PROC_CTX) > 0) { printf(" users:(%s)", buf); free(buf); } } else if (show_users) { if (find_entry(s->ino, &buf, USERS) > 0) { printf(" users:(%s)", buf); free(buf); } } } static void inet_stats_print(struct sockstat *s, bool v6only) { sock_state_print(s); inet_addr_print(&s->local, s->lport, s->iface, v6only); inet_addr_print(&s->remote, s->rport, 0, v6only); proc_ctx_print(s); } static int proc_parse_inet_addr(char *loc, char *rem, int family, struct sockstat * s) { s->local.family = s->remote.family = family; if (family == AF_INET) { sscanf(loc, "%x:%x", s->local.data, (unsigned *)&s->lport); sscanf(rem, "%x:%x", s->remote.data, (unsigned *)&s->rport); s->local.bytelen = s->remote.bytelen = 4; return 0; } else { sscanf(loc, "%08x%08x%08x%08x:%x", s->local.data, s->local.data + 1, s->local.data + 2, s->local.data + 3, &s->lport); sscanf(rem, "%08x%08x%08x%08x:%x", s->remote.data, s->remote.data + 1, s->remote.data + 2, s->remote.data + 3, &s->rport); s->local.bytelen = s->remote.bytelen = 16; return 0; } return -1; } static int proc_inet_split_line(char *line, char **loc, char **rem, char **data) { char *p; if ((p = strchr(line, ':')) == NULL) return -1; *loc = p+2; if ((p = strchr(*loc, ':')) == NULL) return -1; p[5] = 0; *rem = p+6; if ((p = strchr(*rem, ':')) == NULL) return -1; p[5] = 0; *data = p+6; return 0; } static char *sprint_bw(char *buf, double bw) { if (bw > 1000000.) sprintf(buf, "%.1fM", bw / 1000000.); else if (bw > 1000.) sprintf(buf, "%.1fK", bw / 1000.); else sprintf(buf, "%g", bw); return buf; } static void sctp_stats_print(struct sctp_info *s) { if (s->sctpi_tag) printf(" tag:%x", s->sctpi_tag); if (s->sctpi_state) printf(" state:%s", sctp_sstate_name[s->sctpi_state]); if (s->sctpi_rwnd) printf(" rwnd:%d", s->sctpi_rwnd); if (s->sctpi_unackdata) printf(" unackdata:%d", s->sctpi_unackdata); if (s->sctpi_penddata) printf(" penddata:%d", s->sctpi_penddata); if (s->sctpi_instrms) printf(" instrms:%d", s->sctpi_instrms); if (s->sctpi_outstrms) printf(" outstrms:%d", s->sctpi_outstrms); if (s->sctpi_inqueue) printf(" inqueue:%d", s->sctpi_inqueue); if (s->sctpi_outqueue) printf(" outqueue:%d", s->sctpi_outqueue); if (s->sctpi_overall_error) printf(" overerr:%d", s->sctpi_overall_error); if (s->sctpi_max_burst) printf(" maxburst:%d", s->sctpi_max_burst); if (s->sctpi_maxseg) printf(" maxseg:%d", s->sctpi_maxseg); if (s->sctpi_peer_rwnd) printf(" prwnd:%d", s->sctpi_peer_rwnd); if (s->sctpi_peer_tag) printf(" ptag:%x", s->sctpi_peer_tag); if (s->sctpi_peer_capable) printf(" pcapable:%d", s->sctpi_peer_capable); if (s->sctpi_peer_sack) printf(" psack:%d", s->sctpi_peer_sack); if (s->sctpi_s_autoclose) printf(" autoclose:%d", s->sctpi_s_autoclose); if (s->sctpi_s_adaptation_ind) printf(" adapind:%d", s->sctpi_s_adaptation_ind); if (s->sctpi_s_pd_point) printf(" pdpoint:%d", s->sctpi_s_pd_point); if (s->sctpi_s_nodelay) printf(" nodealy:%d", s->sctpi_s_nodelay); if (s->sctpi_s_disable_fragments) printf(" nofrag:%d", s->sctpi_s_disable_fragments); if (s->sctpi_s_v4mapped) printf(" v4mapped:%d", s->sctpi_s_v4mapped); if (s->sctpi_s_frag_interleave) printf(" fraginl:%d", s->sctpi_s_frag_interleave); } static void tcp_stats_print(struct tcpstat *s) { char b1[64]; if (s->has_ts_opt) printf(" ts"); if (s->has_sack_opt) printf(" sack"); if (s->has_ecn_opt) printf(" ecn"); if (s->has_ecnseen_opt) printf(" ecnseen"); if (s->has_fastopen_opt) printf(" fastopen"); if (s->cong_alg[0]) printf(" %s", s->cong_alg); if (s->has_wscale_opt) printf(" wscale:%d,%d", s->snd_wscale, s->rcv_wscale); if (s->rto) printf(" rto:%g", s->rto); if (s->backoff) printf(" backoff:%u", s->backoff); if (s->rtt) printf(" rtt:%g/%g", s->rtt, s->rttvar); if (s->ato) printf(" ato:%g", s->ato); if (s->qack) printf(" qack:%d", s->qack); if (s->qack & 1) printf(" bidir"); if (s->mss) printf(" mss:%d", s->mss); if (s->rcv_mss) printf(" rcvmss:%d", s->rcv_mss); if (s->advmss) printf(" advmss:%d", s->advmss); if (s->cwnd) printf(" cwnd:%u", s->cwnd); if (s->ssthresh) printf(" ssthresh:%d", s->ssthresh); if (s->bytes_acked) printf(" bytes_acked:%llu", s->bytes_acked); if (s->bytes_received) printf(" bytes_received:%llu", s->bytes_received); if (s->segs_out) printf(" segs_out:%u", s->segs_out); if (s->segs_in) printf(" segs_in:%u", s->segs_in); if (s->data_segs_out) printf(" data_segs_out:%u", s->data_segs_out); if (s->data_segs_in) printf(" data_segs_in:%u", s->data_segs_in); if (s->dctcp && s->dctcp->enabled) { struct dctcpstat *dctcp = s->dctcp; printf(" dctcp:(ce_state:%u,alpha:%u,ab_ecn:%u,ab_tot:%u)", dctcp->ce_state, dctcp->alpha, dctcp->ab_ecn, dctcp->ab_tot); } else if (s->dctcp) { printf(" dctcp:fallback_mode"); } if (s->bbr_info) { __u64 bw; bw = s->bbr_info->bbr_bw_hi; bw <<= 32; bw |= s->bbr_info->bbr_bw_lo; printf(" bbr:(bw:%sbps,mrtt:%g", sprint_bw(b1, bw * 8.0), (double)s->bbr_info->bbr_min_rtt / 1000.0); if (s->bbr_info->bbr_pacing_gain) printf(",pacing_gain:%g", (double)s->bbr_info->bbr_pacing_gain / 256.0); if (s->bbr_info->bbr_cwnd_gain) printf(",cwnd_gain:%g", (double)s->bbr_info->bbr_cwnd_gain / 256.0); printf(")"); } if (s->send_bps) printf(" send %sbps", sprint_bw(b1, s->send_bps)); if (s->lastsnd) printf(" lastsnd:%u", s->lastsnd); if (s->lastrcv) printf(" lastrcv:%u", s->lastrcv); if (s->lastack) printf(" lastack:%u", s->lastack); if (s->pacing_rate) { printf(" pacing_rate %sbps", sprint_bw(b1, s->pacing_rate)); if (s->pacing_rate_max) printf("/%sbps", sprint_bw(b1, s->pacing_rate_max)); } if (s->delivery_rate) printf(" delivery_rate %sbps", sprint_bw(b1, s->delivery_rate)); if (s->app_limited) printf(" app_limited"); if (s->busy_time) { printf(" busy:%llums", s->busy_time / 1000); if (s->rwnd_limited) printf(" rwnd_limited:%llums(%.1f%%)", s->rwnd_limited / 1000, 100.0 * s->rwnd_limited / s->busy_time); if (s->sndbuf_limited) printf(" sndbuf_limited:%llums(%.1f%%)", s->sndbuf_limited / 1000, 100.0 * s->sndbuf_limited / s->busy_time); } if (s->unacked) printf(" unacked:%u", s->unacked); if (s->retrans || s->retrans_total) printf(" retrans:%u/%u", s->retrans, s->retrans_total); if (s->lost) printf(" lost:%u", s->lost); if (s->sacked && s->ss.state != SS_LISTEN) printf(" sacked:%u", s->sacked); if (s->fackets) printf(" fackets:%u", s->fackets); if (s->reordering != 3) printf(" reordering:%d", s->reordering); if (s->rcv_rtt) printf(" rcv_rtt:%g", s->rcv_rtt); if (s->rcv_space) printf(" rcv_space:%d", s->rcv_space); if (s->not_sent) printf(" notsent:%u", s->not_sent); if (s->min_rtt) printf(" minrtt:%g", s->min_rtt); } static void tcp_timer_print(struct tcpstat *s) { static const char * const tmr_name[] = { "off", "on", "keepalive", "timewait", "persist", "unknown" }; if (s->timer) { if (s->timer > 4) s->timer = 5; printf(" timer:(%s,%s,%d)", tmr_name[s->timer], print_ms_timer(s->timeout), s->retrans); } } static void sctp_timer_print(struct tcpstat *s) { if (s->timer) printf(" timer:(T3_RTX,%s,%d)", print_ms_timer(s->timeout), s->retrans); } static int tcp_show_line(char *line, const struct filter *f, int family) { int rto = 0, ato = 0; struct tcpstat s = {}; char *loc, *rem, *data; char opt[256]; int n; int hz = get_user_hz(); if (proc_inet_split_line(line, &loc, &rem, &data)) return -1; int state = (data[1] >= 'A') ? (data[1] - 'A' + 10) : (data[1] - '0'); if (!(f->states & (1 << state))) return 0; proc_parse_inet_addr(loc, rem, family, &s.ss); if (f->f && run_ssfilter(f->f, &s.ss) == 0) return 0; opt[0] = 0; n = sscanf(data, "%x %x:%x %x:%x %x %d %d %u %d %llx %d %d %d %u %d %[^\n]\n", &s.ss.state, &s.ss.wq, &s.ss.rq, &s.timer, &s.timeout, &s.retrans, &s.ss.uid, &s.probes, &s.ss.ino, &s.ss.refcnt, &s.ss.sk, &rto, &ato, &s.qack, &s.cwnd, &s.ssthresh, opt); if (n < 17) opt[0] = 0; if (n < 12) { rto = 0; s.cwnd = 2; s.ssthresh = -1; ato = s.qack = 0; } s.retrans = s.timer != 1 ? s.probes : s.retrans; s.timeout = (s.timeout * 1000 + hz - 1) / hz; s.ato = (double)ato / hz; s.qack /= 2; s.rto = (double)rto; s.ssthresh = s.ssthresh == -1 ? 0 : s.ssthresh; s.rto = s.rto != 3 * hz ? s.rto / hz : 0; s.ss.type = IPPROTO_TCP; inet_stats_print(&s.ss, false); if (show_options) tcp_timer_print(&s); if (show_details) { sock_details_print(&s.ss); if (opt[0]) printf(" opt:\"%s\"", opt); } if (show_tcpinfo) tcp_stats_print(&s); printf("\n"); return 0; } static int generic_record_read(FILE *fp, int (*worker)(char*, const struct filter *, int), const struct filter *f, int fam) { char line[256]; /* skip header */ if (fgets(line, sizeof(line), fp) == NULL) goto outerr; while (fgets(line, sizeof(line), fp) != NULL) { int n = strlen(line); if (n == 0 || line[n-1] != '\n') { errno = -EINVAL; return -1; } line[n-1] = 0; if (worker(line, f, fam) < 0) return 0; } outerr: return ferror(fp) ? -1 : 0; } static void print_skmeminfo(struct rtattr *tb[], int attrtype) { const __u32 *skmeminfo; if (!tb[attrtype]) { if (attrtype == INET_DIAG_SKMEMINFO) { if (!tb[INET_DIAG_MEMINFO]) return; const struct inet_diag_meminfo *minfo = RTA_DATA(tb[INET_DIAG_MEMINFO]); printf(" mem:(r%u,w%u,f%u,t%u)", minfo->idiag_rmem, minfo->idiag_wmem, minfo->idiag_fmem, minfo->idiag_tmem); } return; } skmeminfo = RTA_DATA(tb[attrtype]); printf(" skmem:(r%u,rb%u,t%u,tb%u,f%u,w%u,o%u", skmeminfo[SK_MEMINFO_RMEM_ALLOC], skmeminfo[SK_MEMINFO_RCVBUF], skmeminfo[SK_MEMINFO_WMEM_ALLOC], skmeminfo[SK_MEMINFO_SNDBUF], skmeminfo[SK_MEMINFO_FWD_ALLOC], skmeminfo[SK_MEMINFO_WMEM_QUEUED], skmeminfo[SK_MEMINFO_OPTMEM]); if (RTA_PAYLOAD(tb[attrtype]) >= (SK_MEMINFO_BACKLOG + 1) * sizeof(__u32)) printf(",bl%u", skmeminfo[SK_MEMINFO_BACKLOG]); if (RTA_PAYLOAD(tb[attrtype]) >= (SK_MEMINFO_DROPS + 1) * sizeof(__u32)) printf(",d%u", skmeminfo[SK_MEMINFO_DROPS]); printf(")"); } static void print_md5sig(struct tcp_diag_md5sig *sig) { printf("%s/%d=", format_host(sig->tcpm_family, sig->tcpm_family == AF_INET6 ? 16 : 4, &sig->tcpm_addr), sig->tcpm_prefixlen); print_escape_buf(sig->tcpm_key, sig->tcpm_keylen, " ,"); } #define TCPI_HAS_OPT(info, opt) !!(info->tcpi_options & (opt)) static void tcp_show_info(const struct nlmsghdr *nlh, struct inet_diag_msg *r, struct rtattr *tb[]) { double rtt = 0; struct tcpstat s = {}; s.ss.state = r->idiag_state; print_skmeminfo(tb, INET_DIAG_SKMEMINFO); if (tb[INET_DIAG_INFO]) { struct tcp_info *info; int len = RTA_PAYLOAD(tb[INET_DIAG_INFO]); /* workaround for older kernels with less fields */ if (len < sizeof(*info)) { info = alloca(sizeof(*info)); memcpy(info, RTA_DATA(tb[INET_DIAG_INFO]), len); memset((char *)info + len, 0, sizeof(*info) - len); } else info = RTA_DATA(tb[INET_DIAG_INFO]); if (show_options) { s.has_ts_opt = TCPI_HAS_OPT(info, TCPI_OPT_TIMESTAMPS); s.has_sack_opt = TCPI_HAS_OPT(info, TCPI_OPT_SACK); s.has_ecn_opt = TCPI_HAS_OPT(info, TCPI_OPT_ECN); s.has_ecnseen_opt = TCPI_HAS_OPT(info, TCPI_OPT_ECN_SEEN); s.has_fastopen_opt = TCPI_HAS_OPT(info, TCPI_OPT_SYN_DATA); } if (tb[INET_DIAG_CONG]) strncpy(s.cong_alg, rta_getattr_str(tb[INET_DIAG_CONG]), sizeof(s.cong_alg) - 1); if (TCPI_HAS_OPT(info, TCPI_OPT_WSCALE)) { s.has_wscale_opt = true; s.snd_wscale = info->tcpi_snd_wscale; s.rcv_wscale = info->tcpi_rcv_wscale; } if (info->tcpi_rto && info->tcpi_rto != 3000000) s.rto = (double)info->tcpi_rto / 1000; s.backoff = info->tcpi_backoff; s.rtt = (double)info->tcpi_rtt / 1000; s.rttvar = (double)info->tcpi_rttvar / 1000; s.ato = (double)info->tcpi_ato / 1000; s.mss = info->tcpi_snd_mss; s.rcv_mss = info->tcpi_rcv_mss; s.advmss = info->tcpi_advmss; s.rcv_space = info->tcpi_rcv_space; s.rcv_rtt = (double)info->tcpi_rcv_rtt / 1000; s.lastsnd = info->tcpi_last_data_sent; s.lastrcv = info->tcpi_last_data_recv; s.lastack = info->tcpi_last_ack_recv; s.unacked = info->tcpi_unacked; s.retrans = info->tcpi_retrans; s.retrans_total = info->tcpi_total_retrans; s.lost = info->tcpi_lost; s.sacked = info->tcpi_sacked; s.fackets = info->tcpi_fackets; s.reordering = info->tcpi_reordering; s.rcv_space = info->tcpi_rcv_space; s.cwnd = info->tcpi_snd_cwnd; if (info->tcpi_snd_ssthresh < 0xFFFF) s.ssthresh = info->tcpi_snd_ssthresh; rtt = (double) info->tcpi_rtt; if (tb[INET_DIAG_VEGASINFO]) { const struct tcpvegas_info *vinfo = RTA_DATA(tb[INET_DIAG_VEGASINFO]); if (vinfo->tcpv_enabled && vinfo->tcpv_rtt && vinfo->tcpv_rtt != 0x7fffffff) rtt = vinfo->tcpv_rtt; } if (tb[INET_DIAG_DCTCPINFO]) { struct dctcpstat *dctcp = malloc(sizeof(struct dctcpstat)); const struct tcp_dctcp_info *dinfo = RTA_DATA(tb[INET_DIAG_DCTCPINFO]); dctcp->enabled = !!dinfo->dctcp_enabled; dctcp->ce_state = dinfo->dctcp_ce_state; dctcp->alpha = dinfo->dctcp_alpha; dctcp->ab_ecn = dinfo->dctcp_ab_ecn; dctcp->ab_tot = dinfo->dctcp_ab_tot; s.dctcp = dctcp; } if (tb[INET_DIAG_BBRINFO]) { const void *bbr_info = RTA_DATA(tb[INET_DIAG_BBRINFO]); int len = min(RTA_PAYLOAD(tb[INET_DIAG_BBRINFO]), sizeof(*s.bbr_info)); s.bbr_info = calloc(1, sizeof(*s.bbr_info)); if (s.bbr_info && bbr_info) memcpy(s.bbr_info, bbr_info, len); } if (rtt > 0 && info->tcpi_snd_mss && info->tcpi_snd_cwnd) { s.send_bps = (double) info->tcpi_snd_cwnd * (double)info->tcpi_snd_mss * 8000000. / rtt; } if (info->tcpi_pacing_rate && info->tcpi_pacing_rate != ~0ULL) { s.pacing_rate = info->tcpi_pacing_rate * 8.; if (info->tcpi_max_pacing_rate && info->tcpi_max_pacing_rate != ~0ULL) s.pacing_rate_max = info->tcpi_max_pacing_rate * 8.; } s.bytes_acked = info->tcpi_bytes_acked; s.bytes_received = info->tcpi_bytes_received; s.segs_out = info->tcpi_segs_out; s.segs_in = info->tcpi_segs_in; s.data_segs_out = info->tcpi_data_segs_out; s.data_segs_in = info->tcpi_data_segs_in; s.not_sent = info->tcpi_notsent_bytes; if (info->tcpi_min_rtt && info->tcpi_min_rtt != ~0U) s.min_rtt = (double) info->tcpi_min_rtt / 1000; s.delivery_rate = info->tcpi_delivery_rate * 8.; s.app_limited = info->tcpi_delivery_rate_app_limited; s.busy_time = info->tcpi_busy_time; s.rwnd_limited = info->tcpi_rwnd_limited; s.sndbuf_limited = info->tcpi_sndbuf_limited; tcp_stats_print(&s); free(s.dctcp); free(s.bbr_info); } if (tb[INET_DIAG_MD5SIG]) { struct tcp_diag_md5sig *sig = RTA_DATA(tb[INET_DIAG_MD5SIG]); int len = RTA_PAYLOAD(tb[INET_DIAG_MD5SIG]); printf(" md5keys:"); print_md5sig(sig++); for (len -= sizeof(*sig); len > 0; len -= sizeof(*sig)) { printf(","); print_md5sig(sig++); } } } static const char *format_host_sa(struct sockaddr_storage *sa) { union { struct sockaddr_in sin; struct sockaddr_in6 sin6; } *saddr = (void *)sa; switch (sa->ss_family) { case AF_INET: return format_host(AF_INET, 4, &saddr->sin.sin_addr); case AF_INET6: return format_host(AF_INET6, 16, &saddr->sin6.sin6_addr); default: return ""; } } static void sctp_show_info(const struct nlmsghdr *nlh, struct inet_diag_msg *r, struct rtattr *tb[]) { struct sockaddr_storage *sa; int len; print_skmeminfo(tb, INET_DIAG_SKMEMINFO); if (tb[INET_DIAG_LOCALS]) { len = RTA_PAYLOAD(tb[INET_DIAG_LOCALS]); sa = RTA_DATA(tb[INET_DIAG_LOCALS]); printf("locals:%s", format_host_sa(sa)); for (sa++, len -= sizeof(*sa); len > 0; sa++, len -= sizeof(*sa)) printf(",%s", format_host_sa(sa)); } if (tb[INET_DIAG_PEERS]) { len = RTA_PAYLOAD(tb[INET_DIAG_PEERS]); sa = RTA_DATA(tb[INET_DIAG_PEERS]); printf(" peers:%s", format_host_sa(sa)); for (sa++, len -= sizeof(*sa); len > 0; sa++, len -= sizeof(*sa)) printf(",%s", format_host_sa(sa)); } if (tb[INET_DIAG_INFO]) { struct sctp_info *info; len = RTA_PAYLOAD(tb[INET_DIAG_INFO]); /* workaround for older kernels with less fields */ if (len < sizeof(*info)) { info = alloca(sizeof(*info)); memcpy(info, RTA_DATA(tb[INET_DIAG_INFO]), len); memset((char *)info + len, 0, sizeof(*info) - len); } else info = RTA_DATA(tb[INET_DIAG_INFO]); sctp_stats_print(info); } } static void parse_diag_msg(struct nlmsghdr *nlh, struct sockstat *s) { struct rtattr *tb[INET_DIAG_MAX+1]; struct inet_diag_msg *r = NLMSG_DATA(nlh); parse_rtattr(tb, INET_DIAG_MAX, (struct rtattr *)(r+1), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*r))); s->state = r->idiag_state; s->local.family = s->remote.family = r->idiag_family; s->lport = ntohs(r->id.idiag_sport); s->rport = ntohs(r->id.idiag_dport); s->wq = r->idiag_wqueue; s->rq = r->idiag_rqueue; s->ino = r->idiag_inode; s->uid = r->idiag_uid; s->iface = r->id.idiag_if; s->sk = cookie_sk_get(&r->id.idiag_cookie[0]); s->mark = 0; if (tb[INET_DIAG_MARK]) s->mark = rta_getattr_u32(tb[INET_DIAG_MARK]); if (tb[INET_DIAG_PROTOCOL]) s->raw_prot = rta_getattr_u8(tb[INET_DIAG_PROTOCOL]); else s->raw_prot = 0; if (s->local.family == AF_INET) s->local.bytelen = s->remote.bytelen = 4; else s->local.bytelen = s->remote.bytelen = 16; memcpy(s->local.data, r->id.idiag_src, s->local.bytelen); memcpy(s->remote.data, r->id.idiag_dst, s->local.bytelen); } static int inet_show_sock(struct nlmsghdr *nlh, struct sockstat *s) { struct rtattr *tb[INET_DIAG_MAX+1]; struct inet_diag_msg *r = NLMSG_DATA(nlh); unsigned char v6only = 0; parse_rtattr(tb, INET_DIAG_MAX, (struct rtattr *)(r+1), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*r))); if (tb[INET_DIAG_PROTOCOL]) s->type = rta_getattr_u8(tb[INET_DIAG_PROTOCOL]); if (s->local.family == AF_INET6 && tb[INET_DIAG_SKV6ONLY]) v6only = rta_getattr_u8(tb[INET_DIAG_SKV6ONLY]); inet_stats_print(s, v6only); if (show_options) { struct tcpstat t = {}; t.timer = r->idiag_timer; t.timeout = r->idiag_expires; t.retrans = r->idiag_retrans; if (s->type == IPPROTO_SCTP) sctp_timer_print(&t); else tcp_timer_print(&t); } if (show_details) { sock_details_print(s); if (s->local.family == AF_INET6 && tb[INET_DIAG_SKV6ONLY]) printf(" v6only:%u", v6only); if (tb[INET_DIAG_SHUTDOWN]) { unsigned char mask; mask = rta_getattr_u8(tb[INET_DIAG_SHUTDOWN]); printf(" %c-%c", mask & 1 ? '-' : '<', mask & 2 ? '-' : '>'); } } if (show_mem || (show_tcpinfo && s->type != IPPROTO_UDP)) { printf("\n\t"); if (s->type == IPPROTO_SCTP) sctp_show_info(nlh, r, tb); else tcp_show_info(nlh, r, tb); } sctp_ino = s->ino; printf("\n"); return 0; } static int tcpdiag_send(int fd, int protocol, struct filter *f) { struct sockaddr_nl nladdr = { .nl_family = AF_NETLINK }; struct { struct nlmsghdr nlh; struct inet_diag_req r; } req = { .nlh.nlmsg_len = sizeof(req), .nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST, .nlh.nlmsg_seq = MAGIC_SEQ, .r.idiag_family = AF_INET, .r.idiag_states = f->states, }; char *bc = NULL; int bclen; struct msghdr msg; struct rtattr rta; struct iovec iov[3]; int iovlen = 1; if (protocol == IPPROTO_UDP) return -1; if (protocol == IPPROTO_TCP) req.nlh.nlmsg_type = TCPDIAG_GETSOCK; else req.nlh.nlmsg_type = DCCPDIAG_GETSOCK; if (show_mem) { req.r.idiag_ext |= (1<<(INET_DIAG_MEMINFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_SKMEMINFO-1)); } if (show_tcpinfo) { req.r.idiag_ext |= (1<<(INET_DIAG_INFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_VEGASINFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_CONG-1)); } iov[0] = (struct iovec){ .iov_base = &req, .iov_len = sizeof(req) }; if (f->f) { bclen = ssfilter_bytecompile(f->f, &bc); if (bclen) { rta.rta_type = INET_DIAG_REQ_BYTECODE; rta.rta_len = RTA_LENGTH(bclen); iov[1] = (struct iovec){ &rta, sizeof(rta) }; iov[2] = (struct iovec){ bc, bclen }; req.nlh.nlmsg_len += RTA_LENGTH(bclen); iovlen = 3; } } msg = (struct msghdr) { .msg_name = (void *)&nladdr, .msg_namelen = sizeof(nladdr), .msg_iov = iov, .msg_iovlen = iovlen, }; if (sendmsg(fd, &msg, 0) < 0) { close(fd); return -1; } return 0; } static int sockdiag_send(int family, int fd, int protocol, struct filter *f) { struct sockaddr_nl nladdr = { .nl_family = AF_NETLINK }; DIAG_REQUEST(req, struct inet_diag_req_v2 r); char *bc = NULL; int bclen; struct msghdr msg; struct rtattr rta; struct iovec iov[3]; int iovlen = 1; if (family == PF_UNSPEC) return tcpdiag_send(fd, protocol, f); memset(&req.r, 0, sizeof(req.r)); req.r.sdiag_family = family; req.r.sdiag_protocol = protocol; req.r.idiag_states = f->states; if (show_mem) { req.r.idiag_ext |= (1<<(INET_DIAG_MEMINFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_SKMEMINFO-1)); } if (show_tcpinfo) { req.r.idiag_ext |= (1<<(INET_DIAG_INFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_VEGASINFO-1)); req.r.idiag_ext |= (1<<(INET_DIAG_CONG-1)); } iov[0] = (struct iovec){ .iov_base = &req, .iov_len = sizeof(req) }; if (f->f) { bclen = ssfilter_bytecompile(f->f, &bc); if (bclen) { rta.rta_type = INET_DIAG_REQ_BYTECODE; rta.rta_len = RTA_LENGTH(bclen); iov[1] = (struct iovec){ &rta, sizeof(rta) }; iov[2] = (struct iovec){ bc, bclen }; req.nlh.nlmsg_len += RTA_LENGTH(bclen); iovlen = 3; } } msg = (struct msghdr) { .msg_name = (void *)&nladdr, .msg_namelen = sizeof(nladdr), .msg_iov = iov, .msg_iovlen = iovlen, }; if (sendmsg(fd, &msg, 0) < 0) { close(fd); return -1; } return 0; } struct inet_diag_arg { struct filter *f; int protocol; struct rtnl_handle *rth; }; static int kill_inet_sock(struct nlmsghdr *h, void *arg, struct sockstat *s) { struct inet_diag_msg *d = NLMSG_DATA(h); struct inet_diag_arg *diag_arg = arg; struct rtnl_handle *rth = diag_arg->rth; DIAG_REQUEST(req, struct inet_diag_req_v2 r); req.nlh.nlmsg_type = SOCK_DESTROY; req.nlh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; req.nlh.nlmsg_seq = ++rth->seq; req.r.sdiag_family = d->idiag_family; req.r.sdiag_protocol = diag_arg->protocol; req.r.id = d->id; if (diag_arg->protocol == IPPROTO_RAW) { struct inet_diag_req_raw *raw = (void *)&req.r; BUILD_BUG_ON(sizeof(req.r) != sizeof(*raw)); raw->sdiag_raw_protocol = s->raw_prot; } return rtnl_talk(rth, &req.nlh, NULL, 0); } static int show_one_inet_sock(const struct sockaddr_nl *addr, struct nlmsghdr *h, void *arg) { int err; struct inet_diag_arg *diag_arg = arg; struct inet_diag_msg *r = NLMSG_DATA(h); struct sockstat s = {}; if (!(diag_arg->f->families & (1 << r->idiag_family))) return 0; parse_diag_msg(h, &s); s.type = diag_arg->protocol; if (diag_arg->f->f && run_ssfilter(diag_arg->f->f, &s) == 0) return 0; if (diag_arg->f->kill && kill_inet_sock(h, arg, &s) != 0) { if (errno == EOPNOTSUPP || errno == ENOENT) { /* Socket can't be closed, or is already closed. */ return 0; } else { perror("SOCK_DESTROY answers"); return -1; } } err = inet_show_sock(h, &s); if (err < 0) return err; return 0; } static int inet_show_netlink(struct filter *f, FILE *dump_fp, int protocol) { int err = 0; struct rtnl_handle rth, rth2; int family = PF_INET; struct inet_diag_arg arg = { .f = f, .protocol = protocol }; if (rtnl_open_byproto(&rth, 0, NETLINK_SOCK_DIAG)) return -1; if (f->kill) { if (rtnl_open_byproto(&rth2, 0, NETLINK_SOCK_DIAG)) { rtnl_close(&rth); return -1; } arg.rth = &rth2; } rth.dump = MAGIC_SEQ; rth.dump_fp = dump_fp; if (preferred_family == PF_INET6) family = PF_INET6; again: if ((err = sockdiag_send(family, rth.fd, protocol, f))) goto Exit; if ((err = rtnl_dump_filter(&rth, show_one_inet_sock, &arg))) { if (family != PF_UNSPEC) { family = PF_UNSPEC; goto again; } goto Exit; } if (family == PF_INET && preferred_family != PF_INET) { family = PF_INET6; goto again; } Exit: rtnl_close(&rth); if (arg.rth) rtnl_close(arg.rth); return err; } static int tcp_show_netlink_file(struct filter *f) { FILE *fp; char buf[16384]; int err = -1; if ((fp = fopen(getenv("TCPDIAG_FILE"), "r")) == NULL) { perror("fopen($TCPDIAG_FILE)"); return err; } while (1) { int status, err2; struct nlmsghdr *h = (struct nlmsghdr *)buf; struct sockstat s = {}; status = fread(buf, 1, sizeof(*h), fp); if (status < 0) { perror("Reading header from $TCPDIAG_FILE"); break; } if (status != sizeof(*h)) { perror("Unexpected EOF reading $TCPDIAG_FILE"); break; } status = fread(h+1, 1, NLMSG_ALIGN(h->nlmsg_len-sizeof(*h)), fp); if (status < 0) { perror("Reading $TCPDIAG_FILE"); break; } if (status + sizeof(*h) < h->nlmsg_len) { perror("Unexpected EOF reading $TCPDIAG_FILE"); break; } /* The only legal exit point */ if (h->nlmsg_type == NLMSG_DONE) { err = 0; break; } if (h->nlmsg_type == NLMSG_ERROR) { struct nlmsgerr *err = (struct nlmsgerr *)NLMSG_DATA(h); if (h->nlmsg_len < NLMSG_LENGTH(sizeof(struct nlmsgerr))) { fprintf(stderr, "ERROR truncated\n"); } else { errno = -err->error; perror("TCPDIAG answered"); } break; } parse_diag_msg(h, &s); s.type = IPPROTO_TCP; if (f && f->f && run_ssfilter(f->f, &s) == 0) continue; err2 = inet_show_sock(h, &s); if (err2 < 0) { err = err2; break; } } fclose(fp); return err; } static int tcp_show(struct filter *f) { FILE *fp = NULL; char *buf = NULL; int bufsize = 64*1024; if (!filter_af_get(f, AF_INET) && !filter_af_get(f, AF_INET6)) return 0; dg_proto = TCP_PROTO; if (getenv("TCPDIAG_FILE")) return tcp_show_netlink_file(f); if (!getenv("PROC_NET_TCP") && !getenv("PROC_ROOT") && inet_show_netlink(f, NULL, IPPROTO_TCP) == 0) return 0; /* Sigh... We have to parse /proc/net/tcp... */ /* Estimate amount of sockets and try to allocate * huge buffer to read all the table at one read. * Limit it by 16MB though. The assumption is: as soon as * kernel was able to hold information about N connections, * it is able to give us some memory for snapshot. */ if (1) { get_slabstat(&slabstat); int guess = slabstat.socks+slabstat.tcp_syns; if (f->states&(1< (16*1024*1024)/128) guess = (16*1024*1024)/128; guess *= 128; if (guess > bufsize) bufsize = guess; } while (bufsize >= 64*1024) { if ((buf = malloc(bufsize)) != NULL) break; bufsize /= 2; } if (buf == NULL) { errno = ENOMEM; return -1; } if (f->families & (1<families & (1<= 'A') ? (data[1] - 'A' + 10) : (data[1] - '0'); if (!(f->states & (1 << state))) return 0; proc_parse_inet_addr(loc, rem, family, &s); if (f->f && run_ssfilter(f->f, &s) == 0) return 0; opt[0] = 0; n = sscanf(data, "%x %x:%x %*x:%*x %*x %d %*d %u %d %llx %[^\n]\n", &s.state, &s.wq, &s.rq, &s.uid, &s.ino, &s.refcnt, &s.sk, opt); if (n < 9) opt[0] = 0; s.type = dg_proto == UDP_PROTO ? IPPROTO_UDP : 0; inet_stats_print(&s, false); if (show_details && opt[0]) printf(" opt:\"%s\"", opt); printf("\n"); return 0; } static int udp_show(struct filter *f) { FILE *fp = NULL; if (!filter_af_get(f, AF_INET) && !filter_af_get(f, AF_INET6)) return 0; dg_proto = UDP_PROTO; if (!getenv("PROC_NET_UDP") && !getenv("PROC_ROOT") && inet_show_netlink(f, NULL, IPPROTO_UDP) == 0) return 0; if (f->families&(1<families&(1<families&(1<families&(1<next; free(s->name); free(s); } static bool unix_type_skip(struct sockstat *s, struct filter *f) { if (s->type == SOCK_STREAM && !(f->dbs&(1<type == SOCK_DGRAM && !(f->dbs&(1<type == SOCK_SEQPACKET && !(f->dbs&(1<name ?: "*", " ", int_to_str(s->lport, port_name), NULL); sock_addr_print(s->peer_name ?: "*", " ", int_to_str(s->rport, port_name), NULL); proc_ctx_print(s); } static int unix_show_sock(const struct sockaddr_nl *addr, struct nlmsghdr *nlh, void *arg) { struct filter *f = (struct filter *)arg; struct unix_diag_msg *r = NLMSG_DATA(nlh); struct rtattr *tb[UNIX_DIAG_MAX+1]; char name[128]; struct sockstat stat = { .name = "*", .peer_name = "*" }; parse_rtattr(tb, UNIX_DIAG_MAX, (struct rtattr *)(r+1), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*r))); stat.type = r->udiag_type; stat.state = r->udiag_state; stat.ino = stat.lport = r->udiag_ino; stat.local.family = stat.remote.family = AF_UNIX; if (unix_type_skip(&stat, f)) return 0; if (tb[UNIX_DIAG_RQLEN]) { struct unix_diag_rqlen *rql = RTA_DATA(tb[UNIX_DIAG_RQLEN]); stat.rq = rql->udiag_rqueue; stat.wq = rql->udiag_wqueue; } if (tb[UNIX_DIAG_NAME]) { int len = RTA_PAYLOAD(tb[UNIX_DIAG_NAME]); memcpy(name, RTA_DATA(tb[UNIX_DIAG_NAME]), len); name[len] = '\0'; if (name[0] == '\0') { int i; for (i = 0; i < len; i++) if (name[i] == '\0') name[i] = '@'; } stat.name = &name[0]; memcpy(stat.local.data, &stat.name, sizeof(stat.name)); } if (tb[UNIX_DIAG_PEER]) stat.rport = rta_getattr_u32(tb[UNIX_DIAG_PEER]); if (f->f && run_ssfilter(f->f, &stat) == 0) return 0; unix_stats_print(&stat, f); if (show_mem) print_skmeminfo(tb, UNIX_DIAG_MEMINFO); if (show_details) { if (tb[UNIX_DIAG_SHUTDOWN]) { unsigned char mask; mask = rta_getattr_u8(tb[UNIX_DIAG_SHUTDOWN]); printf(" %c-%c", mask & 1 ? '-' : '<', mask & 2 ? '-' : '>'); } } printf("\n"); return 0; } static int handle_netlink_request(struct filter *f, struct nlmsghdr *req, size_t size, rtnl_filter_t show_one_sock) { int ret = -1; struct rtnl_handle rth; if (rtnl_open_byproto(&rth, 0, NETLINK_SOCK_DIAG)) return -1; rth.dump = MAGIC_SEQ; if (rtnl_send(&rth, req, size) < 0) goto Exit; if (rtnl_dump_filter(&rth, show_one_sock, f)) goto Exit; ret = 0; Exit: rtnl_close(&rth); return ret; } static int unix_show_netlink(struct filter *f) { DIAG_REQUEST(req, struct unix_diag_req r); req.r.sdiag_family = AF_UNIX; req.r.udiag_states = f->states; req.r.udiag_show = UDIAG_SHOW_NAME | UDIAG_SHOW_PEER | UDIAG_SHOW_RQLEN; if (show_mem) req.r.udiag_show |= UDIAG_SHOW_MEMINFO; return handle_netlink_request(f, &req.nlh, sizeof(req), unix_show_sock); } static int unix_show(struct filter *f) { FILE *fp; char buf[256]; char name[128]; int newformat = 0; int cnt; struct sockstat *list = NULL; const int unix_state_map[] = { SS_CLOSE, SS_SYN_SENT, SS_ESTABLISHED, SS_CLOSING }; if (!filter_af_get(f, AF_UNIX)) return 0; if (!getenv("PROC_NET_UNIX") && !getenv("PROC_ROOT") && unix_show_netlink(f) == 0) return 0; if ((fp = net_unix_open()) == NULL) return -1; if (!fgets(buf, sizeof(buf), fp)) { fclose(fp); return -1; } if (memcmp(buf, "Peer", 4) == 0) newformat = 1; cnt = 0; while (fgets(buf, sizeof(buf), fp)) { struct sockstat *u, **insp; int flags; if (!(u = calloc(1, sizeof(*u)))) break; if (sscanf(buf, "%x: %x %x %x %x %x %d %s", &u->rport, &u->rq, &u->wq, &flags, &u->type, &u->state, &u->ino, name) < 8) name[0] = 0; u->lport = u->ino; u->local.family = u->remote.family = AF_UNIX; if (flags & (1 << 16)) { u->state = SS_LISTEN; } else if (u->state > 0 && u->state <= ARRAY_SIZE(unix_state_map)) { u->state = unix_state_map[u->state-1]; if (u->type == SOCK_DGRAM && u->state == SS_CLOSE && u->rport) u->state = SS_ESTABLISHED; } if (unix_type_skip(u, f) || !(f->states & (1 << u->state))) { free(u); continue; } if (!newformat) { u->rport = 0; u->rq = 0; u->wq = 0; } if (name[0]) { u->name = strdup(name); if (!u->name) { free(u); break; } } if (u->rport) { struct sockstat *p; for (p = list; p; p = p->next) { if (u->rport == p->lport) break; } if (!p) u->peer_name = "?"; else u->peer_name = p->name ? : "*"; } if (f->f) { struct sockstat st = { .local.family = AF_UNIX, .remote.family = AF_UNIX, }; memcpy(st.local.data, &u->name, sizeof(u->name)); if (strcmp(u->peer_name, "*")) memcpy(st.remote.data, &u->peer_name, sizeof(u->peer_name)); if (run_ssfilter(f->f, &st) == 0) { free(u->name); free(u); continue; } } insp = &list; while (*insp) { if (u->type < (*insp)->type || (u->type == (*insp)->type && u->ino < (*insp)->ino)) break; insp = &(*insp)->next; } u->next = *insp; *insp = u; if (++cnt > MAX_UNIX_REMEMBER) { while (list) { unix_stats_print(list, f); printf("\n"); unix_list_drop_first(&list); } cnt = 0; } } fclose(fp); while (list) { unix_stats_print(list, f); printf("\n"); unix_list_drop_first(&list); } return 0; } static int packet_stats_print(struct sockstat *s, const struct filter *f) { const char *addr, *port; char ll_name[16]; s->local.family = s->remote.family = AF_PACKET; if (f->f) { s->local.data[0] = s->prot; if (run_ssfilter(f->f, s) == 0) return 1; } sock_state_print(s); if (s->prot == 3) addr = "*"; else addr = ll_proto_n2a(htons(s->prot), ll_name, sizeof(ll_name)); if (s->iface == 0) port = "*"; else port = xll_index_to_name(s->iface); sock_addr_print(addr, ":", port, NULL); sock_addr_print("", "*", "", NULL); proc_ctx_print(s); if (show_details) sock_details_print(s); return 0; } static void packet_show_ring(struct packet_diag_ring *ring) { printf("blk_size:%d", ring->pdr_block_size); printf(",blk_nr:%d", ring->pdr_block_nr); printf(",frm_size:%d", ring->pdr_frame_size); printf(",frm_nr:%d", ring->pdr_frame_nr); printf(",tmo:%d", ring->pdr_retire_tmo); printf(",features:0x%x", ring->pdr_features); } static int packet_show_sock(const struct sockaddr_nl *addr, struct nlmsghdr *nlh, void *arg) { const struct filter *f = arg; struct packet_diag_msg *r = NLMSG_DATA(nlh); struct packet_diag_info *pinfo = NULL; struct packet_diag_ring *ring_rx = NULL, *ring_tx = NULL; struct rtattr *tb[PACKET_DIAG_MAX+1]; struct sockstat stat = {}; uint32_t fanout = 0; bool has_fanout = false; parse_rtattr(tb, PACKET_DIAG_MAX, (struct rtattr *)(r+1), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*r))); /* use /proc/net/packet if all info are not available */ if (!tb[PACKET_DIAG_MEMINFO]) return -1; stat.type = r->pdiag_type; stat.prot = r->pdiag_num; stat.ino = r->pdiag_ino; stat.state = SS_CLOSE; stat.sk = cookie_sk_get(&r->pdiag_cookie[0]); if (tb[PACKET_DIAG_MEMINFO]) { __u32 *skmeminfo = RTA_DATA(tb[PACKET_DIAG_MEMINFO]); stat.rq = skmeminfo[SK_MEMINFO_RMEM_ALLOC]; } if (tb[PACKET_DIAG_INFO]) { pinfo = RTA_DATA(tb[PACKET_DIAG_INFO]); stat.lport = stat.iface = pinfo->pdi_index; } if (tb[PACKET_DIAG_UID]) stat.uid = rta_getattr_u32(tb[PACKET_DIAG_UID]); if (tb[PACKET_DIAG_RX_RING]) ring_rx = RTA_DATA(tb[PACKET_DIAG_RX_RING]); if (tb[PACKET_DIAG_TX_RING]) ring_tx = RTA_DATA(tb[PACKET_DIAG_TX_RING]); if (tb[PACKET_DIAG_FANOUT]) { has_fanout = true; fanout = rta_getattr_u32(tb[PACKET_DIAG_FANOUT]); } if (packet_stats_print(&stat, f)) return 0; if (show_details) { if (pinfo) { printf("\n\tver:%d", pinfo->pdi_version); printf(" cpy_thresh:%d", pinfo->pdi_copy_thresh); printf(" flags( "); if (pinfo->pdi_flags & PDI_RUNNING) printf("running"); if (pinfo->pdi_flags & PDI_AUXDATA) printf(" auxdata"); if (pinfo->pdi_flags & PDI_ORIGDEV) printf(" origdev"); if (pinfo->pdi_flags & PDI_VNETHDR) printf(" vnethdr"); if (pinfo->pdi_flags & PDI_LOSS) printf(" loss"); if (!pinfo->pdi_flags) printf("0"); printf(" )"); } if (ring_rx) { printf("\n\tring_rx("); packet_show_ring(ring_rx); printf(")"); } if (ring_tx) { printf("\n\tring_tx("); packet_show_ring(ring_tx); printf(")"); } if (has_fanout) { uint16_t type = (fanout >> 16) & 0xffff; printf("\n\tfanout("); printf("id:%d,", fanout & 0xffff); printf("type:"); if (type == 0) printf("hash"); else if (type == 1) printf("lb"); else if (type == 2) printf("cpu"); else if (type == 3) printf("roll"); else if (type == 4) printf("random"); else if (type == 5) printf("qm"); else printf("0x%x", type); printf(")"); } } if (show_bpf && tb[PACKET_DIAG_FILTER]) { struct sock_filter *fil = RTA_DATA(tb[PACKET_DIAG_FILTER]); int num = RTA_PAYLOAD(tb[PACKET_DIAG_FILTER]) / sizeof(struct sock_filter); printf("\n\tbpf filter (%d): ", num); while (num) { printf(" 0x%02x %u %u %u,", fil->code, fil->jt, fil->jf, fil->k); num--; fil++; } } printf("\n"); return 0; } static int packet_show_netlink(struct filter *f) { DIAG_REQUEST(req, struct packet_diag_req r); req.r.sdiag_family = AF_PACKET; req.r.pdiag_show = PACKET_SHOW_INFO | PACKET_SHOW_MEMINFO | PACKET_SHOW_FILTER | PACKET_SHOW_RING_CFG | PACKET_SHOW_FANOUT; return handle_netlink_request(f, &req.nlh, sizeof(req), packet_show_sock); } static int packet_show_line(char *buf, const struct filter *f, int fam) { unsigned long long sk; struct sockstat stat = {}; int type, prot, iface, state, rq, uid, ino; sscanf(buf, "%llx %*d %d %x %d %d %u %u %u", &sk, &type, &prot, &iface, &state, &rq, &uid, &ino); if (stat.type == SOCK_RAW && !(f->dbs&(1<dbs&(1<states & (1 << SS_CLOSE))) return 0; if (!getenv("PROC_NET_PACKET") && !getenv("PROC_ROOT") && packet_show_netlink(f) == 0) return 0; if ((fp = net_packet_open()) == NULL) return -1; if (generic_record_read(fp, packet_show_line, f, AF_PACKET)) rc = -1; fclose(fp); return rc; } static int netlink_show_one(struct filter *f, int prot, int pid, unsigned int groups, int state, int dst_pid, unsigned int dst_group, int rq, int wq, unsigned long long sk, unsigned long long cb) { struct sockstat st = { .state = SS_CLOSE, .rq = rq, .wq = wq, .local.family = AF_NETLINK, .remote.family = AF_NETLINK, }; SPRINT_BUF(prot_buf) = {}; const char *prot_name; char procname[64] = {}; if (f->f) { st.rport = -1; st.lport = pid; st.local.data[0] = prot; if (run_ssfilter(f->f, &st) == 0) return 1; } sock_state_print(&st); if (resolve_services) prot_name = nl_proto_n2a(prot, prot_buf, sizeof(prot_buf)); else prot_name = int_to_str(prot, prot_buf); if (pid == -1) { procname[0] = '*'; } else if (resolve_services) { int done = 0; if (!pid) { done = 1; strncpy(procname, "kernel", 6); } else if (pid > 0) { FILE *fp; snprintf(procname, sizeof(procname), "%s/%d/stat", getenv("PROC_ROOT") ? : "/proc", pid); if ((fp = fopen(procname, "r")) != NULL) { if (fscanf(fp, "%*d (%[^)])", procname) == 1) { snprintf(procname+strlen(procname), sizeof(procname)-strlen(procname), "/%d", pid); done = 1; } fclose(fp); } } if (!done) int_to_str(pid, procname); } else { int_to_str(pid, procname); } sock_addr_print(prot_name, ":", procname, NULL); if (state == NETLINK_CONNECTED) { char dst_group_buf[30]; char dst_pid_buf[30]; sock_addr_print(int_to_str(dst_group, dst_group_buf), ":", int_to_str(dst_pid, dst_pid_buf), NULL); } else { sock_addr_print("", "*", "", NULL); } char *pid_context = NULL; if (show_proc_ctx) { /* The pid value will either be: * 0 if destination kernel - show kernel initial context. * A valid process pid - use getpidcon. * A unique value allocated by the kernel or netlink user * to the process - show context as "not available". */ if (!pid) security_get_initial_context("kernel", &pid_context); else if (pid > 0) getpidcon(pid, &pid_context); printf(" proc_ctx=%s", pid_context ? : "unavailable"); free(pid_context); } if (show_details) { printf(" sk=%llx cb=%llx groups=0x%08x", sk, cb, groups); } printf("\n"); return 0; } static int netlink_show_sock(const struct sockaddr_nl *addr, struct nlmsghdr *nlh, void *arg) { struct filter *f = (struct filter *)arg; struct netlink_diag_msg *r = NLMSG_DATA(nlh); struct rtattr *tb[NETLINK_DIAG_MAX+1]; int rq = 0, wq = 0; unsigned long groups = 0; parse_rtattr(tb, NETLINK_DIAG_MAX, (struct rtattr *)(r+1), nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*r))); if (tb[NETLINK_DIAG_GROUPS] && RTA_PAYLOAD(tb[NETLINK_DIAG_GROUPS])) groups = *(unsigned long *) RTA_DATA(tb[NETLINK_DIAG_GROUPS]); if (tb[NETLINK_DIAG_MEMINFO]) { const __u32 *skmeminfo; skmeminfo = RTA_DATA(tb[NETLINK_DIAG_MEMINFO]); rq = skmeminfo[SK_MEMINFO_RMEM_ALLOC]; wq = skmeminfo[SK_MEMINFO_WMEM_ALLOC]; } if (netlink_show_one(f, r->ndiag_protocol, r->ndiag_portid, groups, r->ndiag_state, r->ndiag_dst_portid, r->ndiag_dst_group, rq, wq, 0, 0)) { return 0; } if (show_mem) { printf("\t"); print_skmeminfo(tb, NETLINK_DIAG_MEMINFO); printf("\n"); } return 0; } static int netlink_show_netlink(struct filter *f) { DIAG_REQUEST(req, struct netlink_diag_req r); req.r.sdiag_family = AF_NETLINK; req.r.sdiag_protocol = NDIAG_PROTO_ALL; req.r.ndiag_show = NDIAG_SHOW_GROUPS | NDIAG_SHOW_MEMINFO; return handle_netlink_request(f, &req.nlh, sizeof(req), netlink_show_sock); } static int netlink_show(struct filter *f) { FILE *fp; char buf[256]; int prot, pid; unsigned int groups; int rq, wq, rc; unsigned long long sk, cb; if (!filter_af_get(f, AF_NETLINK) || !(f->states & (1 << SS_CLOSE))) return 0; if (!getenv("PROC_NET_NETLINK") && !getenv("PROC_ROOT") && netlink_show_netlink(f) == 0) return 0; if ((fp = net_netlink_open()) == NULL) return -1; if (!fgets(buf, sizeof(buf), fp)) { fclose(fp); return -1; } while (fgets(buf, sizeof(buf), fp)) { sscanf(buf, "%llx %d %d %x %d %d %llx %d", &sk, &prot, &pid, &groups, &rq, &wq, &cb, &rc); netlink_show_one(f, prot, pid, groups, 0, 0, 0, rq, wq, sk, cb); } fclose(fp); return 0; } struct sock_diag_msg { __u8 sdiag_family; }; static int generic_show_sock(const struct sockaddr_nl *addr, struct nlmsghdr *nlh, void *arg) { struct sock_diag_msg *r = NLMSG_DATA(nlh); struct inet_diag_arg inet_arg = { .f = arg, .protocol = IPPROTO_MAX }; switch (r->sdiag_family) { case AF_INET: case AF_INET6: return show_one_inet_sock(addr, nlh, &inet_arg); case AF_UNIX: return unix_show_sock(addr, nlh, arg); case AF_PACKET: return packet_show_sock(addr, nlh, arg); case AF_NETLINK: return netlink_show_sock(addr, nlh, arg); default: return -1; } } static int handle_follow_request(struct filter *f) { int ret = 0; int groups = 0; struct rtnl_handle rth; if (f->families & (1 << AF_INET) && f->dbs & (1 << TCP_DB)) groups |= 1 << (SKNLGRP_INET_TCP_DESTROY - 1); if (f->families & (1 << AF_INET) && f->dbs & (1 << UDP_DB)) groups |= 1 << (SKNLGRP_INET_UDP_DESTROY - 1); if (f->families & (1 << AF_INET6) && f->dbs & (1 << TCP_DB)) groups |= 1 << (SKNLGRP_INET6_TCP_DESTROY - 1); if (f->families & (1 << AF_INET6) && f->dbs & (1 << UDP_DB)) groups |= 1 << (SKNLGRP_INET6_UDP_DESTROY - 1); if (groups == 0) return -1; if (rtnl_open_byproto(&rth, groups, NETLINK_SOCK_DIAG)) return -1; rth.dump = 0; rth.local.nl_pid = 0; if (rtnl_dump_filter(&rth, generic_show_sock, f)) ret = -1; rtnl_close(&rth); return ret; } static int get_snmp_int(char *proto, char *key, int *result) { char buf[1024]; FILE *fp; int protolen = strlen(proto); int keylen = strlen(key); *result = 0; if ((fp = net_snmp_open()) == NULL) return -1; while (fgets(buf, sizeof(buf), fp) != NULL) { char *p = buf; int pos = 0; if (memcmp(buf, proto, protolen)) continue; while ((p = strchr(p, ' ')) != NULL) { pos++; p++; if (memcmp(p, key, keylen) == 0 && (p[keylen] == ' ' || p[keylen] == '\n')) break; } if (fgets(buf, sizeof(buf), fp) == NULL) break; if (memcmp(buf, proto, protolen)) break; p = buf; while ((p = strchr(p, ' ')) != NULL) { p++; if (--pos == 0) { sscanf(p, "%d", result); fclose(fp); return 0; } } } fclose(fp); errno = ESRCH; return -1; } /* Get stats from sockstat */ struct ssummary { int socks; int tcp_mem; int tcp_total; int tcp_orphans; int tcp_tws; int tcp4_hashed; int udp4; int raw4; int frag4; int frag4_mem; int tcp6_hashed; int udp6; int raw6; int frag6; int frag6_mem; }; static void get_sockstat_line(char *line, struct ssummary *s) { char id[256], rem[256]; if (sscanf(line, "%[^ ] %[^\n]\n", id, rem) != 2) return; if (strcmp(id, "sockets:") == 0) sscanf(rem, "%*s%d", &s->socks); else if (strcmp(id, "UDP:") == 0) sscanf(rem, "%*s%d", &s->udp4); else if (strcmp(id, "UDP6:") == 0) sscanf(rem, "%*s%d", &s->udp6); else if (strcmp(id, "RAW:") == 0) sscanf(rem, "%*s%d", &s->raw4); else if (strcmp(id, "RAW6:") == 0) sscanf(rem, "%*s%d", &s->raw6); else if (strcmp(id, "TCP6:") == 0) sscanf(rem, "%*s%d", &s->tcp6_hashed); else if (strcmp(id, "FRAG:") == 0) sscanf(rem, "%*s%d%*s%d", &s->frag4, &s->frag4_mem); else if (strcmp(id, "FRAG6:") == 0) sscanf(rem, "%*s%d%*s%d", &s->frag6, &s->frag6_mem); else if (strcmp(id, "TCP:") == 0) sscanf(rem, "%*s%d%*s%d%*s%d%*s%d%*s%d", &s->tcp4_hashed, &s->tcp_orphans, &s->tcp_tws, &s->tcp_total, &s->tcp_mem); } static int get_sockstat(struct ssummary *s) { char buf[256]; FILE *fp; memset(s, 0, sizeof(*s)); if ((fp = net_sockstat_open()) == NULL) return -1; while (fgets(buf, sizeof(buf), fp) != NULL) get_sockstat_line(buf, s); fclose(fp); if ((fp = net_sockstat6_open()) == NULL) return 0; while (fgets(buf, sizeof(buf), fp) != NULL) get_sockstat_line(buf, s); fclose(fp); return 0; } static int print_summary(void) { struct ssummary s; int tcp_estab; if (get_sockstat(&s) < 0) perror("ss: get_sockstat"); if (get_snmp_int("Tcp:", "CurrEstab", &tcp_estab) < 0) perror("ss: get_snmpstat"); get_slabstat(&slabstat); printf("Total: %d (kernel %d)\n", s.socks, slabstat.socks); printf("TCP: %d (estab %d, closed %d, orphaned %d, synrecv %d, timewait %d/%d), ports %d\n", s.tcp_total + slabstat.tcp_syns + s.tcp_tws, tcp_estab, s.tcp_total - (s.tcp4_hashed+s.tcp6_hashed-s.tcp_tws), s.tcp_orphans, slabstat.tcp_syns, s.tcp_tws, slabstat.tcp_tws, slabstat.tcp_ports ); printf("\n"); printf("Transport Total IP IPv6\n"); printf("* %-9d %-9s %-9s\n", slabstat.socks, "-", "-"); printf("RAW %-9d %-9d %-9d\n", s.raw4+s.raw6, s.raw4, s.raw6); printf("UDP %-9d %-9d %-9d\n", s.udp4+s.udp6, s.udp4, s.udp6); printf("TCP %-9d %-9d %-9d\n", s.tcp4_hashed+s.tcp6_hashed, s.tcp4_hashed, s.tcp6_hashed); printf("INET %-9d %-9d %-9d\n", s.raw4+s.udp4+s.tcp4_hashed+ s.raw6+s.udp6+s.tcp6_hashed, s.raw4+s.udp4+s.tcp4_hashed, s.raw6+s.udp6+s.tcp6_hashed); printf("FRAG %-9d %-9d %-9d\n", s.frag4+s.frag6, s.frag4, s.frag6); printf("\n"); return 0; } static void _usage(FILE *dest) { fprintf(dest, "Usage: ss [ OPTIONS ]\n" " ss [ OPTIONS ] [ FILTER ]\n" " -h, --help this message\n" " -V, --version output version information\n" " -n, --numeric don't resolve service names\n" " -r, --resolve resolve host names\n" " -a, --all display all sockets\n" " -l, --listening display listening sockets\n" " -o, --options show timer information\n" " -e, --extended show detailed socket information\n" " -m, --memory show socket memory usage\n" " -p, --processes show process using socket\n" " -i, --info show internal TCP information\n" " -s, --summary show socket usage summary\n" " -b, --bpf show bpf filter socket information\n" " -E, --events continually display sockets as they are destroyed\n" " -Z, --context display process SELinux security contexts\n" " -z, --contexts display process and socket SELinux security contexts\n" " -N, --net switch to the specified network namespace name\n" "\n" " -4, --ipv4 display only IP version 4 sockets\n" " -6, --ipv6 display only IP version 6 sockets\n" " -0, --packet display PACKET sockets\n" " -t, --tcp display only TCP sockets\n" " -S, --sctp display only SCTP sockets\n" " -u, --udp display only UDP sockets\n" " -d, --dccp display only DCCP sockets\n" " -w, --raw display only RAW sockets\n" " -x, --unix display only Unix domain sockets\n" " -f, --family=FAMILY display sockets of type FAMILY\n" " FAMILY := {inet|inet6|link|unix|netlink|help}\n" "\n" " -K, --kill forcibly close sockets, display what was closed\n" " -H, --no-header Suppress header line\n" "\n" " -A, --query=QUERY, --socket=QUERY\n" " QUERY := {all|inet|tcp|udp|raw|unix|unix_dgram|unix_stream|unix_seqpacket|packet|netlink}[,QUERY]\n" "\n" " -D, --diag=FILE Dump raw information about TCP sockets to FILE\n" " -F, --filter=FILE read filter information from FILE\n" " FILTER := [ state STATE-FILTER ] [ EXPRESSION ]\n" " STATE-FILTER := {all|connected|synchronized|bucket|big|TCP-STATES}\n" " TCP-STATES := {established|syn-sent|syn-recv|fin-wait-{1,2}|time-wait|closed|close-wait|last-ack|listening|closing}\n" " connected := {established|syn-sent|syn-recv|fin-wait-{1,2}|time-wait|close-wait|last-ack|closing}\n" " synchronized := {established|syn-recv|fin-wait-{1,2}|time-wait|close-wait|last-ack|closing}\n" " bucket := {syn-recv|time-wait}\n" " big := {established|syn-sent|fin-wait-{1,2}|closed|close-wait|last-ack|listening|closing}\n" ); } static void help(void) __attribute__((noreturn)); static void help(void) { _usage(stdout); exit(0); } static void usage(void) __attribute__((noreturn)); static void usage(void) { _usage(stderr); exit(-1); } static int scan_state(const char *state) { static const char * const sstate_namel[] = { "UNKNOWN", [SS_ESTABLISHED] = "established", [SS_SYN_SENT] = "syn-sent", [SS_SYN_RECV] = "syn-recv", [SS_FIN_WAIT1] = "fin-wait-1", [SS_FIN_WAIT2] = "fin-wait-2", [SS_TIME_WAIT] = "time-wait", [SS_CLOSE] = "unconnected", [SS_CLOSE_WAIT] = "close-wait", [SS_LAST_ACK] = "last-ack", [SS_LISTEN] = "listening", [SS_CLOSING] = "closing", }; int i; if (strcasecmp(state, "close") == 0 || strcasecmp(state, "closed") == 0) return (1< 0) { if (strcmp(*argv, "state") == 0) { NEXT_ARG(); if (!saw_states) state_filter = 0; state_filter |= scan_state(*argv); saw_states = 1; } else if (strcmp(*argv, "exclude") == 0 || strcmp(*argv, "excl") == 0) { NEXT_ARG(); if (!saw_states) state_filter = SS_ALL; state_filter &= ~scan_state(*argv); saw_states = 1; } else { break; } argc--; argv++; } if (do_default) { state_filter = state_filter ? state_filter : SS_CONN; filter_default_dbs(¤t_filter); } filter_states_set(¤t_filter, state_filter); filter_merge_defaults(¤t_filter); if (resolve_services && resolve_hosts && (current_filter.dbs & (UNIX_DBM|INET_L4_DBM))) init_service_resolver(); if (current_filter.dbs == 0) { fprintf(stderr, "ss: no socket tables to show with such filter.\n"); exit(0); } if (current_filter.families == 0) { fprintf(stderr, "ss: no families to show with such filter.\n"); exit(0); } if (current_filter.states == 0) { fprintf(stderr, "ss: no socket states to show with such filter.\n"); exit(0); } if (dump_tcpdiag) { FILE *dump_fp = stdout; if (!(current_filter.dbs & (1< 0) screen_width = w.ws_col; } } addrp_width = screen_width; if (netid_width) addrp_width -= netid_width + 1; if (state_width) addrp_width -= state_width + 1; addrp_width -= 14; if (addrp_width&1) { if (netid_width) netid_width++; else if (state_width) state_width++; else odd_width_pad = " "; } addrp_width /= 2; addrp_width--; serv_width = resolve_services ? 7 : 5; if (addrp_width < 15+serv_width+1) addrp_width = 15+serv_width+1; addr_width = addrp_width - serv_width - 1; if (show_header) { if (netid_width) printf("%-*s ", netid_width, "Netid"); if (state_width) printf("%-*s ", state_width, "State"); printf("%-6s %-6s %s", "Recv-Q", "Send-Q", odd_width_pad); } /* Make enough space for the local/remote port field */ addr_width -= 13; serv_width += 13; if (show_header) { printf("%*s:%-*s %*s:%-*s\n", addr_width, "Local Address", serv_width, "Port", addr_width, "Peer Address", serv_width, "Port"); } fflush(stdout); if (follow_events) exit(handle_follow_request(¤t_filter)); if (current_filter.dbs & (1<