//===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // REQUIRES: long_tests // // template // class piecewise_linear_distribution // template result_type operator()(_URNG& g); #include #include #include #include #include #include #include #include template inline T sqr(T x) { return x*x; } double f(double x, double a, double m, double b, double c) { return a + m*(sqr(x) - sqr(b))/2 + c*(x-b); } void test1() { typedef std::piecewise_linear_distribution<> D; typedef std::mt19937_64 G; G g; double b[] = {10, 14, 16, 17}; double p[] = {0, 1, 1, 0}; const size_t Np = sizeof(p) / sizeof(p[0]) - 1; D d(b, b+Np+1, p); const int N = 1000000; std::vector u; for (size_t i = 0; i < N; ++i) { D::result_type v = d(g); assert(d.min() <= v && v < d.max()); u.push_back(v); } std::sort(u.begin(), u.end()); int kp = -1; double a = std::numeric_limits::quiet_NaN(); double m = std::numeric_limits::quiet_NaN(); double bk = std::numeric_limits::quiet_NaN(); double c = std::numeric_limits::quiet_NaN(); std::vector areas(Np); double S = 0; for (size_t i = 0; i < areas.size(); ++i) { areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2; S += areas[i]; } for (size_t i = 0; i < areas.size(); ++i) areas[i] /= S; for (size_t i = 0; i < Np+1; ++i) p[i] /= S; for (size_t i = 0; i < N; ++i) { int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1; if (k != kp) { a = 0; for (int j = 0; j < k; ++j) a += areas[j]; m = (p[k+1] - p[k]) / (b[k+1] - b[k]); bk = b[k]; c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]); kp = k; } assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001); } } void test2() { typedef std::piecewise_linear_distribution<> D; typedef std::mt19937_64 G; G g; double b[] = {10, 14, 16, 17}; double p[] = {0, 0, 1, 0}; const size_t Np = sizeof(p) / sizeof(p[0]) - 1; D d(b, b+Np+1, p); const int N = 1000000; std::vector u; for (size_t i = 0; i < N; ++i) { D::result_type v = d(g); assert(d.min() <= v && v < d.max()); u.push_back(v); } std::sort(u.begin(), u.end()); int kp = -1; double a = std::numeric_limits::quiet_NaN(); double m = std::numeric_limits::quiet_NaN(); double bk = std::numeric_limits::quiet_NaN(); double c = std::numeric_limits::quiet_NaN(); std::vector areas(Np); double S = 0; for (size_t i = 0; i < areas.size(); ++i) { areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2; S += areas[i]; } for (size_t i = 0; i < areas.size(); ++i) areas[i] /= S; for (size_t i = 0; i < Np+1; ++i) p[i] /= S; for (size_t i = 0; i < N; ++i) { int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1; if (k != kp) { a = 0; for (int j = 0; j < k; ++j) a += areas[j]; m = (p[k+1] - p[k]) / (b[k+1] - b[k]); bk = b[k]; c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]); kp = k; } assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001); } } void test3() { typedef std::piecewise_linear_distribution<> D; typedef std::mt19937_64 G; G g; double b[] = {10, 14, 16, 17}; double p[] = {1, 0, 0, 0}; const size_t Np = sizeof(p) / sizeof(p[0]) - 1; D d(b, b+Np+1, p); const size_t N = 1000000; std::vector u; for (size_t i = 0; i < N; ++i) { D::result_type v = d(g); assert(d.min() <= v && v < d.max()); u.push_back(v); } std::sort(u.begin(), u.end()); int kp = -1; double a = std::numeric_limits::quiet_NaN(); double m = std::numeric_limits::quiet_NaN(); double bk = std::numeric_limits::quiet_NaN(); double c = std::numeric_limits::quiet_NaN(); std::vector areas(Np); double S = 0; for (size_t i = 0; i < areas.size(); ++i) { areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2; S += areas[i]; } for (size_t i = 0; i < areas.size(); ++i) areas[i] /= S; for (size_t i = 0; i < Np+1; ++i) p[i] /= S; for (size_t i = 0; i < N; ++i) { int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1; if (k != kp) { a = 0; for (int j = 0; j < k; ++j) a += areas[j]; m = (p[k+1] - p[k]) / (b[k+1] - b[k]); bk = b[k]; c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]); kp = k; } assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001); } } void test4() { typedef std::piecewise_linear_distribution<> D; typedef std::mt19937_64 G; G g; double b[] = {10, 14, 16}; double p[] = {0, 1, 0}; const size_t Np = sizeof(p) / sizeof(p[0]) - 1; D d(b, b+Np+1, p); const int N = 1000000; std::vector u; for (size_t i = 0; i < N; ++i) { D::result_type v = d(g); assert(d.min() <= v && v < d.max()); u.push_back(v); } std::sort(u.begin(), u.end()); int kp = -1; double a = std::numeric_limits::quiet_NaN(); double m = std::numeric_limits::quiet_NaN(); double bk = std::numeric_limits::quiet_NaN(); double c = std::numeric_limits::quiet_NaN(); std::vector areas(Np); double S = 0; for (size_t i = 0; i < areas.size(); ++i) { areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2; S += areas[i]; } for (size_t i = 0; i < areas.size(); ++i) areas[i] /= S; for (size_t i = 0; i < Np+1; ++i) p[i] /= S; for (size_t i = 0; i < N; ++i) { int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1; if (k != kp) { a = 0; for (int j = 0; j < k; ++j) a += areas[j]; assert(k < static_cast(Np)); m = (p[k+1] - p[k]) / (b[k+1] - b[k]); bk = b[k]; c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]); kp = k; } assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001); } } void test5() { typedef std::piecewise_linear_distribution<> D; typedef std::mt19937_64 G; G g; double b[] = {10, 14}; double p[] = {1, 1}; const size_t Np = sizeof(p) / sizeof(p[0]) - 1; D d(b, b+Np+1, p); const int N = 1000000; std::vector u; for (size_t i = 0; i < N; ++i) { D::result_type v = d(g); assert(d.min() <= v && v < d.max()); u.push_back(v); } std::sort(u.begin(), u.end()); int kp = -1; double a = std::numeric_limits::quiet_NaN(); double m = std::numeric_limits::quiet_NaN(); double bk = std::numeric_limits::quiet_NaN(); double c = std::numeric_limits::quiet_NaN(); std::vector areas(Np); double S = 0; for (size_t i = 0; i < areas.size(); ++i) { assert(i < Np); areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2; S += areas[i]; } for (size_t i = 0; i < areas.size(); ++i) areas[i] /= S; for (size_t i = 0; i < Np+1; ++i) p[i] /= S; for (size_t i = 0; i < N; ++i) { int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1; if (k != kp) { a = 0; for (int j = 0; j < k; ++j) a += areas[j]; assert(k < static_cast(Np)); m = (p[k+1] - p[k]) / (b[k+1] - b[k]); bk = b[k]; c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]); kp = k; } assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001); } } void test6() { typedef std::piecewise_linear_distribution<> D; typedef std::mt19937_64 G; G g; double b[] = {10, 14, 16, 17}; double p[] = {25, 62.5, 12.5, 0}; const size_t Np = sizeof(p) / sizeof(p[0]) - 1; D d(b, b+Np+1, p); const int N = 1000000; std::vector u; for (size_t i = 0; i < N; ++i) { D::result_type v = d(g); assert(d.min() <= v && v < d.max()); u.push_back(v); } std::sort(u.begin(), u.end()); int kp = -1; double a = std::numeric_limits::quiet_NaN(); double m = std::numeric_limits::quiet_NaN(); double bk = std::numeric_limits::quiet_NaN(); double c = std::numeric_limits::quiet_NaN(); std::vector areas(Np); double S = 0; for (size_t i = 0; i < areas.size(); ++i) { areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2; S += areas[i]; } for (size_t i = 0; i < areas.size(); ++i) areas[i] /= S; for (size_t i = 0; i < Np+1; ++i) p[i] /= S; for (size_t i = 0; i < N; ++i) { int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1; if (k != kp) { a = 0; for (int j = 0; j < k; ++j) a += areas[j]; m = (p[k+1] - p[k]) / (b[k+1] - b[k]); bk = b[k]; c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]); kp = k; } assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001); } } int main() { test1(); test2(); test3(); test4(); test5(); test6(); }