/* * xcam_utils.h - xcam utilities * * Copyright (c) 2014-2015 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Wind Yuan * Author: Zong Wei * Author: Junkai Wu * Author: Yinhang Liu */ #include "xcam_utils.h" #include "video_buffer.h" #include "image_file_handle.h" namespace XCam { static float transform_bowl_coord_to_image_x ( const float bowl_x, const float bowl_y, const uint32_t img_width) { float offset_radian = (bowl_x < 0.0f) ? PI : ((bowl_y >= 0.0f) ? 2.0f * PI : 0.0f); float arctan_radian = (bowl_x != 0.0f) ? atan (-bowl_y / bowl_x) : ((bowl_y >= 0.0f) ? -PI / 2.0f : PI / 2.0f); float img_x = arctan_radian + offset_radian; img_x *= img_width / (2.0f * PI); return XCAM_CLAMP (img_x, 0.0f, img_width - 1.0f); } static float transform_bowl_coord_to_image_y ( const BowlDataConfig &config, const float bowl_x, const float bowl_y, const float bowl_z, const uint32_t img_height) { float wall_image_height = config.wall_height / (config.wall_height + config.ground_length) * img_height; float ground_image_height = img_height - wall_image_height; float img_y = 0.0f; if (bowl_z > 0.0f) { img_y = (config.wall_height - bowl_z) * wall_image_height / config.wall_height; img_y = XCAM_CLAMP (img_y, 0.0f, wall_image_height - 1.0f); } else { float max_semimajor = config.b * sqrt (1 - config.center_z * config.center_z / (config.c * config.c)); float min_semimajor = max_semimajor - config.ground_length; XCAM_ASSERT (min_semimajor >= 0); XCAM_ASSERT (max_semimajor > min_semimajor); float step = ground_image_height / (max_semimajor - min_semimajor); float axis_ratio = config.a / config.b; float cur_semimajor = sqrt (bowl_x * bowl_x + bowl_y * bowl_y * axis_ratio * axis_ratio) / axis_ratio; cur_semimajor = XCAM_CLAMP (cur_semimajor, min_semimajor, max_semimajor); img_y = (max_semimajor - cur_semimajor) * step + wall_image_height; img_y = XCAM_CLAMP (img_y, wall_image_height, img_height - 1.0f); } return img_y; } PointFloat2 bowl_view_coords_to_image ( const BowlDataConfig &config, const PointFloat3 &bowl_pos, const uint32_t img_width, const uint32_t img_height) { PointFloat2 img_pos; img_pos.x = transform_bowl_coord_to_image_x (bowl_pos.x, bowl_pos.y, img_width); img_pos.y = transform_bowl_coord_to_image_y (config, bowl_pos.x, bowl_pos.y, bowl_pos.z, img_height); return img_pos; } PointFloat3 bowl_view_image_to_world ( const BowlDataConfig &config, const uint32_t img_width, const uint32_t img_height, const PointFloat2 &img_pos) { PointFloat3 world; float angle; float a = config.a; float b = config.b; float c = config.c; float wall_image_height = config.wall_height / (float)(config.wall_height + config.ground_length) * (float)img_height; float ground_image_height = (float)img_height - wall_image_height; float z_step = (float)config.wall_height / wall_image_height; float angle_step = fabs(config.angle_end - config.angle_start) / img_width; if(img_pos.y < wall_image_height) { world.z = config.wall_height - img_pos.y * z_step; // TODO world.z angle = degree2radian (config.angle_start + img_pos.x * angle_step); float r2 = 1 - (world.z - config.center_z) * (world.z - config.center_z) / (c * c); if(XCAM_DOUBLE_EQUAL_AROUND (angle, PI / 2)) { world.x = 0.0f; world.y = -sqrt(r2 * b * b); } else if (XCAM_DOUBLE_EQUAL_AROUND (angle, PI * 3 / 2)) { world.x = 0.0f; world.y = sqrt(r2 * b * b); } else if((angle < PI / 2) || (angle > PI * 3 / 2)) { world.x = sqrt(r2 * a * a * b * b / (b * b + a * a * tan(angle) * tan(angle))); world.y = -world.x * tan(angle); } else { world.x = -sqrt(r2 * a * a * b * b / (b * b + a * a * tan(angle) * tan(angle))); world.y = -world.x * tan(angle); } } else { a = a * sqrt(1 - config.center_z * config.center_z / (c * c)); b = b * sqrt(1 - config.center_z * config.center_z / (c * c)); float ratio_ab = b / a; float step_b = config.ground_length / ground_image_height; b = b - (img_pos.y - wall_image_height) * step_b; a = b / ratio_ab; angle = degree2radian (config.angle_start + img_pos.x * angle_step); if(XCAM_DOUBLE_EQUAL_AROUND (angle, PI / 2)) { world.x = 0.0f; world.y = -b; } else if (XCAM_DOUBLE_EQUAL_AROUND (angle, PI * 3 / 2)) { world.x = 0.0f; world.y = b; } else if((angle < PI / 2) || (angle > PI * 3 / 2)) { world.x = a * b / sqrt(b * b + a * a * tan(angle) * tan(angle)); world.y = -world.x * tan(angle); } else { world.x = -a * b / sqrt(b * b + a * a * tan(angle) * tan(angle)); world.y = -world.x * tan(angle); } world.z = 0.0f; } return world; } void centralize_bowl_coord_from_cameras ( ExtrinsicParameter &front_cam, ExtrinsicParameter &right_cam, ExtrinsicParameter &rear_cam, ExtrinsicParameter &left_cam, PointFloat3 &bowl_coord_offset) { bowl_coord_offset.x = (front_cam.trans_x + rear_cam.trans_x) / 2.0f; bowl_coord_offset.y = (right_cam.trans_y + left_cam.trans_y) / 2.0f; bowl_coord_offset.z = 0.0f; front_cam.trans_x -= bowl_coord_offset.x; front_cam.trans_y -= bowl_coord_offset.y; right_cam.trans_x -= bowl_coord_offset.x; right_cam.trans_y -= bowl_coord_offset.y; rear_cam.trans_x -= bowl_coord_offset.x; rear_cam.trans_y -= bowl_coord_offset.y; left_cam.trans_x -= bowl_coord_offset.x; left_cam.trans_y -= bowl_coord_offset.y; } double linear_interpolate_p2 ( double value_start, double value_end, double ref_start, double ref_end, double ref_curr) { double weight_start = 0; double weight_end = 0; double dist_start = 0; double dist_end = 0; double dist_sum = 0; double value = 0; dist_start = abs(ref_curr - ref_start); dist_end = abs(ref_end - ref_curr); dist_sum = dist_start + dist_end; if (dist_start == 0) { weight_start = 10000000.0; } else { weight_start = ((double)dist_sum / dist_start); } if (dist_end == 0) { weight_end = 10000000.0; } else { weight_end = ((double)dist_sum / dist_end); } value = (value_start * weight_start + value_end * weight_end) / (weight_start + weight_end); return value; } double linear_interpolate_p4( double value_lt, double value_rt, double value_lb, double value_rb, double ref_lt_x, double ref_rt_x, double ref_lb_x, double ref_rb_x, double ref_lt_y, double ref_rt_y, double ref_lb_y, double ref_rb_y, double ref_curr_x, double ref_curr_y) { double weight_lt = 0; double weight_rt = 0; double weight_lb = 0; double weight_rb = 0; double dist_lt = 0; double dist_rt = 0; double dist_lb = 0; double dist_rb = 0; double dist_sum = 0; double value = 0; dist_lt = (double)abs(ref_curr_x - ref_lt_x) + (double)abs(ref_curr_y - ref_lt_y); dist_rt = (double)abs(ref_curr_x - ref_rt_x) + (double)abs(ref_curr_y - ref_rt_y); dist_lb = (double)abs(ref_curr_x - ref_lb_x) + (double)abs(ref_curr_y - ref_lb_y); dist_rb = (double)abs(ref_curr_x - ref_rb_x) + (double)abs(ref_curr_y - ref_rb_y); dist_sum = dist_lt + dist_rt + dist_lb + dist_rb; if (dist_lt == 0) { weight_lt = 10000000.0; } else { weight_lt = ((float)dist_sum / dist_lt); } if (dist_rt == 0) { weight_rt = 10000000.0; } else { weight_rt = ((float)dist_sum / dist_rt); } if (dist_lb == 0) { weight_lb = 10000000.0; } else { weight_lb = ((float)dist_sum / dist_lb); } if (dist_rb == 0) { weight_rb = 10000000.0; } else { weight_rb = ((float)dist_sum / dist_rt); } value = (double)floor ( (value_lt * weight_lt + value_rt * weight_rt + value_lb * weight_lb + value_rb * weight_rb) / (weight_lt + weight_rt + weight_lb + weight_rb) + 0.5 ); return value; } void get_gauss_table (uint32_t radius, float sigma, std::vector &table, bool normalize) { uint32_t i; uint32_t scale = radius * 2 + 1; float dis = 0.0f, sum = 1.0f; //XCAM_ASSERT (scale < 512); table.resize (scale); table[radius] = 1.0f; for (i = 0; i < radius; i++) { dis = ((float)i - radius) * ((float)i - radius); table[i] = table[scale - i - 1] = exp(-dis / (2.0f * sigma * sigma)); sum += table[i] * 2.0f; } if (!normalize) return; for(i = 0; i < scale; i++) table[i] /= sum; } void dump_buf_perfix_path (const SmartPtr buf, const char *prefix_name) { char file_name[256]; XCAM_ASSERT (prefix_name); XCAM_ASSERT (buf.ptr ()); const VideoBufferInfo &info = buf->get_video_info (); snprintf ( file_name, 256, "%s-%dx%d.%s", prefix_name, info.width, info.height, xcam_fourcc_to_string (info.format)); dump_video_buf (buf, file_name); } bool dump_video_buf (const SmartPtr buf, const char *file_name) { ImageFileHandle file; XCAM_ASSERT (file_name); XCamReturn ret = file.open (file_name, "wb"); XCAM_FAIL_RETURN ( ERROR, xcam_ret_is_ok (ret), false, "dump buffer failed when open file: %s", file_name); ret = file.write_buf (buf); XCAM_FAIL_RETURN ( ERROR, xcam_ret_is_ok (ret), false, "dump buffer to file: %s failed", file_name); return true; } }