//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SelectionDAG::LegalizeVectors method. // // The vector legalizer looks for vector operations which might need to be // scalarized and legalizes them. This is a separate step from Legalize because // scalarizing can introduce illegal types. For example, suppose we have an // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the // operation, which introduces nodes with the illegal type i64 which must be // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; // the operation must be unrolled, which introduces nodes with the illegal // type i8 which must be promoted. // // This does not legalize vector manipulations like ISD::BUILD_VECTOR, // or operations that happen to take a vector which are custom-lowered; // the legalization for such operations never produces nodes // with illegal types, so it's okay to put off legalizing them until // SelectionDAG::Legalize runs. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; namespace { class VectorLegalizer { SelectionDAG& DAG; const TargetLowering &TLI; bool Changed; // Keep track of whether anything changed /// For nodes that are of legal width, and that have more than one use, this /// map indicates what regularized operand to use. This allows us to avoid /// legalizing the same thing more than once. SmallDenseMap LegalizedNodes; /// \brief Adds a node to the translation cache. void AddLegalizedOperand(SDValue From, SDValue To) { LegalizedNodes.insert(std::make_pair(From, To)); // If someone requests legalization of the new node, return itself. if (From != To) LegalizedNodes.insert(std::make_pair(To, To)); } /// \brief Legalizes the given node. SDValue LegalizeOp(SDValue Op); /// \brief Assuming the node is legal, "legalize" the results. SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); /// \brief Implements unrolling a VSETCC. SDValue UnrollVSETCC(SDValue Op); /// \brief Implement expand-based legalization of vector operations. /// /// This is just a high-level routine to dispatch to specific code paths for /// operations to legalize them. SDValue Expand(SDValue Op); /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if /// FSUB isn't legal. /// /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if /// SINT_TO_FLOAT and SHR on vectors isn't legal. SDValue ExpandUINT_TO_FLOAT(SDValue Op); /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. SDValue ExpandSEXTINREG(SDValue Op); /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG. /// /// Shuffles the low lanes of the operand into place and bitcasts to the proper /// type. The contents of the bits in the extended part of each element are /// undef. SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG. /// /// Shuffles the low lanes of the operand into place, bitcasts to the proper /// type, then shifts left and arithmetic shifts right to introduce a sign /// extension. SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG. /// /// Shuffles the low lanes of the operand into place and blends zeros into /// the remaining lanes, finally bitcasting to the proper type. SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); /// \brief Expand bswap of vectors into a shuffle if legal. SDValue ExpandBSWAP(SDValue Op); /// \brief Implement vselect in terms of XOR, AND, OR when blend is not /// supported by the target. SDValue ExpandVSELECT(SDValue Op); SDValue ExpandSELECT(SDValue Op); SDValue ExpandLoad(SDValue Op); SDValue ExpandStore(SDValue Op); SDValue ExpandFNEG(SDValue Op); SDValue ExpandBITREVERSE(SDValue Op); SDValue ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op); /// \brief Implements vector promotion. /// /// This is essentially just bitcasting the operands to a different type and /// bitcasting the result back to the original type. SDValue Promote(SDValue Op); /// \brief Implements [SU]INT_TO_FP vector promotion. /// /// This is a [zs]ext of the input operand to the next size up. SDValue PromoteINT_TO_FP(SDValue Op); /// \brief Implements FP_TO_[SU]INT vector promotion of the result type. /// /// It is promoted to the next size up integer type. The result is then /// truncated back to the original type. SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned); public: /// \brief Begin legalizer the vector operations in the DAG. bool Run(); VectorLegalizer(SelectionDAG& dag) : DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} }; bool VectorLegalizer::Run() { // Before we start legalizing vector nodes, check if there are any vectors. bool HasVectors = false; for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { // Check if the values of the nodes contain vectors. We don't need to check // the operands because we are going to check their values at some point. for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); J != E; ++J) HasVectors |= J->isVector(); // If we found a vector node we can start the legalization. if (HasVectors) break; } // If this basic block has no vectors then no need to legalize vectors. if (!HasVectors) return false; // The legalize process is inherently a bottom-up recursive process (users // legalize their uses before themselves). Given infinite stack space, we // could just start legalizing on the root and traverse the whole graph. In // practice however, this causes us to run out of stack space on large basic // blocks. To avoid this problem, compute an ordering of the nodes where each // node is only legalized after all of its operands are legalized. DAG.AssignTopologicalOrder(); for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) LegalizeOp(SDValue(&*I, 0)); // Finally, it's possible the root changed. Get the new root. SDValue OldRoot = DAG.getRoot(); assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); DAG.setRoot(LegalizedNodes[OldRoot]); LegalizedNodes.clear(); // Remove dead nodes now. DAG.RemoveDeadNodes(); return Changed; } SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { // Generic legalization: just pass the operand through. for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); return Result.getValue(Op.getResNo()); } SDValue VectorLegalizer::LegalizeOp(SDValue Op) { // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. DenseMap::iterator I = LegalizedNodes.find(Op); if (I != LegalizedNodes.end()) return I->second; SDNode* Node = Op.getNode(); // Legalize the operands SmallVector Ops; for (const SDValue &Op : Node->op_values()) Ops.push_back(LegalizeOp(Op)); SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0); bool HasVectorValue = false; if (Op.getOpcode() == ISD::LOAD) { LoadSDNode *LD = cast(Op.getNode()); ISD::LoadExtType ExtType = LD->getExtensionType(); if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), LD->getMemoryVT())) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Legal: return TranslateLegalizeResults(Op, Result); case TargetLowering::Custom: if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { if (Lowered == Result) return TranslateLegalizeResults(Op, Lowered); Changed = true; if (Lowered->getNumValues() != Op->getNumValues()) { // This expanded to something other than the load. Assume the // lowering code took care of any chain values, and just handle the // returned value. assert(Result.getValue(1).use_empty() && "There are still live users of the old chain!"); return LegalizeOp(Lowered); } return TranslateLegalizeResults(Op, Lowered); } case TargetLowering::Expand: Changed = true; return LegalizeOp(ExpandLoad(Op)); } } else if (Op.getOpcode() == ISD::STORE) { StoreSDNode *ST = cast(Op.getNode()); EVT StVT = ST->getMemoryVT(); MVT ValVT = ST->getValue().getSimpleValueType(); if (StVT.isVector() && ST->isTruncatingStore()) switch (TLI.getTruncStoreAction(ValVT, StVT)) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Legal: return TranslateLegalizeResults(Op, Result); case TargetLowering::Custom: { SDValue Lowered = TLI.LowerOperation(Result, DAG); Changed = Lowered != Result; return TranslateLegalizeResults(Op, Lowered); } case TargetLowering::Expand: Changed = true; return LegalizeOp(ExpandStore(Op)); } } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE) HasVectorValue = true; for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); J != E; ++J) HasVectorValue |= J->isVector(); if (!HasVectorValue) return TranslateLegalizeResults(Op, Result); EVT QueryType; switch (Op.getOpcode()) { default: return TranslateLegalizeResults(Op, Result); case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: case ISD::SDIVREM: case ISD::UDIVREM: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::ROTL: case ISD::ROTR: case ISD::BSWAP: case ISD::BITREVERSE: case ISD::CTLZ: case ISD::CTTZ: case ISD::CTLZ_ZERO_UNDEF: case ISD::CTTZ_ZERO_UNDEF: case ISD::CTPOP: case ISD::SELECT: case ISD::VSELECT: case ISD::SELECT_CC: case ISD::SETCC: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: case ISD::TRUNCATE: case ISD::SIGN_EXTEND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::FNEG: case ISD::FABS: case ISD::FMINNUM: case ISD::FMAXNUM: case ISD::FMINNAN: case ISD::FMAXNAN: case ISD::FCOPYSIGN: case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FPOWI: case ISD::FPOW: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FEXP: case ISD::FEXP2: case ISD::FCEIL: case ISD::FTRUNC: case ISD::FRINT: case ISD::FNEARBYINT: case ISD::FROUND: case ISD::FFLOOR: case ISD::FP_ROUND: case ISD::FP_EXTEND: case ISD::FMA: case ISD::SIGN_EXTEND_INREG: case ISD::ANY_EXTEND_VECTOR_INREG: case ISD::SIGN_EXTEND_VECTOR_INREG: case ISD::ZERO_EXTEND_VECTOR_INREG: case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: QueryType = Node->getValueType(0); break; case ISD::FP_ROUND_INREG: QueryType = cast(Node->getOperand(1))->getVT(); break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: QueryType = Node->getOperand(0).getValueType(); break; case ISD::MSCATTER: QueryType = cast(Node)->getValue().getValueType(); break; case ISD::MSTORE: QueryType = cast(Node)->getValue().getValueType(); break; } switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Promote: Result = Promote(Op); Changed = true; break; case TargetLowering::Legal: break; case TargetLowering::Custom: { if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { Result = Tmp1; break; } // FALL THROUGH } case TargetLowering::Expand: Result = Expand(Op); } // Make sure that the generated code is itself legal. if (Result != Op) { Result = LegalizeOp(Result); Changed = true; } // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. AddLegalizedOperand(Op, Result); return Result; } SDValue VectorLegalizer::Promote(SDValue Op) { // For a few operations there is a specific concept for promotion based on // the operand's type. switch (Op.getOpcode()) { case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: // "Promote" the operation by extending the operand. return PromoteINT_TO_FP(Op); case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: // Promote the operation by extending the operand. return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT); } // There are currently two cases of vector promotion: // 1) Bitcasting a vector of integers to a different type to a vector of the // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. // 2) Extending a vector of floats to a vector of the same number of larger // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. MVT VT = Op.getSimpleValueType(); assert(Op.getNode()->getNumValues() == 1 && "Can't promote a vector with multiple results!"); MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); SDLoc dl(Op); SmallVector Operands(Op.getNumOperands()); for (unsigned j = 0; j != Op.getNumOperands(); ++j) { if (Op.getOperand(j).getValueType().isVector()) if (Op.getOperand(j) .getValueType() .getVectorElementType() .isFloatingPoint() && NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); else Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); else Operands[j] = Op.getOperand(j); } Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); else return DAG.getNode(ISD::BITCAST, dl, VT, Op); } SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { // INT_TO_FP operations may require the input operand be promoted even // when the type is otherwise legal. EVT VT = Op.getOperand(0).getValueType(); assert(Op.getNode()->getNumValues() == 1 && "Can't promote a vector with multiple results!"); // Normal getTypeToPromoteTo() doesn't work here, as that will promote // by widening the vector w/ the same element width and twice the number // of elements. We want the other way around, the same number of elements, // each twice the width. // // Increase the bitwidth of the element to the next pow-of-two // (which is greater than 8 bits). EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext()); assert(NVT.isSimple() && "Promoting to a non-simple vector type!"); SDLoc dl(Op); SmallVector Operands(Op.getNumOperands()); unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; for (unsigned j = 0; j != Op.getNumOperands(); ++j) { if (Op.getOperand(j).getValueType().isVector()) Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); else Operands[j] = Op.getOperand(j); } return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); } // For FP_TO_INT we promote the result type to a vector type with wider // elements and then truncate the result. This is different from the default // PromoteVector which uses bitcast to promote thus assumning that the // promoted vector type has the same overall size. SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) { assert(Op.getNode()->getNumValues() == 1 && "Can't promote a vector with multiple results!"); EVT VT = Op.getValueType(); EVT NewVT; unsigned NewOpc; while (1) { NewVT = VT.widenIntegerVectorElementType(*DAG.getContext()); assert(NewVT.isSimple() && "Promoting to a non-simple vector type!"); if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) { NewOpc = ISD::FP_TO_SINT; break; } if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) { NewOpc = ISD::FP_TO_UINT; break; } } SDLoc loc(Op); SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0)); return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted); } SDValue VectorLegalizer::ExpandLoad(SDValue Op) { LoadSDNode *LD = cast(Op.getNode()); EVT SrcVT = LD->getMemoryVT(); EVT SrcEltVT = SrcVT.getScalarType(); unsigned NumElem = SrcVT.getVectorNumElements(); SDValue NewChain; SDValue Value; if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { SDLoc dl(Op); SmallVector Vals; SmallVector LoadChains; EVT DstEltVT = LD->getValueType(0).getScalarType(); SDValue Chain = LD->getChain(); SDValue BasePTR = LD->getBasePtr(); ISD::LoadExtType ExtType = LD->getExtensionType(); // When elements in a vector is not byte-addressable, we cannot directly // load each element by advancing pointer, which could only address bytes. // Instead, we load all significant words, mask bits off, and concatenate // them to form each element. Finally, they are extended to destination // scalar type to build the destination vector. EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); assert(WideVT.isRound() && "Could not handle the sophisticated case when the widest integer is" " not power of 2."); assert(WideVT.bitsGE(SrcEltVT) && "Type is not legalized?"); unsigned WideBytes = WideVT.getStoreSize(); unsigned Offset = 0; unsigned RemainingBytes = SrcVT.getStoreSize(); SmallVector LoadVals; while (RemainingBytes > 0) { SDValue ScalarLoad; unsigned LoadBytes = WideBytes; if (RemainingBytes >= LoadBytes) { ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR, LD->getPointerInfo().getWithOffset(Offset), LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), MinAlign(LD->getAlignment(), Offset), LD->getAAInfo()); } else { EVT LoadVT = WideVT; while (RemainingBytes < LoadBytes) { LoadBytes >>= 1; // Reduce the load size by half. LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); } ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, LD->getPointerInfo().getWithOffset(Offset), LoadVT, LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(), MinAlign(LD->getAlignment(), Offset), LD->getAAInfo()); } RemainingBytes -= LoadBytes; Offset += LoadBytes; BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR, DAG.getConstant(LoadBytes, dl, BasePTR.getValueType())); LoadVals.push_back(ScalarLoad.getValue(0)); LoadChains.push_back(ScalarLoad.getValue(1)); } // Extract bits, pack and extend/trunc them into destination type. unsigned SrcEltBits = SrcEltVT.getSizeInBits(); SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT); unsigned BitOffset = 0; unsigned WideIdx = 0; unsigned WideBits = WideVT.getSizeInBits(); for (unsigned Idx = 0; Idx != NumElem; ++Idx) { SDValue Lo, Hi, ShAmt; if (BitOffset < WideBits) { ShAmt = DAG.getConstant( BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); } BitOffset += SrcEltBits; if (BitOffset >= WideBits) { WideIdx++; BitOffset -= WideBits; if (BitOffset > 0) { ShAmt = DAG.getConstant( SrcEltBits - BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask); } } if (Hi.getNode()) Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); switch (ExtType) { default: llvm_unreachable("Unknown extended-load op!"); case ISD::EXTLOAD: Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); break; case ISD::ZEXTLOAD: Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); break; case ISD::SEXTLOAD: ShAmt = DAG.getConstant(WideBits - SrcEltBits, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); break; } Vals.push_back(Lo); } NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); Value = DAG.getNode(ISD::BUILD_VECTOR, dl, Op.getNode()->getValueType(0), Vals); } else { SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); NewChain = Scalarized.getValue(1); Value = Scalarized.getValue(0); } AddLegalizedOperand(Op.getValue(0), Value); AddLegalizedOperand(Op.getValue(1), NewChain); return (Op.getResNo() ? NewChain : Value); } SDValue VectorLegalizer::ExpandStore(SDValue Op) { StoreSDNode *ST = cast(Op.getNode()); EVT StVT = ST->getMemoryVT(); EVT MemSclVT = StVT.getScalarType(); unsigned ScalarSize = MemSclVT.getSizeInBits(); // Round odd types to the next pow of two. if (!isPowerOf2_32(ScalarSize)) { // FIXME: This is completely broken and inconsistent with ExpandLoad // handling. // For sub-byte element sizes, this ends up with 0 stride between elements, // so the same element just gets re-written to the same location. There seem // to be tests explicitly testing for this broken behavior though. tests // for this broken behavior. LLVMContext &Ctx = *DAG.getContext(); EVT NewMemVT = EVT::getVectorVT(Ctx, MemSclVT.getIntegerVT(Ctx, NextPowerOf2(ScalarSize)), StVT.getVectorNumElements()); SDValue NewVectorStore = DAG.getTruncStore(ST->getChain(), SDLoc(Op), ST->getValue(), ST->getBasePtr(), ST->getPointerInfo(), NewMemVT, ST->isVolatile(), ST->isNonTemporal(), ST->getAlignment(), ST->getAAInfo()); ST = cast(NewVectorStore.getNode()); } SDValue TF = TLI.scalarizeVectorStore(ST, DAG); AddLegalizedOperand(Op, TF); return TF; } SDValue VectorLegalizer::Expand(SDValue Op) { switch (Op->getOpcode()) { case ISD::SIGN_EXTEND_INREG: return ExpandSEXTINREG(Op); case ISD::ANY_EXTEND_VECTOR_INREG: return ExpandANY_EXTEND_VECTOR_INREG(Op); case ISD::SIGN_EXTEND_VECTOR_INREG: return ExpandSIGN_EXTEND_VECTOR_INREG(Op); case ISD::ZERO_EXTEND_VECTOR_INREG: return ExpandZERO_EXTEND_VECTOR_INREG(Op); case ISD::BSWAP: return ExpandBSWAP(Op); case ISD::VSELECT: return ExpandVSELECT(Op); case ISD::SELECT: return ExpandSELECT(Op); case ISD::UINT_TO_FP: return ExpandUINT_TO_FLOAT(Op); case ISD::FNEG: return ExpandFNEG(Op); case ISD::SETCC: return UnrollVSETCC(Op); case ISD::BITREVERSE: return ExpandBITREVERSE(Op); case ISD::CTLZ_ZERO_UNDEF: case ISD::CTTZ_ZERO_UNDEF: return ExpandCTLZ_CTTZ_ZERO_UNDEF(Op); default: return DAG.UnrollVectorOp(Op.getNode()); } } SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { // Lower a select instruction where the condition is a scalar and the // operands are vectors. Lower this select to VSELECT and implement it // using XOR AND OR. The selector bit is broadcasted. EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue Mask = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue Op2 = Op.getOperand(2); assert(VT.isVector() && !Mask.getValueType().isVector() && Op1.getValueType() == Op2.getValueType() && "Invalid type"); unsigned NumElem = VT.getVectorNumElements(); // If we can't even use the basic vector operations of // AND,OR,XOR, we will have to scalarize the op. // Notice that the operation may be 'promoted' which means that it is // 'bitcasted' to another type which is handled. // Also, we need to be able to construct a splat vector using BUILD_VECTOR. if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) return DAG.UnrollVectorOp(Op.getNode()); // Generate a mask operand. EVT MaskTy = VT.changeVectorElementTypeToInteger(); // What is the size of each element in the vector mask. EVT BitTy = MaskTy.getScalarType(); Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, BitTy), DAG.getConstant(0, DL, BitTy)); // Broadcast the mask so that the entire vector is all-one or all zero. SmallVector Ops(NumElem, Mask); Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops); // Bitcast the operands to be the same type as the mask. // This is needed when we select between FP types because // the mask is a vector of integers. Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); SDValue AllOnes = DAG.getConstant( APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); } SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { EVT VT = Op.getValueType(); // Make sure that the SRA and SHL instructions are available. if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) return DAG.UnrollVectorOp(Op.getNode()); SDLoc DL(Op); EVT OrigTy = cast(Op->getOperand(1))->getVT(); unsigned BW = VT.getScalarType().getSizeInBits(); unsigned OrigBW = OrigTy.getScalarType().getSizeInBits(); SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); Op = Op.getOperand(0); Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); } // Generically expand a vector anyext in register to a shuffle of the relevant // lanes into the appropriate locations, with other lanes left undef. SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { SDLoc DL(Op); EVT VT = Op.getValueType(); int NumElements = VT.getVectorNumElements(); SDValue Src = Op.getOperand(0); EVT SrcVT = Src.getValueType(); int NumSrcElements = SrcVT.getVectorNumElements(); // Build a base mask of undef shuffles. SmallVector ShuffleMask; ShuffleMask.resize(NumSrcElements, -1); // Place the extended lanes into the correct locations. int ExtLaneScale = NumSrcElements / NumElements; int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; for (int i = 0; i < NumElements; ++i) ShuffleMask[i * ExtLaneScale + EndianOffset] = i; return DAG.getNode( ISD::BITCAST, DL, VT, DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); } SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue Src = Op.getOperand(0); EVT SrcVT = Src.getValueType(); // First build an any-extend node which can be legalized above when we // recurse through it. Op = DAG.getAnyExtendVectorInReg(Src, DL, VT); // Now we need sign extend. Do this by shifting the elements. Even if these // aren't legal operations, they have a better chance of being legalized // without full scalarization than the sign extension does. unsigned EltWidth = VT.getVectorElementType().getSizeInBits(); unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits(); SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); return DAG.getNode(ISD::SRA, DL, VT, DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), ShiftAmount); } // Generically expand a vector zext in register to a shuffle of the relevant // lanes into the appropriate locations, a blend of zero into the high bits, // and a bitcast to the wider element type. SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { SDLoc DL(Op); EVT VT = Op.getValueType(); int NumElements = VT.getVectorNumElements(); SDValue Src = Op.getOperand(0); EVT SrcVT = Src.getValueType(); int NumSrcElements = SrcVT.getVectorNumElements(); // Build up a zero vector to blend into this one. SDValue Zero = DAG.getConstant(0, DL, SrcVT); // Shuffle the incoming lanes into the correct position, and pull all other // lanes from the zero vector. SmallVector ShuffleMask; ShuffleMask.reserve(NumSrcElements); for (int i = 0; i < NumSrcElements; ++i) ShuffleMask.push_back(i); int ExtLaneScale = NumSrcElements / NumElements; int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; for (int i = 0; i < NumElements; ++i) ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); } static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl &ShuffleMask) { int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) for (int J = ScalarSizeInBytes - 1; J >= 0; --J) ShuffleMask.push_back((I * ScalarSizeInBytes) + J); } SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { EVT VT = Op.getValueType(); // Generate a byte wise shuffle mask for the BSWAP. SmallVector ShuffleMask; createBSWAPShuffleMask(VT, ShuffleMask); EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); // Only emit a shuffle if the mask is legal. if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) return DAG.UnrollVectorOp(Op.getNode()); SDLoc DL(Op); Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); return DAG.getNode(ISD::BITCAST, DL, VT, Op); } SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { EVT VT = Op.getValueType(); // If we have the scalar operation, it's probably cheaper to unroll it. if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) return DAG.UnrollVectorOp(Op.getNode()); // If the vector element width is a whole number of bytes, test if its legal // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte // vector. This greatly reduces the number of bit shifts necessary. unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { SmallVector BSWAPMask; createBSWAPShuffleMask(VT, BSWAPMask); EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { SDLoc DL(Op); Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), BSWAPMask); Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); return DAG.getNode(ISD::BITCAST, DL, VT, Op); } } // If we have the appropriate vector bit operations, it is better to use them // than unrolling and expanding each component. if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) return DAG.UnrollVectorOp(Op.getNode()); // Let LegalizeDAG handle this later. return Op; } SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { // Implement VSELECT in terms of XOR, AND, OR // on platforms which do not support blend natively. SDLoc DL(Op); SDValue Mask = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue Op2 = Op.getOperand(2); EVT VT = Mask.getValueType(); // If we can't even use the basic vector operations of // AND,OR,XOR, we will have to scalarize the op. // Notice that the operation may be 'promoted' which means that it is // 'bitcasted' to another type which is handled. // This operation also isn't safe with AND, OR, XOR when the boolean // type is 0/1 as we need an all ones vector constant to mask with. // FIXME: Sign extend 1 to all ones if thats legal on the target. if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || TLI.getBooleanContents(Op1.getValueType()) != TargetLowering::ZeroOrNegativeOneBooleanContent) return DAG.UnrollVectorOp(Op.getNode()); // If the mask and the type are different sizes, unroll the vector op. This // can occur when getSetCCResultType returns something that is different in // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits()) return DAG.UnrollVectorOp(Op.getNode()); // Bitcast the operands to be the same type as the mask. // This is needed when we select between FP types because // the mask is a vector of integers. Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); SDValue AllOnes = DAG.getConstant( APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT); SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); } SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { EVT VT = Op.getOperand(0).getValueType(); SDLoc DL(Op); // Make sure that the SINT_TO_FP and SRL instructions are available. if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) return DAG.UnrollVectorOp(Op.getNode()); EVT SVT = VT.getScalarType(); assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); unsigned BW = SVT.getSizeInBits(); SDValue HalfWord = DAG.getConstant(BW/2, DL, VT); // Constants to clear the upper part of the word. // Notice that we can also use SHL+SHR, but using a constant is slightly // faster on x86. uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); // Two to the power of half-word-size. SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType()); // Clear upper part of LO, lower HI SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); // Convert hi and lo to floats // Convert the hi part back to the upper values // TODO: Can any fast-math-flags be set on these nodes? SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); // Add the two halves return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); } SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { SDLoc DL(Op); SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), Zero, Op.getOperand(0)); } return DAG.UnrollVectorOp(Op.getNode()); } SDValue VectorLegalizer::ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op) { // If the non-ZERO_UNDEF version is supported we can use that instead. unsigned Opc = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ? ISD::CTLZ : ISD::CTTZ; if (TLI.isOperationLegalOrCustom(Opc, Op.getValueType())) { SDLoc DL(Op); return DAG.getNode(Opc, DL, Op.getValueType(), Op.getOperand(0)); } // Otherwise go ahead and unroll. return DAG.UnrollVectorOp(Op.getNode()); } SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { EVT VT = Op.getValueType(); unsigned NumElems = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); EVT TmpEltVT = LHS.getValueType().getVectorElementType(); SDLoc dl(Op); SmallVector Ops(NumElems); for (unsigned i = 0; i < NumElems; ++i) { SDValue LHSElem = DAG.getNode( ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); SDValue RHSElem = DAG.getNode( ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), TmpEltVT), LHSElem, RHSElem, CC); Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getConstant(APInt::getAllOnesValue (EltVT.getSizeInBits()), dl, EltVT), DAG.getConstant(0, dl, EltVT)); } return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); } } bool SelectionDAG::LegalizeVectors() { return VectorLegalizer(*this).Run(); }