//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the SelectionDAGISel class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "ScheduleDAGSDNodes.h" #include "SelectionDAGBuilder.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/GCMetadata.h" #include "llvm/CodeGen/GCStrategy.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/ScheduleHazardRecognizer.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/StackProtector.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include using namespace llvm; #define DEBUG_TYPE "isel" STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); STATISTIC(NumFastIselFailLowerArguments, "Number of entry blocks where fast isel failed to lower arguments"); #ifndef NDEBUG static cl::opt EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden, cl::desc("Enable extra verbose messages in the \"fast\" " "instruction selector")); // Terminators STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret"); STATISTIC(NumFastIselFailBr,"Fast isel fails on Br"); STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch"); STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr"); STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke"); STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume"); STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable"); // Standard binary operators... STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add"); STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd"); STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub"); STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub"); STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul"); STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul"); STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv"); STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv"); STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv"); STATISTIC(NumFastIselFailURem,"Fast isel fails on URem"); STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem"); STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem"); // Logical operators... STATISTIC(NumFastIselFailAnd,"Fast isel fails on And"); STATISTIC(NumFastIselFailOr,"Fast isel fails on Or"); STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor"); // Memory instructions... STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca"); STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load"); STATISTIC(NumFastIselFailStore,"Fast isel fails on Store"); STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg"); STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM"); STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence"); STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr"); // Convert instructions... STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc"); STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt"); STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt"); STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc"); STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt"); STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI"); STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI"); STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP"); STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP"); STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr"); STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt"); STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast"); // Other instructions... STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp"); STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp"); STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI"); STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select"); STATISTIC(NumFastIselFailCall,"Fast isel fails on Call"); STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl"); STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr"); STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr"); STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg"); STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement"); STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement"); STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector"); STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue"); STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue"); STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad"); // Intrinsic instructions... STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call"); STATISTIC(NumFastIselFailSAddWithOverflow, "Fast isel fails on sadd.with.overflow"); STATISTIC(NumFastIselFailUAddWithOverflow, "Fast isel fails on uadd.with.overflow"); STATISTIC(NumFastIselFailSSubWithOverflow, "Fast isel fails on ssub.with.overflow"); STATISTIC(NumFastIselFailUSubWithOverflow, "Fast isel fails on usub.with.overflow"); STATISTIC(NumFastIselFailSMulWithOverflow, "Fast isel fails on smul.with.overflow"); STATISTIC(NumFastIselFailUMulWithOverflow, "Fast isel fails on umul.with.overflow"); STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress"); STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call"); STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call"); STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call"); #endif static cl::opt EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, cl::desc("Enable verbose messages in the \"fast\" " "instruction selector")); static cl::opt EnableFastISelAbort( "fast-isel-abort", cl::Hidden, cl::desc("Enable abort calls when \"fast\" instruction selection " "fails to lower an instruction: 0 disable the abort, 1 will " "abort but for args, calls and terminators, 2 will also " "abort for argument lowering, and 3 will never fallback " "to SelectionDAG.")); static cl::opt UseMBPI("use-mbpi", cl::desc("use Machine Branch Probability Info"), cl::init(true), cl::Hidden); #ifndef NDEBUG static cl::opt FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, cl::desc("Only display the basic block whose name " "matches this for all view-*-dags options")); static cl::opt ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the first " "dag combine pass")); static cl::opt ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, cl::desc("Pop up a window to show dags before legalize types")); static cl::opt ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, cl::desc("Pop up a window to show dags before legalize")); static cl::opt ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the second " "dag combine pass")); static cl::opt ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the post legalize types" " dag combine pass")); static cl::opt ViewISelDAGs("view-isel-dags", cl::Hidden, cl::desc("Pop up a window to show isel dags as they are selected")); static cl::opt ViewSchedDAGs("view-sched-dags", cl::Hidden, cl::desc("Pop up a window to show sched dags as they are processed")); static cl::opt ViewSUnitDAGs("view-sunit-dags", cl::Hidden, cl::desc("Pop up a window to show SUnit dags after they are processed")); #else static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, ViewDAGCombine2 = false, ViewDAGCombineLT = false, ViewISelDAGs = false, ViewSchedDAGs = false, ViewSUnitDAGs = false; #endif //===---------------------------------------------------------------------===// /// /// RegisterScheduler class - Track the registration of instruction schedulers. /// //===---------------------------------------------------------------------===// MachinePassRegistry RegisterScheduler::Registry; //===---------------------------------------------------------------------===// /// /// ISHeuristic command line option for instruction schedulers. /// //===---------------------------------------------------------------------===// static cl::opt > ISHeuristic("pre-RA-sched", cl::init(&createDefaultScheduler), cl::Hidden, cl::desc("Instruction schedulers available (before register" " allocation):")); static RegisterScheduler defaultListDAGScheduler("default", "Best scheduler for the target", createDefaultScheduler); namespace llvm { //===--------------------------------------------------------------------===// /// \brief This class is used by SelectionDAGISel to temporarily override /// the optimization level on a per-function basis. class OptLevelChanger { SelectionDAGISel &IS; CodeGenOpt::Level SavedOptLevel; bool SavedFastISel; public: OptLevelChanger(SelectionDAGISel &ISel, CodeGenOpt::Level NewOptLevel) : IS(ISel) { SavedOptLevel = IS.OptLevel; if (NewOptLevel == SavedOptLevel) return; IS.OptLevel = NewOptLevel; IS.TM.setOptLevel(NewOptLevel); DEBUG(dbgs() << "\nChanging optimization level for Function " << IS.MF->getFunction()->getName() << "\n"); DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" << NewOptLevel << "\n"); SavedFastISel = IS.TM.Options.EnableFastISel; if (NewOptLevel == CodeGenOpt::None) { IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); DEBUG(dbgs() << "\tFastISel is " << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") << "\n"); } } ~OptLevelChanger() { if (IS.OptLevel == SavedOptLevel) return; DEBUG(dbgs() << "\nRestoring optimization level for Function " << IS.MF->getFunction()->getName() << "\n"); DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" << SavedOptLevel << "\n"); IS.OptLevel = SavedOptLevel; IS.TM.setOptLevel(SavedOptLevel); IS.TM.setFastISel(SavedFastISel); } }; //===--------------------------------------------------------------------===// /// createDefaultScheduler - This creates an instruction scheduler appropriate /// for the target. ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, CodeGenOpt::Level OptLevel) { const TargetLowering *TLI = IS->TLI; const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); // Try first to see if the Target has its own way of selecting a scheduler if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { return SchedulerCtor(IS, OptLevel); } if (OptLevel == CodeGenOpt::None || (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || TLI->getSchedulingPreference() == Sched::Source) return createSourceListDAGScheduler(IS, OptLevel); if (TLI->getSchedulingPreference() == Sched::RegPressure) return createBURRListDAGScheduler(IS, OptLevel); if (TLI->getSchedulingPreference() == Sched::Hybrid) return createHybridListDAGScheduler(IS, OptLevel); if (TLI->getSchedulingPreference() == Sched::VLIW) return createVLIWDAGScheduler(IS, OptLevel); assert(TLI->getSchedulingPreference() == Sched::ILP && "Unknown sched type!"); return createILPListDAGScheduler(IS, OptLevel); } } // end namespace llvm // EmitInstrWithCustomInserter - This method should be implemented by targets // that mark instructions with the 'usesCustomInserter' flag. These // instructions are special in various ways, which require special support to // insert. The specified MachineInstr is created but not inserted into any // basic blocks, and this method is called to expand it into a sequence of // instructions, potentially also creating new basic blocks and control flow. // When new basic blocks are inserted and the edges from MBB to its successors // are modified, the method should insert pairs of into the // DenseMap. MachineBasicBlock * TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const { #ifndef NDEBUG dbgs() << "If a target marks an instruction with " "'usesCustomInserter', it must implement " "TargetLowering::EmitInstrWithCustomInserter!"; #endif llvm_unreachable(nullptr); } void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const { assert(!MI.hasPostISelHook() && "If a target marks an instruction with 'hasPostISelHook', " "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); } //===----------------------------------------------------------------------===// // SelectionDAGISel code //===----------------------------------------------------------------------===// SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()), CurDAG(new SelectionDAG(tm, OL)), SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), GFI(), OptLevel(OL), DAGSize(0) { initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); initializeBranchProbabilityInfoWrapperPassPass( *PassRegistry::getPassRegistry()); initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); initializeTargetLibraryInfoWrapperPassPass( *PassRegistry::getPassRegistry()); } SelectionDAGISel::~SelectionDAGISel() { delete SDB; delete CurDAG; delete FuncInfo; } void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); if (UseMBPI && OptLevel != CodeGenOpt::None) AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that /// may trap on it. In this case we have to split the edge so that the path /// through the predecessor block that doesn't go to the phi block doesn't /// execute the possibly trapping instruction. /// /// This is required for correctness, so it must be done at -O0. /// static void SplitCriticalSideEffectEdges(Function &Fn) { // Loop for blocks with phi nodes. for (BasicBlock &BB : Fn) { PHINode *PN = dyn_cast(BB.begin()); if (!PN) continue; ReprocessBlock: // For each block with a PHI node, check to see if any of the input values // are potentially trapping constant expressions. Constant expressions are // the only potentially trapping value that can occur as the argument to a // PHI. for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast(I)); ++I) for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { ConstantExpr *CE = dyn_cast(PN->getIncomingValue(i)); if (!CE || !CE->canTrap()) continue; // The only case we have to worry about is when the edge is critical. // Since this block has a PHI Node, we assume it has multiple input // edges: check to see if the pred has multiple successors. BasicBlock *Pred = PN->getIncomingBlock(i); if (Pred->getTerminator()->getNumSuccessors() == 1) continue; // Okay, we have to split this edge. SplitCriticalEdge( Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), CriticalEdgeSplittingOptions().setMergeIdenticalEdges()); goto ReprocessBlock; } } } bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { // Do some sanity-checking on the command-line options. assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) && "-fast-isel-verbose requires -fast-isel"); assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && "-fast-isel-abort > 0 requires -fast-isel"); const Function &Fn = *mf.getFunction(); MF = &mf; // Reset the target options before resetting the optimization // level below. // FIXME: This is a horrible hack and should be processed via // codegen looking at the optimization level explicitly when // it wants to look at it. TM.resetTargetOptions(Fn); // Reset OptLevel to None for optnone functions. CodeGenOpt::Level NewOptLevel = OptLevel; if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) NewOptLevel = CodeGenOpt::None; OptLevelChanger OLC(*this, NewOptLevel); TII = MF->getSubtarget().getInstrInfo(); TLI = MF->getSubtarget().getTargetLowering(); RegInfo = &MF->getRegInfo(); AA = &getAnalysis().getAAResults(); LibInfo = &getAnalysis().getTLI(); GFI = Fn.hasGC() ? &getAnalysis().getFunctionInfo(Fn) : nullptr; DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); SplitCriticalSideEffectEdges(const_cast(Fn)); CurDAG->init(*MF); FuncInfo->set(Fn, *MF, CurDAG); if (UseMBPI && OptLevel != CodeGenOpt::None) FuncInfo->BPI = &getAnalysis().getBPI(); else FuncInfo->BPI = nullptr; SDB->init(GFI, *AA, LibInfo); MF->setHasInlineAsm(false); FuncInfo->SplitCSR = false; // We split CSR if the target supports it for the given function // and the function has only return exits. if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { FuncInfo->SplitCSR = true; // Collect all the return blocks. for (const BasicBlock &BB : Fn) { if (!succ_empty(&BB)) continue; const TerminatorInst *Term = BB.getTerminator(); if (isa(Term) || isa(Term)) continue; // Bail out if the exit block is not Return nor Unreachable. FuncInfo->SplitCSR = false; break; } } MachineBasicBlock *EntryMBB = &MF->front(); if (FuncInfo->SplitCSR) // This performs initialization so lowering for SplitCSR will be correct. TLI->initializeSplitCSR(EntryMBB); SelectAllBasicBlocks(Fn); // If the first basic block in the function has live ins that need to be // copied into vregs, emit the copies into the top of the block before // emitting the code for the block. const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); // Insert copies in the entry block and the return blocks. if (FuncInfo->SplitCSR) { SmallVector Returns; // Collect all the return blocks. for (MachineBasicBlock &MBB : mf) { if (!MBB.succ_empty()) continue; MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); if (Term != MBB.end() && Term->isReturn()) { Returns.push_back(&MBB); continue; } } TLI->insertCopiesSplitCSR(EntryMBB, Returns); } DenseMap LiveInMap; if (!FuncInfo->ArgDbgValues.empty()) for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), E = RegInfo->livein_end(); LI != E; ++LI) if (LI->second) LiveInMap.insert(std::make_pair(LI->first, LI->second)); // Insert DBG_VALUE instructions for function arguments to the entry block. for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; bool hasFI = MI->getOperand(0).isFI(); unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) EntryMBB->insert(EntryMBB->begin(), MI); else { MachineInstr *Def = RegInfo->getVRegDef(Reg); if (Def) { MachineBasicBlock::iterator InsertPos = Def; // FIXME: VR def may not be in entry block. Def->getParent()->insert(std::next(InsertPos), MI); } else DEBUG(dbgs() << "Dropping debug info for dead vreg" << TargetRegisterInfo::virtReg2Index(Reg) << "\n"); } // If Reg is live-in then update debug info to track its copy in a vreg. DenseMap::iterator LDI = LiveInMap.find(Reg); if (LDI != LiveInMap.end()) { assert(!hasFI && "There's no handling of frame pointer updating here yet " "- add if needed"); MachineInstr *Def = RegInfo->getVRegDef(LDI->second); MachineBasicBlock::iterator InsertPos = Def; const MDNode *Variable = MI->getDebugVariable(); const MDNode *Expr = MI->getDebugExpression(); DebugLoc DL = MI->getDebugLoc(); bool IsIndirect = MI->isIndirectDebugValue(); unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; assert(cast(Variable)->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"); // Def is never a terminator here, so it is ok to increment InsertPos. BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, LDI->second, Offset, Variable, Expr); // If this vreg is directly copied into an exported register then // that COPY instructions also need DBG_VALUE, if it is the only // user of LDI->second. MachineInstr *CopyUseMI = nullptr; for (MachineRegisterInfo::use_instr_iterator UI = RegInfo->use_instr_begin(LDI->second), E = RegInfo->use_instr_end(); UI != E; ) { MachineInstr *UseMI = &*(UI++); if (UseMI->isDebugValue()) continue; if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { CopyUseMI = UseMI; continue; } // Otherwise this is another use or second copy use. CopyUseMI = nullptr; break; } if (CopyUseMI) { // Use MI's debug location, which describes where Variable was // declared, rather than whatever is attached to CopyUseMI. MachineInstr *NewMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr); MachineBasicBlock::iterator Pos = CopyUseMI; EntryMBB->insertAfter(Pos, NewMI); } } } // Determine if there are any calls in this machine function. MachineFrameInfo *MFI = MF->getFrameInfo(); for (const auto &MBB : *MF) { if (MFI->hasCalls() && MF->hasInlineAsm()) break; for (const auto &MI : MBB) { const MCInstrDesc &MCID = TII->get(MI.getOpcode()); if ((MCID.isCall() && !MCID.isReturn()) || MI.isStackAligningInlineAsm()) { MFI->setHasCalls(true); } if (MI.isInlineAsm()) { MF->setHasInlineAsm(true); } } } // Determine if there is a call to setjmp in the machine function. MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); // Replace forward-declared registers with the registers containing // the desired value. MachineRegisterInfo &MRI = MF->getRegInfo(); for (DenseMap::iterator I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); I != E; ++I) { unsigned From = I->first; unsigned To = I->second; // If To is also scheduled to be replaced, find what its ultimate // replacement is. for (;;) { DenseMap::iterator J = FuncInfo->RegFixups.find(To); if (J == E) break; To = J->second; } // Make sure the new register has a sufficiently constrained register class. if (TargetRegisterInfo::isVirtualRegister(From) && TargetRegisterInfo::isVirtualRegister(To)) MRI.constrainRegClass(To, MRI.getRegClass(From)); // Replace it. // Replacing one register with another won't touch the kill flags. // We need to conservatively clear the kill flags as a kill on the old // register might dominate existing uses of the new register. if (!MRI.use_empty(To)) MRI.clearKillFlags(From); MRI.replaceRegWith(From, To); } if (TLI->hasCopyImplyingStackAdjustment(MF)) MFI->setHasCopyImplyingStackAdjustment(true); // Freeze the set of reserved registers now that MachineFrameInfo has been // set up. All the information required by getReservedRegs() should be // available now. MRI.freezeReservedRegs(*MF); // Release function-specific state. SDB and CurDAG are already cleared // at this point. FuncInfo->clear(); DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); DEBUG(MF->print(dbgs())); return true; } void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, bool &HadTailCall) { // Lower the instructions. If a call is emitted as a tail call, cease emitting // nodes for this block. for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) SDB->visit(*I); // Make sure the root of the DAG is up-to-date. CurDAG->setRoot(SDB->getControlRoot()); HadTailCall = SDB->HasTailCall; SDB->clear(); // Final step, emit the lowered DAG as machine code. CodeGenAndEmitDAG(); } void SelectionDAGISel::ComputeLiveOutVRegInfo() { SmallPtrSet VisitedNodes; SmallVector Worklist; Worklist.push_back(CurDAG->getRoot().getNode()); APInt KnownZero; APInt KnownOne; do { SDNode *N = Worklist.pop_back_val(); // If we've already seen this node, ignore it. if (!VisitedNodes.insert(N).second) continue; // Otherwise, add all chain operands to the worklist. for (const SDValue &Op : N->op_values()) if (Op.getValueType() == MVT::Other) Worklist.push_back(Op.getNode()); // If this is a CopyToReg with a vreg dest, process it. if (N->getOpcode() != ISD::CopyToReg) continue; unsigned DestReg = cast(N->getOperand(1))->getReg(); if (!TargetRegisterInfo::isVirtualRegister(DestReg)) continue; // Ignore non-scalar or non-integer values. SDValue Src = N->getOperand(2); EVT SrcVT = Src.getValueType(); if (!SrcVT.isInteger() || SrcVT.isVector()) continue; unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); CurDAG->computeKnownBits(Src, KnownZero, KnownOne); FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); } while (!Worklist.empty()); } void SelectionDAGISel::CodeGenAndEmitDAG() { std::string GroupName; if (TimePassesIsEnabled) GroupName = "Instruction Selection and Scheduling"; std::string BlockName; int BlockNumber = -1; (void)BlockNumber; bool MatchFilterBB = false; (void)MatchFilterBB; #ifndef NDEBUG MatchFilterBB = (FilterDAGBasicBlockName.empty() || FilterDAGBasicBlockName == FuncInfo->MBB->getBasicBlock()->getName().str()); #endif #ifdef NDEBUG if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs) #endif { BlockNumber = FuncInfo->MBB->getNumber(); BlockName = (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); } DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); if (ViewDAGCombine1 && MatchFilterBB) CurDAG->viewGraph("dag-combine1 input for " + BlockName); // Run the DAG combiner in pre-legalize mode. { NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel); } DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); // Second step, hack on the DAG until it only uses operations and types that // the target supports. if (ViewLegalizeTypesDAGs && MatchFilterBB) CurDAG->viewGraph("legalize-types input for " + BlockName); bool Changed; { NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); Changed = CurDAG->LegalizeTypes(); } DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); CurDAG->NewNodesMustHaveLegalTypes = true; if (Changed) { if (ViewDAGCombineLT && MatchFilterBB) CurDAG->viewGraph("dag-combine-lt input for " + BlockName); // Run the DAG combiner in post-type-legalize mode. { NamedRegionTimer T("DAG Combining after legalize types", GroupName, TimePassesIsEnabled); CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel); } DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); } { NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); Changed = CurDAG->LegalizeVectors(); } if (Changed) { { NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); CurDAG->LegalizeTypes(); } if (ViewDAGCombineLT && MatchFilterBB) CurDAG->viewGraph("dag-combine-lv input for " + BlockName); // Run the DAG combiner in post-type-legalize mode. { NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, TimePassesIsEnabled); CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel); } DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); } if (ViewLegalizeDAGs && MatchFilterBB) CurDAG->viewGraph("legalize input for " + BlockName); { NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); CurDAG->Legalize(); } DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); if (ViewDAGCombine2 && MatchFilterBB) CurDAG->viewGraph("dag-combine2 input for " + BlockName); // Run the DAG combiner in post-legalize mode. { NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel); } DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); if (OptLevel != CodeGenOpt::None) ComputeLiveOutVRegInfo(); if (ViewISelDAGs && MatchFilterBB) CurDAG->viewGraph("isel input for " + BlockName); // Third, instruction select all of the operations to machine code, adding the // code to the MachineBasicBlock. { NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); DoInstructionSelection(); } DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); if (ViewSchedDAGs && MatchFilterBB) CurDAG->viewGraph("scheduler input for " + BlockName); // Schedule machine code. ScheduleDAGSDNodes *Scheduler = CreateScheduler(); { NamedRegionTimer T("Instruction Scheduling", GroupName, TimePassesIsEnabled); Scheduler->Run(CurDAG, FuncInfo->MBB); } if (ViewSUnitDAGs && MatchFilterBB) Scheduler->viewGraph(); // Emit machine code to BB. This can change 'BB' to the last block being // inserted into. MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; { NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); // FuncInfo->InsertPt is passed by reference and set to the end of the // scheduled instructions. LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); } // If the block was split, make sure we update any references that are used to // update PHI nodes later on. if (FirstMBB != LastMBB) SDB->UpdateSplitBlock(FirstMBB, LastMBB); // Free the scheduler state. { NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, TimePassesIsEnabled); delete Scheduler; } // Free the SelectionDAG state, now that we're finished with it. CurDAG->clear(); } namespace { /// ISelUpdater - helper class to handle updates of the instruction selection /// graph. class ISelUpdater : public SelectionDAG::DAGUpdateListener { SelectionDAG::allnodes_iterator &ISelPosition; public: ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} /// NodeDeleted - Handle nodes deleted from the graph. If the node being /// deleted is the current ISelPosition node, update ISelPosition. /// void NodeDeleted(SDNode *N, SDNode *E) override { if (ISelPosition == SelectionDAG::allnodes_iterator(N)) ++ISelPosition; } }; } // end anonymous namespace void SelectionDAGISel::DoInstructionSelection() { DEBUG(dbgs() << "===== Instruction selection begins: BB#" << FuncInfo->MBB->getNumber() << " '" << FuncInfo->MBB->getName() << "'\n"); PreprocessISelDAG(); // Select target instructions for the DAG. { // Number all nodes with a topological order and set DAGSize. DAGSize = CurDAG->AssignTopologicalOrder(); // Create a dummy node (which is not added to allnodes), that adds // a reference to the root node, preventing it from being deleted, // and tracking any changes of the root. HandleSDNode Dummy(CurDAG->getRoot()); SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); ++ISelPosition; // Make sure that ISelPosition gets properly updated when nodes are deleted // in calls made from this function. ISelUpdater ISU(*CurDAG, ISelPosition); // The AllNodes list is now topological-sorted. Visit the // nodes by starting at the end of the list (the root of the // graph) and preceding back toward the beginning (the entry // node). while (ISelPosition != CurDAG->allnodes_begin()) { SDNode *Node = &*--ISelPosition; // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, // but there are currently some corner cases that it misses. Also, this // makes it theoretically possible to disable the DAGCombiner. if (Node->use_empty()) continue; Select(Node); } CurDAG->setRoot(Dummy.getValue()); } DEBUG(dbgs() << "===== Instruction selection ends:\n"); PostprocessISelDAG(); } static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { for (const User *U : CPI->users()) { if (const IntrinsicInst *EHPtrCall = dyn_cast(U)) { Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); if (IID == Intrinsic::eh_exceptionpointer || IID == Intrinsic::eh_exceptioncode) return true; } } return false; } /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and /// do other setup for EH landing-pad blocks. bool SelectionDAGISel::PrepareEHLandingPad() { MachineBasicBlock *MBB = FuncInfo->MBB; const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); const BasicBlock *LLVMBB = MBB->getBasicBlock(); const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); // Catchpads have one live-in register, which typically holds the exception // pointer or code. if (const auto *CPI = dyn_cast(LLVMBB->getFirstNonPHI())) { if (hasExceptionPointerOrCodeUser(CPI)) { // Get or create the virtual register to hold the pointer or code. Mark // the live in physreg and copy into the vreg. MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); assert(EHPhysReg && "target lacks exception pointer register"); MBB->addLiveIn(EHPhysReg); unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), TII->get(TargetOpcode::COPY), VReg) .addReg(EHPhysReg, RegState::Kill); } return true; } if (!LLVMBB->isLandingPad()) return true; // Add a label to mark the beginning of the landing pad. Deletion of the // landing pad can thus be detected via the MachineModuleInfo. MCSymbol *Label = MF->getMMI().addLandingPad(MBB); // Assign the call site to the landing pad's begin label. MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) .addSym(Label); // Mark exception register as live in. if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); // Mark exception selector register as live in. if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); return true; } /// isFoldedOrDeadInstruction - Return true if the specified instruction is /// side-effect free and is either dead or folded into a generated instruction. /// Return false if it needs to be emitted. static bool isFoldedOrDeadInstruction(const Instruction *I, FunctionLoweringInfo *FuncInfo) { return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. !isa(I) && // Terminators aren't folded. !isa(I) && // Debug instructions aren't folded. !I->isEHPad() && // EH pad instructions aren't folded. !FuncInfo->isExportedInst(I); // Exported instrs must be computed. } #ifndef NDEBUG // Collect per Instruction statistics for fast-isel misses. Only those // instructions that cause the bail are accounted for. It does not account for // instructions higher in the block. Thus, summing the per instructions stats // will not add up to what is reported by NumFastIselFailures. static void collectFailStats(const Instruction *I) { switch (I->getOpcode()) { default: assert (0 && " "); // Terminators case Instruction::Ret: NumFastIselFailRet++; return; case Instruction::Br: NumFastIselFailBr++; return; case Instruction::Switch: NumFastIselFailSwitch++; return; case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return; case Instruction::Invoke: NumFastIselFailInvoke++; return; case Instruction::Resume: NumFastIselFailResume++; return; case Instruction::Unreachable: NumFastIselFailUnreachable++; return; // Standard binary operators... case Instruction::Add: NumFastIselFailAdd++; return; case Instruction::FAdd: NumFastIselFailFAdd++; return; case Instruction::Sub: NumFastIselFailSub++; return; case Instruction::FSub: NumFastIselFailFSub++; return; case Instruction::Mul: NumFastIselFailMul++; return; case Instruction::FMul: NumFastIselFailFMul++; return; case Instruction::UDiv: NumFastIselFailUDiv++; return; case Instruction::SDiv: NumFastIselFailSDiv++; return; case Instruction::FDiv: NumFastIselFailFDiv++; return; case Instruction::URem: NumFastIselFailURem++; return; case Instruction::SRem: NumFastIselFailSRem++; return; case Instruction::FRem: NumFastIselFailFRem++; return; // Logical operators... case Instruction::And: NumFastIselFailAnd++; return; case Instruction::Or: NumFastIselFailOr++; return; case Instruction::Xor: NumFastIselFailXor++; return; // Memory instructions... case Instruction::Alloca: NumFastIselFailAlloca++; return; case Instruction::Load: NumFastIselFailLoad++; return; case Instruction::Store: NumFastIselFailStore++; return; case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return; case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return; case Instruction::Fence: NumFastIselFailFence++; return; case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return; // Convert instructions... case Instruction::Trunc: NumFastIselFailTrunc++; return; case Instruction::ZExt: NumFastIselFailZExt++; return; case Instruction::SExt: NumFastIselFailSExt++; return; case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return; case Instruction::FPExt: NumFastIselFailFPExt++; return; case Instruction::FPToUI: NumFastIselFailFPToUI++; return; case Instruction::FPToSI: NumFastIselFailFPToSI++; return; case Instruction::UIToFP: NumFastIselFailUIToFP++; return; case Instruction::SIToFP: NumFastIselFailSIToFP++; return; case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return; case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return; case Instruction::BitCast: NumFastIselFailBitCast++; return; // Other instructions... case Instruction::ICmp: NumFastIselFailICmp++; return; case Instruction::FCmp: NumFastIselFailFCmp++; return; case Instruction::PHI: NumFastIselFailPHI++; return; case Instruction::Select: NumFastIselFailSelect++; return; case Instruction::Call: { if (auto const *Intrinsic = dyn_cast(I)) { switch (Intrinsic->getIntrinsicID()) { default: NumFastIselFailIntrinsicCall++; return; case Intrinsic::sadd_with_overflow: NumFastIselFailSAddWithOverflow++; return; case Intrinsic::uadd_with_overflow: NumFastIselFailUAddWithOverflow++; return; case Intrinsic::ssub_with_overflow: NumFastIselFailSSubWithOverflow++; return; case Intrinsic::usub_with_overflow: NumFastIselFailUSubWithOverflow++; return; case Intrinsic::smul_with_overflow: NumFastIselFailSMulWithOverflow++; return; case Intrinsic::umul_with_overflow: NumFastIselFailUMulWithOverflow++; return; case Intrinsic::frameaddress: NumFastIselFailFrameaddress++; return; case Intrinsic::sqrt: NumFastIselFailSqrt++; return; case Intrinsic::experimental_stackmap: NumFastIselFailStackMap++; return; case Intrinsic::experimental_patchpoint_void: // fall-through case Intrinsic::experimental_patchpoint_i64: NumFastIselFailPatchPoint++; return; } } NumFastIselFailCall++; return; } case Instruction::Shl: NumFastIselFailShl++; return; case Instruction::LShr: NumFastIselFailLShr++; return; case Instruction::AShr: NumFastIselFailAShr++; return; case Instruction::VAArg: NumFastIselFailVAArg++; return; case Instruction::ExtractElement: NumFastIselFailExtractElement++; return; case Instruction::InsertElement: NumFastIselFailInsertElement++; return; case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return; case Instruction::ExtractValue: NumFastIselFailExtractValue++; return; case Instruction::InsertValue: NumFastIselFailInsertValue++; return; case Instruction::LandingPad: NumFastIselFailLandingPad++; return; } } #endif // NDEBUG /// Set up SwiftErrorVals by going through the function. If the function has /// swifterror argument, it will be the first entry. static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI, FunctionLoweringInfo *FuncInfo) { if (!TLI->supportSwiftError()) return; FuncInfo->SwiftErrorVals.clear(); FuncInfo->SwiftErrorMap.clear(); FuncInfo->SwiftErrorWorklist.clear(); // Check if function has a swifterror argument. for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end(); AI != AE; ++AI) if (AI->hasSwiftErrorAttr()) FuncInfo->SwiftErrorVals.push_back(&*AI); for (const auto &LLVMBB : Fn) for (const auto &Inst : LLVMBB) { if (const AllocaInst *Alloca = dyn_cast(&Inst)) if (Alloca->isSwiftError()) FuncInfo->SwiftErrorVals.push_back(Alloca); } } /// For each basic block, merge incoming swifterror values or simply propagate /// them. The merged results will be saved in SwiftErrorMap. For predecessors /// that are not yet visited, we create virtual registers to hold the swifterror /// values and save them in SwiftErrorWorklist. static void mergeIncomingSwiftErrors(FunctionLoweringInfo *FuncInfo, const TargetLowering *TLI, const TargetInstrInfo *TII, const BasicBlock *LLVMBB, SelectionDAGBuilder *SDB) { if (!TLI->supportSwiftError()) return; // We should only do this when we have swifterror parameter or swifterror // alloc. if (FuncInfo->SwiftErrorVals.empty()) return; // At beginning of a basic block, insert PHI nodes or get the virtual // register from the only predecessor, and update SwiftErrorMap; if one // of the predecessors is not visited, update SwiftErrorWorklist. // At end of a basic block, if a block is in SwiftErrorWorklist, insert copy // to sync up the virtual register assignment. // Always create a virtual register for each swifterror value in entry block. auto &DL = SDB->DAG.getDataLayout(); const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); if (pred_begin(LLVMBB) == pred_end(LLVMBB)) { for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); // Assign Undef to Vreg. We construct MI directly to make sure it works // with FastISel. BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF), VReg); FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg); } return; } if (auto *UniquePred = LLVMBB->getUniquePredecessor()) { auto *UniquePredMBB = FuncInfo->MBBMap[UniquePred]; if (!FuncInfo->SwiftErrorMap.count(UniquePredMBB)) { // Update SwiftErrorWorklist with a new virtual register. for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); FuncInfo->SwiftErrorWorklist[UniquePredMBB].push_back(VReg); // Propagate the information from the single predecessor. FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg); } return; } // Propagate the information from the single predecessor. FuncInfo->SwiftErrorMap[FuncInfo->MBB] = FuncInfo->SwiftErrorMap[UniquePredMBB]; return; } // For the case of multiple predecessors, update SwiftErrorWorklist. // Handle the case where we have two or more predecessors being the same. for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); PI != PE; ++PI) { auto *PredMBB = FuncInfo->MBBMap[*PI]; if (!FuncInfo->SwiftErrorMap.count(PredMBB) && !FuncInfo->SwiftErrorWorklist.count(PredMBB)) { for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); // When we actually visit the basic block PredMBB, we will materialize // the virtual register assignment in copySwiftErrorsToFinalVRegs. FuncInfo->SwiftErrorWorklist[PredMBB].push_back(VReg); } } } // For the case of multiple predecessors, create a virtual register for // each swifterror value and generate Phi node. for (unsigned I = 0, E = FuncInfo->SwiftErrorVals.size(); I < E; I++) { unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); FuncInfo->SwiftErrorMap[FuncInfo->MBB].push_back(VReg); MachineInstrBuilder SwiftErrorPHI = BuildMI(*FuncInfo->MBB, FuncInfo->MBB->begin(), SDB->getCurDebugLoc(), TII->get(TargetOpcode::PHI), VReg); for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); PI != PE; ++PI) { auto *PredMBB = FuncInfo->MBBMap[*PI]; unsigned SwiftErrorReg = FuncInfo->SwiftErrorMap.count(PredMBB) ? FuncInfo->SwiftErrorMap[PredMBB][I] : FuncInfo->SwiftErrorWorklist[PredMBB][I]; SwiftErrorPHI.addReg(SwiftErrorReg) .addMBB(PredMBB); } } } void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { // Initialize the Fast-ISel state, if needed. FastISel *FastIS = nullptr; if (TM.Options.EnableFastISel) FastIS = TLI->createFastISel(*FuncInfo, LibInfo); setupSwiftErrorVals(Fn, TLI, FuncInfo); // Iterate over all basic blocks in the function. ReversePostOrderTraversal RPOT(&Fn); for (ReversePostOrderTraversal::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { const BasicBlock *LLVMBB = *I; if (OptLevel != CodeGenOpt::None) { bool AllPredsVisited = true; for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); PI != PE; ++PI) { if (!FuncInfo->VisitedBBs.count(*PI)) { AllPredsVisited = false; break; } } if (AllPredsVisited) { for (BasicBlock::const_iterator I = LLVMBB->begin(); const PHINode *PN = dyn_cast(I); ++I) FuncInfo->ComputePHILiveOutRegInfo(PN); } else { for (BasicBlock::const_iterator I = LLVMBB->begin(); const PHINode *PN = dyn_cast(I); ++I) FuncInfo->InvalidatePHILiveOutRegInfo(PN); } FuncInfo->VisitedBBs.insert(LLVMBB); } BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI()->getIterator(); BasicBlock::const_iterator const End = LLVMBB->end(); BasicBlock::const_iterator BI = End; FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; if (!FuncInfo->MBB) continue; // Some blocks like catchpads have no code or MBB. FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); mergeIncomingSwiftErrors(FuncInfo, TLI, TII, LLVMBB, SDB); // Setup an EH landing-pad block. FuncInfo->ExceptionPointerVirtReg = 0; FuncInfo->ExceptionSelectorVirtReg = 0; if (LLVMBB->isEHPad()) if (!PrepareEHLandingPad()) continue; // Before doing SelectionDAG ISel, see if FastISel has been requested. if (FastIS) { FastIS->startNewBlock(); // Emit code for any incoming arguments. This must happen before // beginning FastISel on the entry block. if (LLVMBB == &Fn.getEntryBlock()) { ++NumEntryBlocks; // Lower any arguments needed in this block if this is the entry block. if (!FastIS->lowerArguments()) { // Fast isel failed to lower these arguments ++NumFastIselFailLowerArguments; if (EnableFastISelAbort > 1) report_fatal_error("FastISel didn't lower all arguments"); // Use SelectionDAG argument lowering LowerArguments(Fn); CurDAG->setRoot(SDB->getControlRoot()); SDB->clear(); CodeGenAndEmitDAG(); } // If we inserted any instructions at the beginning, make a note of // where they are, so we can be sure to emit subsequent instructions // after them. if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); else FastIS->setLastLocalValue(nullptr); } unsigned NumFastIselRemaining = std::distance(Begin, End); // Do FastISel on as many instructions as possible. for (; BI != Begin; --BI) { const Instruction *Inst = &*std::prev(BI); // If we no longer require this instruction, skip it. if (isFoldedOrDeadInstruction(Inst, FuncInfo)) { --NumFastIselRemaining; continue; } // Bottom-up: reset the insert pos at the top, after any local-value // instructions. FastIS->recomputeInsertPt(); // Try to select the instruction with FastISel. if (FastIS->selectInstruction(Inst)) { --NumFastIselRemaining; ++NumFastIselSuccess; // If fast isel succeeded, skip over all the folded instructions, and // then see if there is a load right before the selected instructions. // Try to fold the load if so. const Instruction *BeforeInst = Inst; while (BeforeInst != &*Begin) { BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) break; } if (BeforeInst != Inst && isa(BeforeInst) && BeforeInst->hasOneUse() && FastIS->tryToFoldLoad(cast(BeforeInst), Inst)) { // If we succeeded, don't re-select the load. BI = std::next(BasicBlock::const_iterator(BeforeInst)); --NumFastIselRemaining; ++NumFastIselSuccess; } continue; } #ifndef NDEBUG if (EnableFastISelVerbose2) collectFailStats(Inst); #endif // Then handle certain instructions as single-LLVM-Instruction blocks. if (isa(Inst)) { if (EnableFastISelVerbose || EnableFastISelAbort) { dbgs() << "FastISel missed call: "; Inst->dump(); } if (EnableFastISelAbort > 2) // FastISel selector couldn't handle something and bailed. // For the purpose of debugging, just abort. report_fatal_error("FastISel didn't select the entire block"); if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && !Inst->use_empty()) { unsigned &R = FuncInfo->ValueMap[Inst]; if (!R) R = FuncInfo->CreateRegs(Inst->getType()); } bool HadTailCall = false; MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); // If the call was emitted as a tail call, we're done with the block. // We also need to delete any previously emitted instructions. if (HadTailCall) { FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); --BI; break; } // Recompute NumFastIselRemaining as Selection DAG instruction // selection may have handled the call, input args, etc. unsigned RemainingNow = std::distance(Begin, BI); NumFastIselFailures += NumFastIselRemaining - RemainingNow; NumFastIselRemaining = RemainingNow; continue; } bool ShouldAbort = EnableFastISelAbort; if (EnableFastISelVerbose || EnableFastISelAbort) { if (isa(Inst)) { // Use a different message for terminator misses. dbgs() << "FastISel missed terminator: "; // Don't abort unless for terminator unless the level is really high ShouldAbort = (EnableFastISelAbort > 2); } else { dbgs() << "FastISel miss: "; } Inst->dump(); } if (ShouldAbort) // FastISel selector couldn't handle something and bailed. // For the purpose of debugging, just abort. report_fatal_error("FastISel didn't select the entire block"); NumFastIselFailures += NumFastIselRemaining; break; } FastIS->recomputeInsertPt(); } else { // Lower any arguments needed in this block if this is the entry block. if (LLVMBB == &Fn.getEntryBlock()) { ++NumEntryBlocks; LowerArguments(Fn); } } if (getAnalysis().shouldEmitSDCheck(*LLVMBB)) { bool FunctionBasedInstrumentation = TLI->getSSPStackGuardCheck(*Fn.getParent()); SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], FunctionBasedInstrumentation); } if (Begin != BI) ++NumDAGBlocks; else ++NumFastIselBlocks; if (Begin != BI) { // Run SelectionDAG instruction selection on the remainder of the block // not handled by FastISel. If FastISel is not run, this is the entire // block. bool HadTailCall; SelectBasicBlock(Begin, BI, HadTailCall); } FinishBasicBlock(); FuncInfo->PHINodesToUpdate.clear(); } delete FastIS; SDB->clearDanglingDebugInfo(); SDB->SPDescriptor.resetPerFunctionState(); } /// Given that the input MI is before a partial terminator sequence TSeq, return /// true if M + TSeq also a partial terminator sequence. /// /// A Terminator sequence is a sequence of MachineInstrs which at this point in /// lowering copy vregs into physical registers, which are then passed into /// terminator instructors so we can satisfy ABI constraints. A partial /// terminator sequence is an improper subset of a terminator sequence (i.e. it /// may be the whole terminator sequence). static bool MIIsInTerminatorSequence(const MachineInstr &MI) { // If we do not have a copy or an implicit def, we return true if and only if // MI is a debug value. if (!MI.isCopy() && !MI.isImplicitDef()) // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the // physical registers if there is debug info associated with the terminator // of our mbb. We want to include said debug info in our terminator // sequence, so we return true in that case. return MI.isDebugValue(); // We have left the terminator sequence if we are not doing one of the // following: // // 1. Copying a vreg into a physical register. // 2. Copying a vreg into a vreg. // 3. Defining a register via an implicit def. // OPI should always be a register definition... MachineInstr::const_mop_iterator OPI = MI.operands_begin(); if (!OPI->isReg() || !OPI->isDef()) return false; // Defining any register via an implicit def is always ok. if (MI.isImplicitDef()) return true; // Grab the copy source... MachineInstr::const_mop_iterator OPI2 = OPI; ++OPI2; assert(OPI2 != MI.operands_end() && "Should have a copy implying we should have 2 arguments."); // Make sure that the copy dest is not a vreg when the copy source is a // physical register. if (!OPI2->isReg() || (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) && TargetRegisterInfo::isPhysicalRegister(OPI2->getReg()))) return false; return true; } /// Find the split point at which to splice the end of BB into its success stack /// protector check machine basic block. /// /// On many platforms, due to ABI constraints, terminators, even before register /// allocation, use physical registers. This creates an issue for us since /// physical registers at this point can not travel across basic /// blocks. Luckily, selectiondag always moves physical registers into vregs /// when they enter functions and moves them through a sequence of copies back /// into the physical registers right before the terminator creating a /// ``Terminator Sequence''. This function is searching for the beginning of the /// terminator sequence so that we can ensure that we splice off not just the /// terminator, but additionally the copies that move the vregs into the /// physical registers. static MachineBasicBlock::iterator FindSplitPointForStackProtector(MachineBasicBlock *BB) { MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); // if (SplitPoint == BB->begin()) return SplitPoint; MachineBasicBlock::iterator Start = BB->begin(); MachineBasicBlock::iterator Previous = SplitPoint; --Previous; while (MIIsInTerminatorSequence(*Previous)) { SplitPoint = Previous; if (Previous == Start) break; --Previous; } return SplitPoint; } void SelectionDAGISel::FinishBasicBlock() { DEBUG(dbgs() << "Total amount of phi nodes to update: " << FuncInfo->PHINodesToUpdate.size() << "\n"; for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) dbgs() << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); // Next, now that we know what the last MBB the LLVM BB expanded is, update // PHI nodes in successors. for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); assert(PHI->isPHI() && "This is not a machine PHI node that we are updating!"); if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) continue; PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); } // Handle stack protector. if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { // The target provides a guard check function. There is no need to // generate error handling code or to split current basic block. MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); // Add load and check to the basicblock. FuncInfo->MBB = ParentMBB; FuncInfo->InsertPt = FindSplitPointForStackProtector(ParentMBB); SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); // Clear the Per-BB State. SDB->SPDescriptor.resetPerBBState(); } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); // Find the split point to split the parent mbb. At the same time copy all // physical registers used in the tail of parent mbb into virtual registers // before the split point and back into physical registers after the split // point. This prevents us needing to deal with Live-ins and many other // register allocation issues caused by us splitting the parent mbb. The // register allocator will clean up said virtual copies later on. MachineBasicBlock::iterator SplitPoint = FindSplitPointForStackProtector(ParentMBB); // Splice the terminator of ParentMBB into SuccessMBB. SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint, ParentMBB->end()); // Add compare/jump on neq/jump to the parent BB. FuncInfo->MBB = ParentMBB; FuncInfo->InsertPt = ParentMBB->end(); SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); // CodeGen Failure MBB if we have not codegened it yet. MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); if (FailureMBB->empty()) { FuncInfo->MBB = FailureMBB; FuncInfo->InsertPt = FailureMBB->end(); SDB->visitSPDescriptorFailure(SDB->SPDescriptor); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); } // Clear the Per-BB State. SDB->SPDescriptor.resetPerBBState(); } // Lower each BitTestBlock. for (auto &BTB : SDB->BitTestCases) { // Lower header first, if it wasn't already lowered if (!BTB.Emitted) { // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = BTB.Parent; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code SDB->visitBitTestHeader(BTB, FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); } BranchProbability UnhandledProb = BTB.Prob; for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { UnhandledProb -= BTB.Cases[j].ExtraProb; // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = BTB.Cases[j].ThisBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code // If all cases cover a contiguous range, it is not necessary to jump to // the default block after the last bit test fails. This is because the // range check during bit test header creation has guaranteed that every // case here doesn't go outside the range. In this case, there is no need // to perform the last bit test, as it will always be true. Instead, make // the second-to-last bit-test fall through to the target of the last bit // test, and delete the last bit test. MachineBasicBlock *NextMBB; if (BTB.ContiguousRange && j + 2 == ej) { // Second-to-last bit-test with contiguous range: fall through to the // target of the final bit test. NextMBB = BTB.Cases[j + 1].TargetBB; } else if (j + 1 == ej) { // For the last bit test, fall through to Default. NextMBB = BTB.Default; } else { // Otherwise, fall through to the next bit test. NextMBB = BTB.Cases[j + 1].ThisBB; } SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); if (BTB.ContiguousRange && j + 2 == ej) { // Since we're not going to use the final bit test, remove it. BTB.Cases.pop_back(); break; } } // Update PHI Nodes for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); pi != pe; ++pi) { MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->isPHI() && "This is not a machine PHI node that we are updating!"); // This is "default" BB. We have two jumps to it. From "header" BB and // from last "case" BB, unless the latter was skipped. if (PHIBB == BTB.Default) { PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); if (!BTB.ContiguousRange) { PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) .addMBB(BTB.Cases.back().ThisBB); } } // One of "cases" BB. for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; if (cBB->isSuccessor(PHIBB)) PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); } } } SDB->BitTestCases.clear(); // If the JumpTable record is filled in, then we need to emit a jump table. // Updating the PHI nodes is tricky in this case, since we need to determine // whether the PHI is a successor of the range check MBB or the jump table MBB for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { // Lower header first, if it wasn't already lowered if (!SDB->JTCases[i].first.Emitted) { // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); } // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = SDB->JTCases[i].second.MBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code SDB->visitJumpTable(SDB->JTCases[i].second); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); // Update PHI Nodes for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); pi != pe; ++pi) { MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->isPHI() && "This is not a machine PHI node that we are updating!"); // "default" BB. We can go there only from header BB. if (PHIBB == SDB->JTCases[i].second.Default) PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) .addMBB(SDB->JTCases[i].first.HeaderBB); // JT BB. Just iterate over successors here if (FuncInfo->MBB->isSuccessor(PHIBB)) PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); } } SDB->JTCases.clear(); // If we generated any switch lowering information, build and codegen any // additional DAGs necessary. for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Determine the unique successors. SmallVector Succs; Succs.push_back(SDB->SwitchCases[i].TrueBB); if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) Succs.push_back(SDB->SwitchCases[i].FalseBB); // Emit the code. Note that this could result in FuncInfo->MBB being split. SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); // Remember the last block, now that any splitting is done, for use in // populating PHI nodes in successors. MachineBasicBlock *ThisBB = FuncInfo->MBB; // Handle any PHI nodes in successors of this chunk, as if we were coming // from the original BB before switch expansion. Note that PHI nodes can // occur multiple times in PHINodesToUpdate. We have to be very careful to // handle them the right number of times. for (unsigned i = 0, e = Succs.size(); i != e; ++i) { FuncInfo->MBB = Succs[i]; FuncInfo->InsertPt = FuncInfo->MBB->end(); // FuncInfo->MBB may have been removed from the CFG if a branch was // constant folded. if (ThisBB->isSuccessor(FuncInfo->MBB)) { for (MachineBasicBlock::iterator MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); MBBI != MBBE && MBBI->isPHI(); ++MBBI) { MachineInstrBuilder PHI(*MF, MBBI); // This value for this PHI node is recorded in PHINodesToUpdate. for (unsigned pn = 0; ; ++pn) { assert(pn != FuncInfo->PHINodesToUpdate.size() && "Didn't find PHI entry!"); if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); break; } } } } } } SDB->SwitchCases.clear(); } /// Create the scheduler. If a specific scheduler was specified /// via the SchedulerRegistry, use it, otherwise select the /// one preferred by the target. /// ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { return ISHeuristic(this, OptLevel); } //===----------------------------------------------------------------------===// // Helper functions used by the generated instruction selector. //===----------------------------------------------------------------------===// // Calls to these methods are generated by tblgen. /// CheckAndMask - The isel is trying to match something like (and X, 255). If /// the dag combiner simplified the 255, we still want to match. RHS is the /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value /// specified in the .td file (e.g. 255). bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, int64_t DesiredMaskS) const { const APInt &ActualMask = RHS->getAPIntValue(); const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); // If the actual mask exactly matches, success! if (ActualMask == DesiredMask) return true; // If the actual AND mask is allowing unallowed bits, this doesn't match. if (ActualMask.intersects(~DesiredMask)) return false; // Otherwise, the DAG Combiner may have proven that the value coming in is // either already zero or is not demanded. Check for known zero input bits. APInt NeededMask = DesiredMask & ~ActualMask; if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) return true; // TODO: check to see if missing bits are just not demanded. // Otherwise, this pattern doesn't match. return false; } /// CheckOrMask - The isel is trying to match something like (or X, 255). If /// the dag combiner simplified the 255, we still want to match. RHS is the /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value /// specified in the .td file (e.g. 255). bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, int64_t DesiredMaskS) const { const APInt &ActualMask = RHS->getAPIntValue(); const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); // If the actual mask exactly matches, success! if (ActualMask == DesiredMask) return true; // If the actual AND mask is allowing unallowed bits, this doesn't match. if (ActualMask.intersects(~DesiredMask)) return false; // Otherwise, the DAG Combiner may have proven that the value coming in is // either already zero or is not demanded. Check for known zero input bits. APInt NeededMask = DesiredMask & ~ActualMask; APInt KnownZero, KnownOne; CurDAG->computeKnownBits(LHS, KnownZero, KnownOne); // If all the missing bits in the or are already known to be set, match! if ((NeededMask & KnownOne) == NeededMask) return true; // TODO: check to see if missing bits are just not demanded. // Otherwise, this pattern doesn't match. return false; } /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated /// by tblgen. Others should not call it. void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector &Ops, const SDLoc &DL) { std::vector InOps; std::swap(InOps, Ops); Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); if (InOps[e-1].getValueType() == MVT::Glue) --e; // Don't process a glue operand if it is here. while (i != e) { unsigned Flags = cast(InOps[i])->getZExtValue(); if (!InlineAsm::isMemKind(Flags)) { // Just skip over this operand, copying the operands verbatim. Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); i += InlineAsm::getNumOperandRegisters(Flags) + 1; } else { assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && "Memory operand with multiple values?"); unsigned TiedToOperand; if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { // We need the constraint ID from the operand this is tied to. unsigned CurOp = InlineAsm::Op_FirstOperand; Flags = cast(InOps[CurOp])->getZExtValue(); for (; TiedToOperand; --TiedToOperand) { CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; Flags = cast(InOps[CurOp])->getZExtValue(); } } // Otherwise, this is a memory operand. Ask the target to select it. std::vector SelOps; if (SelectInlineAsmMemoryOperand(InOps[i+1], InlineAsm::getMemoryConstraintID(Flags), SelOps)) report_fatal_error("Could not match memory address. Inline asm" " failure!"); // Add this to the output node. unsigned NewFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); i += 2; } } // Add the glue input back if present. if (e != InOps.size()) Ops.push_back(InOps.back()); } /// findGlueUse - Return use of MVT::Glue value produced by the specified /// SDNode. /// static SDNode *findGlueUse(SDNode *N) { unsigned FlagResNo = N->getNumValues()-1; for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { SDUse &Use = I.getUse(); if (Use.getResNo() == FlagResNo) return Use.getUser(); } return nullptr; } /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". /// This function recursively traverses up the operand chain, ignoring /// certain nodes. static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, SDNode *Root, SmallPtrSetImpl &Visited, bool IgnoreChains) { // The NodeID's are given uniques ID's where a node ID is guaranteed to be // greater than all of its (recursive) operands. If we scan to a point where // 'use' is smaller than the node we're scanning for, then we know we will // never find it. // // The Use may be -1 (unassigned) if it is a newly allocated node. This can // happen because we scan down to newly selected nodes in the case of glue // uses. if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) return false; // Don't revisit nodes if we already scanned it and didn't fail, we know we // won't fail if we scan it again. if (!Visited.insert(Use).second) return false; for (const SDValue &Op : Use->op_values()) { // Ignore chain uses, they are validated by HandleMergeInputChains. if (Op.getValueType() == MVT::Other && IgnoreChains) continue; SDNode *N = Op.getNode(); if (N == Def) { if (Use == ImmedUse || Use == Root) continue; // We are not looking for immediate use. assert(N != Root); return true; } // Traverse up the operand chain. if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) return true; } return false; } /// IsProfitableToFold - Returns true if it's profitable to fold the specific /// operand node N of U during instruction selection that starts at Root. bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { if (OptLevel == CodeGenOpt::None) return false; return N.hasOneUse(); } /// IsLegalToFold - Returns true if the specific operand node N of /// U can be folded during instruction selection that starts at Root. bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, CodeGenOpt::Level OptLevel, bool IgnoreChains) { if (OptLevel == CodeGenOpt::None) return false; // If Root use can somehow reach N through a path that that doesn't contain // U then folding N would create a cycle. e.g. In the following // diagram, Root can reach N through X. If N is folded into into Root, then // X is both a predecessor and a successor of U. // // [N*] // // ^ ^ // // / \ // // [U*] [X]? // // ^ ^ // // \ / // // \ / // // [Root*] // // // * indicates nodes to be folded together. // // If Root produces glue, then it gets (even more) interesting. Since it // will be "glued" together with its glue use in the scheduler, we need to // check if it might reach N. // // [N*] // // ^ ^ // // / \ // // [U*] [X]? // // ^ ^ // // \ \ // // \ | // // [Root*] | // // ^ | // // f | // // | / // // [Y] / // // ^ / // // f / // // | / // // [GU] // // // If GU (glue use) indirectly reaches N (the load), and Root folds N // (call it Fold), then X is a predecessor of GU and a successor of // Fold. But since Fold and GU are glued together, this will create // a cycle in the scheduling graph. // If the node has glue, walk down the graph to the "lowest" node in the // glueged set. EVT VT = Root->getValueType(Root->getNumValues()-1); while (VT == MVT::Glue) { SDNode *GU = findGlueUse(Root); if (!GU) break; Root = GU; VT = Root->getValueType(Root->getNumValues()-1); // If our query node has a glue result with a use, we've walked up it. If // the user (which has already been selected) has a chain or indirectly uses // the chain, our WalkChainUsers predicate will not consider it. Because of // this, we cannot ignore chains in this predicate. IgnoreChains = false; } SmallPtrSet Visited; return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); } void SelectionDAGISel::Select_INLINEASM(SDNode *N) { SDLoc DL(N); std::vector Ops(N->op_begin(), N->op_end()); SelectInlineAsmMemoryOperands(Ops, DL); const EVT VTs[] = {MVT::Other, MVT::Glue}; SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops); New->setNodeId(-1); ReplaceUses(N, New.getNode()); CurDAG->RemoveDeadNode(N); } void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { SDLoc dl(Op); MDNodeSDNode *MD = dyn_cast(Op->getOperand(1)); const MDString *RegStr = dyn_cast(MD->getMD()->getOperand(0)); unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0), *CurDAG); SDValue New = CurDAG->getCopyFromReg( Op->getOperand(0), dl, Reg, Op->getValueType(0)); New->setNodeId(-1); ReplaceUses(Op, New.getNode()); CurDAG->RemoveDeadNode(Op); } void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { SDLoc dl(Op); MDNodeSDNode *MD = dyn_cast(Op->getOperand(1)); const MDString *RegStr = dyn_cast(MD->getMD()->getOperand(0)); unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(), Op->getOperand(2).getValueType(), *CurDAG); SDValue New = CurDAG->getCopyToReg( Op->getOperand(0), dl, Reg, Op->getOperand(2)); New->setNodeId(-1); ReplaceUses(Op, New.getNode()); CurDAG->RemoveDeadNode(Op); } void SelectionDAGISel::Select_UNDEF(SDNode *N) { CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); } /// GetVBR - decode a vbr encoding whose top bit is set. LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { assert(Val >= 128 && "Not a VBR"); Val &= 127; // Remove first vbr bit. unsigned Shift = 7; uint64_t NextBits; do { NextBits = MatcherTable[Idx++]; Val |= (NextBits&127) << Shift; Shift += 7; } while (NextBits & 128); return Val; } /// When a match is complete, this method updates uses of interior chain results /// to use the new results. void SelectionDAGISel::UpdateChains( SDNode *NodeToMatch, SDValue InputChain, const SmallVectorImpl &ChainNodesMatched, bool isMorphNodeTo) { SmallVector NowDeadNodes; // Now that all the normal results are replaced, we replace the chain and // glue results if present. if (!ChainNodesMatched.empty()) { assert(InputChain.getNode() && "Matched input chains but didn't produce a chain"); // Loop over all of the nodes we matched that produced a chain result. // Replace all the chain results with the final chain we ended up with. for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { SDNode *ChainNode = ChainNodesMatched[i]; assert(ChainNode->getOpcode() != ISD::DELETED_NODE && "Deleted node left in chain"); // Don't replace the results of the root node if we're doing a // MorphNodeTo. if (ChainNode == NodeToMatch && isMorphNodeTo) continue; SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); if (ChainVal.getValueType() == MVT::Glue) ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain); // If the node became dead and we haven't already seen it, delete it. if (ChainNode != NodeToMatch && ChainNode->use_empty() && !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) NowDeadNodes.push_back(ChainNode); } } if (!NowDeadNodes.empty()) CurDAG->RemoveDeadNodes(NowDeadNodes); DEBUG(dbgs() << "ISEL: Match complete!\n"); } enum ChainResult { CR_Simple, CR_InducesCycle, CR_LeadsToInteriorNode }; /// WalkChainUsers - Walk down the users of the specified chained node that is /// part of the pattern we're matching, looking at all of the users we find. /// This determines whether something is an interior node, whether we have a /// non-pattern node in between two pattern nodes (which prevent folding because /// it would induce a cycle) and whether we have a TokenFactor node sandwiched /// between pattern nodes (in which case the TF becomes part of the pattern). /// /// The walk we do here is guaranteed to be small because we quickly get down to /// already selected nodes "below" us. static ChainResult WalkChainUsers(const SDNode *ChainedNode, SmallVectorImpl &ChainedNodesInPattern, DenseMap &TokenFactorResult, SmallVectorImpl &InteriorChainedNodes) { ChainResult Result = CR_Simple; for (SDNode::use_iterator UI = ChainedNode->use_begin(), E = ChainedNode->use_end(); UI != E; ++UI) { // Make sure the use is of the chain, not some other value we produce. if (UI.getUse().getValueType() != MVT::Other) continue; SDNode *User = *UI; if (User->getOpcode() == ISD::HANDLENODE) // Root of the graph. continue; // If we see an already-selected machine node, then we've gone beyond the // pattern that we're selecting down into the already selected chunk of the // DAG. unsigned UserOpcode = User->getOpcode(); if (User->isMachineOpcode() || UserOpcode == ISD::CopyToReg || UserOpcode == ISD::CopyFromReg || UserOpcode == ISD::INLINEASM || UserOpcode == ISD::EH_LABEL || UserOpcode == ISD::LIFETIME_START || UserOpcode == ISD::LIFETIME_END) { // If their node ID got reset to -1 then they've already been selected. // Treat them like a MachineOpcode. if (User->getNodeId() == -1) continue; } // If we have a TokenFactor, we handle it specially. if (User->getOpcode() != ISD::TokenFactor) { // If the node isn't a token factor and isn't part of our pattern, then it // must be a random chained node in between two nodes we're selecting. // This happens when we have something like: // x = load ptr // call // y = x+4 // store y -> ptr // Because we structurally match the load/store as a read/modify/write, // but the call is chained between them. We cannot fold in this case // because it would induce a cycle in the graph. if (!std::count(ChainedNodesInPattern.begin(), ChainedNodesInPattern.end(), User)) return CR_InducesCycle; // Otherwise we found a node that is part of our pattern. For example in: // x = load ptr // y = x+4 // store y -> ptr // This would happen when we're scanning down from the load and see the // store as a user. Record that there is a use of ChainedNode that is // part of the pattern and keep scanning uses. Result = CR_LeadsToInteriorNode; InteriorChainedNodes.push_back(User); continue; } // If we found a TokenFactor, there are two cases to consider: first if the // TokenFactor is just hanging "below" the pattern we're matching (i.e. no // uses of the TF are in our pattern) we just want to ignore it. Second, // the TokenFactor can be sandwiched in between two chained nodes, like so: // [Load chain] // ^ // | // [Load] // ^ ^ // | \ DAG's like cheese // / \ do you? // / | // [TokenFactor] [Op] // ^ ^ // | | // \ / // \ / // [Store] // // In this case, the TokenFactor becomes part of our match and we rewrite it // as a new TokenFactor. // // To distinguish these two cases, do a recursive walk down the uses. auto MemoizeResult = TokenFactorResult.find(User); bool Visited = MemoizeResult != TokenFactorResult.end(); // Recursively walk chain users only if the result is not memoized. if (!Visited) { auto Res = WalkChainUsers(User, ChainedNodesInPattern, TokenFactorResult, InteriorChainedNodes); MemoizeResult = TokenFactorResult.insert(std::make_pair(User, Res)).first; } switch (MemoizeResult->second) { case CR_Simple: // If the uses of the TokenFactor are just already-selected nodes, ignore // it, it is "below" our pattern. continue; case CR_InducesCycle: // If the uses of the TokenFactor lead to nodes that are not part of our // pattern that are not selected, folding would turn this into a cycle, // bail out now. return CR_InducesCycle; case CR_LeadsToInteriorNode: break; // Otherwise, keep processing. } // Okay, we know we're in the interesting interior case. The TokenFactor // is now going to be considered part of the pattern so that we rewrite its // uses (it may have uses that are not part of the pattern) with the // ultimate chain result of the generated code. We will also add its chain // inputs as inputs to the ultimate TokenFactor we create. Result = CR_LeadsToInteriorNode; if (!Visited) { ChainedNodesInPattern.push_back(User); InteriorChainedNodes.push_back(User); } } return Result; } /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains /// operation for when the pattern matched at least one node with a chains. The /// input vector contains a list of all of the chained nodes that we match. We /// must determine if this is a valid thing to cover (i.e. matching it won't /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will /// be used as the input node chain for the generated nodes. static SDValue HandleMergeInputChains(SmallVectorImpl &ChainNodesMatched, SelectionDAG *CurDAG) { // Used for memoization. Without it WalkChainUsers could take exponential // time to run. DenseMap TokenFactorResult; // Walk all of the chained nodes we've matched, recursively scanning down the // users of the chain result. This adds any TokenFactor nodes that are caught // in between chained nodes to the chained and interior nodes list. SmallVector InteriorChainedNodes; for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, TokenFactorResult, InteriorChainedNodes) == CR_InducesCycle) return SDValue(); // Would induce a cycle. } // Okay, we have walked all the matched nodes and collected TokenFactor nodes // that we are interested in. Form our input TokenFactor node. SmallVector InputChains; for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { // Add the input chain of this node to the InputChains list (which will be // the operands of the generated TokenFactor) if it's not an interior node. SDNode *N = ChainNodesMatched[i]; if (N->getOpcode() != ISD::TokenFactor) { if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) continue; // Otherwise, add the input chain. SDValue InChain = ChainNodesMatched[i]->getOperand(0); assert(InChain.getValueType() == MVT::Other && "Not a chain"); InputChains.push_back(InChain); continue; } // If we have a token factor, we want to add all inputs of the token factor // that are not part of the pattern we're matching. for (const SDValue &Op : N->op_values()) { if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), Op.getNode())) InputChains.push_back(Op); } } if (InputChains.size() == 1) return InputChains[0]; return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), MVT::Other, InputChains); } /// MorphNode - Handle morphing a node in place for the selector. SDNode *SelectionDAGISel:: MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, ArrayRef Ops, unsigned EmitNodeInfo) { // It is possible we're using MorphNodeTo to replace a node with no // normal results with one that has a normal result (or we could be // adding a chain) and the input could have glue and chains as well. // In this case we need to shift the operands down. // FIXME: This is a horrible hack and broken in obscure cases, no worse // than the old isel though. int OldGlueResultNo = -1, OldChainResultNo = -1; unsigned NTMNumResults = Node->getNumValues(); if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { OldGlueResultNo = NTMNumResults-1; if (NTMNumResults != 1 && Node->getValueType(NTMNumResults-2) == MVT::Other) OldChainResultNo = NTMNumResults-2; } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) OldChainResultNo = NTMNumResults-1; // Call the underlying SelectionDAG routine to do the transmogrification. Note // that this deletes operands of the old node that become dead. SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); // MorphNodeTo can operate in two ways: if an existing node with the // specified operands exists, it can just return it. Otherwise, it // updates the node in place to have the requested operands. if (Res == Node) { // If we updated the node in place, reset the node ID. To the isel, // this should be just like a newly allocated machine node. Res->setNodeId(-1); } unsigned ResNumResults = Res->getNumValues(); // Move the glue if needed. if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && (unsigned)OldGlueResultNo != ResNumResults-1) CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), SDValue(Res, ResNumResults-1)); if ((EmitNodeInfo & OPFL_GlueOutput) != 0) --ResNumResults; // Move the chain reference if needed. if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && (unsigned)OldChainResultNo != ResNumResults-1) CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), SDValue(Res, ResNumResults-1)); // Otherwise, no replacement happened because the node already exists. Replace // Uses of the old node with the new one. if (Res != Node) { CurDAG->ReplaceAllUsesWith(Node, Res); CurDAG->RemoveDeadNode(Node); } return Res; } /// CheckSame - Implements OP_CheckSame. LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SmallVectorImpl > &RecordedNodes) { // Accept if it is exactly the same as a previously recorded node. unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); return N == RecordedNodes[RecNo].first; } /// CheckChildSame - Implements OP_CheckChildXSame. LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SmallVectorImpl > &RecordedNodes, unsigned ChildNo) { if (ChildNo >= N.getNumOperands()) return false; // Match fails if out of range child #. return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), RecordedNodes); } /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, const SelectionDAGISel &SDISel) { return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); } /// CheckNodePredicate - Implements OP_CheckNodePredicate. LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, const SelectionDAGISel &SDISel, SDNode *N) { return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); } LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDNode *N) { uint16_t Opc = MatcherTable[MatcherIndex++]; Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; return N->getOpcode() == Opc; } LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const TargetLowering *TLI, const DataLayout &DL) { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (N.getValueType() == VT) return true; // Handle the case when VT is iPTR. return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); } LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const TargetLowering *TLI, const DataLayout &DL, unsigned ChildNo) { if (ChildNo >= N.getNumOperands()) return false; // Match fails if out of range child #. return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, DL); } LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N) { return cast(N)->get() == (ISD::CondCode)MatcherTable[MatcherIndex++]; } LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const TargetLowering *TLI, const DataLayout &DL) { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (cast(N)->getVT() == VT) return true; // Handle the case when VT is iPTR. return VT == MVT::iPTR && cast(N)->getVT() == TLI->getPointerTy(DL); } LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N) { int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); ConstantSDNode *C = dyn_cast(N); return C && C->getSExtValue() == Val; } LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, unsigned ChildNo) { if (ChildNo >= N.getNumOperands()) return false; // Match fails if out of range child #. return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); } LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SelectionDAGISel &SDISel) { int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); if (N->getOpcode() != ISD::AND) return false; ConstantSDNode *C = dyn_cast(N->getOperand(1)); return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); } LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SelectionDAGISel &SDISel) { int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); if (N->getOpcode() != ISD::OR) return false; ConstantSDNode *C = dyn_cast(N->getOperand(1)); return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); } /// IsPredicateKnownToFail - If we know how and can do so without pushing a /// scope, evaluate the current node. If the current predicate is known to /// fail, set Result=true and return anything. If the current predicate is /// known to pass, set Result=false and return the MatcherIndex to continue /// with. If the current predicate is unknown, set Result=false and return the /// MatcherIndex to continue with. static unsigned IsPredicateKnownToFail(const unsigned char *Table, unsigned Index, SDValue N, bool &Result, const SelectionDAGISel &SDISel, SmallVectorImpl > &RecordedNodes) { switch (Table[Index++]) { default: Result = false; return Index-1; // Could not evaluate this predicate. case SelectionDAGISel::OPC_CheckSame: Result = !::CheckSame(Table, Index, N, RecordedNodes); return Index; case SelectionDAGISel::OPC_CheckChild0Same: case SelectionDAGISel::OPC_CheckChild1Same: case SelectionDAGISel::OPC_CheckChild2Same: case SelectionDAGISel::OPC_CheckChild3Same: Result = !::CheckChildSame(Table, Index, N, RecordedNodes, Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); return Index; case SelectionDAGISel::OPC_CheckPatternPredicate: Result = !::CheckPatternPredicate(Table, Index, SDISel); return Index; case SelectionDAGISel::OPC_CheckPredicate: Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); return Index; case SelectionDAGISel::OPC_CheckOpcode: Result = !::CheckOpcode(Table, Index, N.getNode()); return Index; case SelectionDAGISel::OPC_CheckType: Result = !::CheckType(Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout()); return Index; case SelectionDAGISel::OPC_CheckChild0Type: case SelectionDAGISel::OPC_CheckChild1Type: case SelectionDAGISel::OPC_CheckChild2Type: case SelectionDAGISel::OPC_CheckChild3Type: case SelectionDAGISel::OPC_CheckChild4Type: case SelectionDAGISel::OPC_CheckChild5Type: case SelectionDAGISel::OPC_CheckChild6Type: case SelectionDAGISel::OPC_CheckChild7Type: Result = !::CheckChildType( Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); return Index; case SelectionDAGISel::OPC_CheckCondCode: Result = !::CheckCondCode(Table, Index, N); return Index; case SelectionDAGISel::OPC_CheckValueType: Result = !::CheckValueType(Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout()); return Index; case SelectionDAGISel::OPC_CheckInteger: Result = !::CheckInteger(Table, Index, N); return Index; case SelectionDAGISel::OPC_CheckChild0Integer: case SelectionDAGISel::OPC_CheckChild1Integer: case SelectionDAGISel::OPC_CheckChild2Integer: case SelectionDAGISel::OPC_CheckChild3Integer: case SelectionDAGISel::OPC_CheckChild4Integer: Result = !::CheckChildInteger(Table, Index, N, Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); return Index; case SelectionDAGISel::OPC_CheckAndImm: Result = !::CheckAndImm(Table, Index, N, SDISel); return Index; case SelectionDAGISel::OPC_CheckOrImm: Result = !::CheckOrImm(Table, Index, N, SDISel); return Index; } } namespace { struct MatchScope { /// FailIndex - If this match fails, this is the index to continue with. unsigned FailIndex; /// NodeStack - The node stack when the scope was formed. SmallVector NodeStack; /// NumRecordedNodes - The number of recorded nodes when the scope was formed. unsigned NumRecordedNodes; /// NumMatchedMemRefs - The number of matched memref entries. unsigned NumMatchedMemRefs; /// InputChain/InputGlue - The current chain/glue SDValue InputChain, InputGlue; /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. bool HasChainNodesMatched; }; /// \\brief A DAG update listener to keep the matching state /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to /// change the DAG while matching. X86 addressing mode matcher is an example /// for this. class MatchStateUpdater : public SelectionDAG::DAGUpdateListener { SmallVectorImpl > &RecordedNodes; SmallVectorImpl &MatchScopes; public: MatchStateUpdater(SelectionDAG &DAG, SmallVectorImpl > &RN, SmallVectorImpl &MS) : SelectionDAG::DAGUpdateListener(DAG), RecordedNodes(RN), MatchScopes(MS) { } void NodeDeleted(SDNode *N, SDNode *E) override { // Some early-returns here to avoid the search if we deleted the node or // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we // do, so it's unnecessary to update matching state at that point). // Neither of these can occur currently because we only install this // update listener during matching a complex patterns. if (!E || E->isMachineOpcode()) return; // Performing linear search here does not matter because we almost never // run this code. You'd have to have a CSE during complex pattern // matching. for (auto &I : RecordedNodes) if (I.first.getNode() == N) I.first.setNode(E); for (auto &I : MatchScopes) for (auto &J : I.NodeStack) if (J.getNode() == N) J.setNode(E); } }; } // end anonymous namespace void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, unsigned TableSize) { // FIXME: Should these even be selected? Handle these cases in the caller? switch (NodeToMatch->getOpcode()) { default: break; case ISD::EntryToken: // These nodes remain the same. case ISD::BasicBlock: case ISD::Register: case ISD::RegisterMask: case ISD::HANDLENODE: case ISD::MDNODE_SDNODE: case ISD::TargetConstant: case ISD::TargetConstantFP: case ISD::TargetConstantPool: case ISD::TargetFrameIndex: case ISD::TargetExternalSymbol: case ISD::MCSymbol: case ISD::TargetBlockAddress: case ISD::TargetJumpTable: case ISD::TargetGlobalTLSAddress: case ISD::TargetGlobalAddress: case ISD::TokenFactor: case ISD::CopyFromReg: case ISD::CopyToReg: case ISD::EH_LABEL: case ISD::LIFETIME_START: case ISD::LIFETIME_END: NodeToMatch->setNodeId(-1); // Mark selected. return; case ISD::AssertSext: case ISD::AssertZext: CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); CurDAG->RemoveDeadNode(NodeToMatch); return; case ISD::INLINEASM: Select_INLINEASM(NodeToMatch); return; case ISD::READ_REGISTER: Select_READ_REGISTER(NodeToMatch); return; case ISD::WRITE_REGISTER: Select_WRITE_REGISTER(NodeToMatch); return; case ISD::UNDEF: Select_UNDEF(NodeToMatch); return; } assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); // Set up the node stack with NodeToMatch as the only node on the stack. SmallVector NodeStack; SDValue N = SDValue(NodeToMatch, 0); NodeStack.push_back(N); // MatchScopes - Scopes used when matching, if a match failure happens, this // indicates where to continue checking. SmallVector MatchScopes; // RecordedNodes - This is the set of nodes that have been recorded by the // state machine. The second value is the parent of the node, or null if the // root is recorded. SmallVector, 8> RecordedNodes; // MatchedMemRefs - This is the set of MemRef's we've seen in the input // pattern. SmallVector MatchedMemRefs; // These are the current input chain and glue for use when generating nodes. // Various Emit operations change these. For example, emitting a copytoreg // uses and updates these. SDValue InputChain, InputGlue; // ChainNodesMatched - If a pattern matches nodes that have input/output // chains, the OPC_EmitMergeInputChains operation is emitted which indicates // which ones they are. The result is captured into this list so that we can // update the chain results when the pattern is complete. SmallVector ChainNodesMatched; DEBUG(dbgs() << "ISEL: Starting pattern match on root node: "; NodeToMatch->dump(CurDAG); dbgs() << '\n'); // Determine where to start the interpreter. Normally we start at opcode #0, // but if the state machine starts with an OPC_SwitchOpcode, then we // accelerate the first lookup (which is guaranteed to be hot) with the // OpcodeOffset table. unsigned MatcherIndex = 0; if (!OpcodeOffset.empty()) { // Already computed the OpcodeOffset table, just index into it. if (N.getOpcode() < OpcodeOffset.size()) MatcherIndex = OpcodeOffset[N.getOpcode()]; DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); } else if (MatcherTable[0] == OPC_SwitchOpcode) { // Otherwise, the table isn't computed, but the state machine does start // with an OPC_SwitchOpcode instruction. Populate the table now, since this // is the first time we're selecting an instruction. unsigned Idx = 1; while (1) { // Get the size of this case. unsigned CaseSize = MatcherTable[Idx++]; if (CaseSize & 128) CaseSize = GetVBR(CaseSize, MatcherTable, Idx); if (CaseSize == 0) break; // Get the opcode, add the index to the table. uint16_t Opc = MatcherTable[Idx++]; Opc |= (unsigned short)MatcherTable[Idx++] << 8; if (Opc >= OpcodeOffset.size()) OpcodeOffset.resize((Opc+1)*2); OpcodeOffset[Opc] = Idx; Idx += CaseSize; } // Okay, do the lookup for the first opcode. if (N.getOpcode() < OpcodeOffset.size()) MatcherIndex = OpcodeOffset[N.getOpcode()]; } while (1) { assert(MatcherIndex < TableSize && "Invalid index"); #ifndef NDEBUG unsigned CurrentOpcodeIndex = MatcherIndex; #endif BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; switch (Opcode) { case OPC_Scope: { // Okay, the semantics of this operation are that we should push a scope // then evaluate the first child. However, pushing a scope only to have // the first check fail (which then pops it) is inefficient. If we can // determine immediately that the first check (or first several) will // immediately fail, don't even bother pushing a scope for them. unsigned FailIndex; while (1) { unsigned NumToSkip = MatcherTable[MatcherIndex++]; if (NumToSkip & 128) NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); // Found the end of the scope with no match. if (NumToSkip == 0) { FailIndex = 0; break; } FailIndex = MatcherIndex+NumToSkip; unsigned MatcherIndexOfPredicate = MatcherIndex; (void)MatcherIndexOfPredicate; // silence warning. // If we can't evaluate this predicate without pushing a scope (e.g. if // it is a 'MoveParent') or if the predicate succeeds on this node, we // push the scope and evaluate the full predicate chain. bool Result; MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, Result, *this, RecordedNodes); if (!Result) break; DEBUG(dbgs() << " Skipped scope entry (due to false predicate) at " << "index " << MatcherIndexOfPredicate << ", continuing at " << FailIndex << "\n"); ++NumDAGIselRetries; // Otherwise, we know that this case of the Scope is guaranteed to fail, // move to the next case. MatcherIndex = FailIndex; } // If the whole scope failed to match, bail. if (FailIndex == 0) break; // Push a MatchScope which indicates where to go if the first child fails // to match. MatchScope NewEntry; NewEntry.FailIndex = FailIndex; NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); NewEntry.NumRecordedNodes = RecordedNodes.size(); NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); NewEntry.InputChain = InputChain; NewEntry.InputGlue = InputGlue; NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); MatchScopes.push_back(NewEntry); continue; } case OPC_RecordNode: { // Remember this node, it may end up being an operand in the pattern. SDNode *Parent = nullptr; if (NodeStack.size() > 1) Parent = NodeStack[NodeStack.size()-2].getNode(); RecordedNodes.push_back(std::make_pair(N, Parent)); continue; } case OPC_RecordChild0: case OPC_RecordChild1: case OPC_RecordChild2: case OPC_RecordChild3: case OPC_RecordChild4: case OPC_RecordChild5: case OPC_RecordChild6: case OPC_RecordChild7: { unsigned ChildNo = Opcode-OPC_RecordChild0; if (ChildNo >= N.getNumOperands()) break; // Match fails if out of range child #. RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), N.getNode())); continue; } case OPC_RecordMemRef: MatchedMemRefs.push_back(cast(N)->getMemOperand()); continue; case OPC_CaptureGlueInput: // If the current node has an input glue, capture it in InputGlue. if (N->getNumOperands() != 0 && N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) InputGlue = N->getOperand(N->getNumOperands()-1); continue; case OPC_MoveChild: { unsigned ChildNo = MatcherTable[MatcherIndex++]; if (ChildNo >= N.getNumOperands()) break; // Match fails if out of range child #. N = N.getOperand(ChildNo); NodeStack.push_back(N); continue; } case OPC_MoveChild0: case OPC_MoveChild1: case OPC_MoveChild2: case OPC_MoveChild3: case OPC_MoveChild4: case OPC_MoveChild5: case OPC_MoveChild6: case OPC_MoveChild7: { unsigned ChildNo = Opcode-OPC_MoveChild0; if (ChildNo >= N.getNumOperands()) break; // Match fails if out of range child #. N = N.getOperand(ChildNo); NodeStack.push_back(N); continue; } case OPC_MoveParent: // Pop the current node off the NodeStack. NodeStack.pop_back(); assert(!NodeStack.empty() && "Node stack imbalance!"); N = NodeStack.back(); continue; case OPC_CheckSame: if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; continue; case OPC_CheckChild0Same: case OPC_CheckChild1Same: case OPC_CheckChild2Same: case OPC_CheckChild3Same: if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, Opcode-OPC_CheckChild0Same)) break; continue; case OPC_CheckPatternPredicate: if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; continue; case OPC_CheckPredicate: if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, N.getNode())) break; continue; case OPC_CheckComplexPat: { unsigned CPNum = MatcherTable[MatcherIndex++]; unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); // If target can modify DAG during matching, keep the matching state // consistent. std::unique_ptr MSU; if (ComplexPatternFuncMutatesDAG()) MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes, MatchScopes)); if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, RecordedNodes[RecNo].first, CPNum, RecordedNodes)) break; continue; } case OPC_CheckOpcode: if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; continue; case OPC_CheckType: if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, CurDAG->getDataLayout())) break; continue; case OPC_SwitchOpcode: { unsigned CurNodeOpcode = N.getOpcode(); unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; unsigned CaseSize; while (1) { // Get the size of this case. CaseSize = MatcherTable[MatcherIndex++]; if (CaseSize & 128) CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); if (CaseSize == 0) break; uint16_t Opc = MatcherTable[MatcherIndex++]; Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; // If the opcode matches, then we will execute this case. if (CurNodeOpcode == Opc) break; // Otherwise, skip over this case. MatcherIndex += CaseSize; } // If no cases matched, bail out. if (CaseSize == 0) break; // Otherwise, execute the case we found. DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " << MatcherIndex << "\n"); continue; } case OPC_SwitchType: { MVT CurNodeVT = N.getSimpleValueType(); unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; unsigned CaseSize; while (1) { // Get the size of this case. CaseSize = MatcherTable[MatcherIndex++]; if (CaseSize & 128) CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); if (CaseSize == 0) break; MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (CaseVT == MVT::iPTR) CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); // If the VT matches, then we will execute this case. if (CurNodeVT == CaseVT) break; // Otherwise, skip over this case. MatcherIndex += CaseSize; } // If no cases matched, bail out. if (CaseSize == 0) break; // Otherwise, execute the case we found. DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); continue; } case OPC_CheckChild0Type: case OPC_CheckChild1Type: case OPC_CheckChild2Type: case OPC_CheckChild3Type: case OPC_CheckChild4Type: case OPC_CheckChild5Type: case OPC_CheckChild6Type: case OPC_CheckChild7Type: if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, CurDAG->getDataLayout(), Opcode - OPC_CheckChild0Type)) break; continue; case OPC_CheckCondCode: if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; continue; case OPC_CheckValueType: if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, CurDAG->getDataLayout())) break; continue; case OPC_CheckInteger: if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; continue; case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: case OPC_CheckChild4Integer: if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, Opcode-OPC_CheckChild0Integer)) break; continue; case OPC_CheckAndImm: if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; continue; case OPC_CheckOrImm: if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; continue; case OPC_CheckFoldableChainNode: { assert(NodeStack.size() != 1 && "No parent node"); // Verify that all intermediate nodes between the root and this one have // a single use. bool HasMultipleUses = false; for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) if (!NodeStack[i].hasOneUse()) { HasMultipleUses = true; break; } if (HasMultipleUses) break; // Check to see that the target thinks this is profitable to fold and that // we can fold it without inducing cycles in the graph. if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), NodeToMatch) || !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), NodeToMatch, OptLevel, true/*We validate our own chains*/)) break; continue; } case OPC_EmitInteger: { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); RecordedNodes.push_back(std::pair( CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), VT), nullptr)); continue; } case OPC_EmitRegister: { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; unsigned RegNo = MatcherTable[MatcherIndex++]; RecordedNodes.push_back(std::pair( CurDAG->getRegister(RegNo, VT), nullptr)); continue; } case OPC_EmitRegister2: { // For targets w/ more than 256 register names, the register enum // values are stored in two bytes in the matcher table (just like // opcodes). MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; unsigned RegNo = MatcherTable[MatcherIndex++]; RegNo |= MatcherTable[MatcherIndex++] << 8; RecordedNodes.push_back(std::pair( CurDAG->getRegister(RegNo, VT), nullptr)); continue; } case OPC_EmitConvertToTarget: { // Convert from IMM/FPIMM to target version. unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); SDValue Imm = RecordedNodes[RecNo].first; if (Imm->getOpcode() == ISD::Constant) { const ConstantInt *Val=cast(Imm)->getConstantIntValue(); Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), Imm.getValueType()); } else if (Imm->getOpcode() == ISD::ConstantFP) { const ConstantFP *Val=cast(Imm)->getConstantFPValue(); Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), Imm.getValueType()); } RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); continue; } case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 // These are space-optimized forms of OPC_EmitMergeInputChains. assert(!InputChain.getNode() && "EmitMergeInputChains should be the first chain producing node"); assert(ChainNodesMatched.empty() && "Should only have one EmitMergeInputChains per match"); // Read all of the chained nodes. unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); // FIXME: What if other value results of the node have uses not matched // by this pattern? if (ChainNodesMatched.back() != NodeToMatch && !RecordedNodes[RecNo].first.hasOneUse()) { ChainNodesMatched.clear(); break; } // Merge the input chains if they are not intra-pattern references. InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); if (!InputChain.getNode()) break; // Failed to merge. continue; } case OPC_EmitMergeInputChains: { assert(!InputChain.getNode() && "EmitMergeInputChains should be the first chain producing node"); // This node gets a list of nodes we matched in the input that have // chains. We want to token factor all of the input chains to these nodes // together. However, if any of the input chains is actually one of the // nodes matched in this pattern, then we have an intra-match reference. // Ignore these because the newly token factored chain should not refer to // the old nodes. unsigned NumChains = MatcherTable[MatcherIndex++]; assert(NumChains != 0 && "Can't TF zero chains"); assert(ChainNodesMatched.empty() && "Should only have one EmitMergeInputChains per match"); // Read all of the chained nodes. for (unsigned i = 0; i != NumChains; ++i) { unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); // FIXME: What if other value results of the node have uses not matched // by this pattern? if (ChainNodesMatched.back() != NodeToMatch && !RecordedNodes[RecNo].first.hasOneUse()) { ChainNodesMatched.clear(); break; } } // If the inner loop broke out, the match fails. if (ChainNodesMatched.empty()) break; // Merge the input chains if they are not intra-pattern references. InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); if (!InputChain.getNode()) break; // Failed to merge. continue; } case OPC_EmitCopyToReg: { unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); unsigned DestPhysReg = MatcherTable[MatcherIndex++]; if (!InputChain.getNode()) InputChain = CurDAG->getEntryNode(); InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), DestPhysReg, RecordedNodes[RecNo].first, InputGlue); InputGlue = InputChain.getValue(1); continue; } case OPC_EmitNodeXForm: { unsigned XFormNo = MatcherTable[MatcherIndex++]; unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); RecordedNodes.push_back(std::pair(Res, nullptr)); continue; } case OPC_EmitNode: case OPC_MorphNodeTo: case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { uint16_t TargetOpc = MatcherTable[MatcherIndex++]; TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; // Get the result VT list. unsigned NumVTs; // If this is one of the compressed forms, get the number of VTs based // on the Opcode. Otherwise read the next byte from the table. if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) NumVTs = Opcode - OPC_MorphNodeTo0; else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) NumVTs = Opcode - OPC_EmitNode0; else NumVTs = MatcherTable[MatcherIndex++]; SmallVector VTs; for (unsigned i = 0; i != NumVTs; ++i) { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (VT == MVT::iPTR) VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; VTs.push_back(VT); } if (EmitNodeInfo & OPFL_Chain) VTs.push_back(MVT::Other); if (EmitNodeInfo & OPFL_GlueOutput) VTs.push_back(MVT::Glue); // This is hot code, so optimize the two most common cases of 1 and 2 // results. SDVTList VTList; if (VTs.size() == 1) VTList = CurDAG->getVTList(VTs[0]); else if (VTs.size() == 2) VTList = CurDAG->getVTList(VTs[0], VTs[1]); else VTList = CurDAG->getVTList(VTs); // Get the operand list. unsigned NumOps = MatcherTable[MatcherIndex++]; SmallVector Ops; for (unsigned i = 0; i != NumOps; ++i) { unsigned RecNo = MatcherTable[MatcherIndex++]; if (RecNo & 128) RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); Ops.push_back(RecordedNodes[RecNo].first); } // If there are variadic operands to add, handle them now. if (EmitNodeInfo & OPFL_VariadicInfo) { // Determine the start index to copy from. unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && "Invalid variadic node"); // Copy all of the variadic operands, not including a potential glue // input. for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); i != e; ++i) { SDValue V = NodeToMatch->getOperand(i); if (V.getValueType() == MVT::Glue) break; Ops.push_back(V); } } // If this has chain/glue inputs, add them. if (EmitNodeInfo & OPFL_Chain) Ops.push_back(InputChain); if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) Ops.push_back(InputGlue); // Create the node. SDNode *Res = nullptr; bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); if (!IsMorphNodeTo) { // If this is a normal EmitNode command, just create the new node and // add the results to the RecordedNodes list. Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), VTList, Ops); // Add all the non-glue/non-chain results to the RecordedNodes list. for (unsigned i = 0, e = VTs.size(); i != e; ++i) { if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; RecordedNodes.push_back(std::pair(SDValue(Res, i), nullptr)); } } else { assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && "NodeToMatch was removed partway through selection"); SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, SDNode *E) { auto &Chain = ChainNodesMatched; assert((!E || llvm::find(Chain, N) == Chain.end()) && "Chain node replaced during MorphNode"); Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end()); }); Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo); } // If the node had chain/glue results, update our notion of the current // chain and glue. if (EmitNodeInfo & OPFL_GlueOutput) { InputGlue = SDValue(Res, VTs.size()-1); if (EmitNodeInfo & OPFL_Chain) InputChain = SDValue(Res, VTs.size()-2); } else if (EmitNodeInfo & OPFL_Chain) InputChain = SDValue(Res, VTs.size()-1); // If the OPFL_MemRefs glue is set on this node, slap all of the // accumulated memrefs onto it. // // FIXME: This is vastly incorrect for patterns with multiple outputs // instructions that access memory and for ComplexPatterns that match // loads. if (EmitNodeInfo & OPFL_MemRefs) { // Only attach load or store memory operands if the generated // instruction may load or store. const MCInstrDesc &MCID = TII->get(TargetOpc); bool mayLoad = MCID.mayLoad(); bool mayStore = MCID.mayStore(); unsigned NumMemRefs = 0; for (SmallVectorImpl::const_iterator I = MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { if ((*I)->isLoad()) { if (mayLoad) ++NumMemRefs; } else if ((*I)->isStore()) { if (mayStore) ++NumMemRefs; } else { ++NumMemRefs; } } MachineSDNode::mmo_iterator MemRefs = MF->allocateMemRefsArray(NumMemRefs); MachineSDNode::mmo_iterator MemRefsPos = MemRefs; for (SmallVectorImpl::const_iterator I = MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { if ((*I)->isLoad()) { if (mayLoad) *MemRefsPos++ = *I; } else if ((*I)->isStore()) { if (mayStore) *MemRefsPos++ = *I; } else { *MemRefsPos++ = *I; } } cast(Res) ->setMemRefs(MemRefs, MemRefs + NumMemRefs); } DEBUG(dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") << " node: "; Res->dump(CurDAG); dbgs() << "\n"); // If this was a MorphNodeTo then we're completely done! if (IsMorphNodeTo) { // Update chain uses. UpdateChains(Res, InputChain, ChainNodesMatched, true); return; } continue; } case OPC_CompleteMatch: { // The match has been completed, and any new nodes (if any) have been // created. Patch up references to the matched dag to use the newly // created nodes. unsigned NumResults = MatcherTable[MatcherIndex++]; for (unsigned i = 0; i != NumResults; ++i) { unsigned ResSlot = MatcherTable[MatcherIndex++]; if (ResSlot & 128) ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); SDValue Res = RecordedNodes[ResSlot].first; assert(i < NodeToMatch->getNumValues() && NodeToMatch->getValueType(i) != MVT::Other && NodeToMatch->getValueType(i) != MVT::Glue && "Invalid number of results to complete!"); assert((NodeToMatch->getValueType(i) == Res.getValueType() || NodeToMatch->getValueType(i) == MVT::iPTR || Res.getValueType() == MVT::iPTR || NodeToMatch->getValueType(i).getSizeInBits() == Res.getValueType().getSizeInBits()) && "invalid replacement"); CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); } // Update chain uses. UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); // If the root node defines glue, we need to update it to the glue result. // TODO: This never happens in our tests and I think it can be removed / // replaced with an assert, but if we do it this the way the change is // NFC. if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == MVT::Glue && InputGlue.getNode()) CurDAG->ReplaceAllUsesOfValueWith( SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), InputGlue); assert(NodeToMatch->use_empty() && "Didn't replace all uses of the node?"); CurDAG->RemoveDeadNode(NodeToMatch); return; } } // If the code reached this point, then the match failed. See if there is // another child to try in the current 'Scope', otherwise pop it until we // find a case to check. DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); ++NumDAGIselRetries; while (1) { if (MatchScopes.empty()) { CannotYetSelect(NodeToMatch); return; } // Restore the interpreter state back to the point where the scope was // formed. MatchScope &LastScope = MatchScopes.back(); RecordedNodes.resize(LastScope.NumRecordedNodes); NodeStack.clear(); NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); N = NodeStack.back(); if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); MatcherIndex = LastScope.FailIndex; DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); InputChain = LastScope.InputChain; InputGlue = LastScope.InputGlue; if (!LastScope.HasChainNodesMatched) ChainNodesMatched.clear(); // Check to see what the offset is at the new MatcherIndex. If it is zero // we have reached the end of this scope, otherwise we have another child // in the current scope to try. unsigned NumToSkip = MatcherTable[MatcherIndex++]; if (NumToSkip & 128) NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); // If we have another child in this scope to match, update FailIndex and // try it. if (NumToSkip != 0) { LastScope.FailIndex = MatcherIndex+NumToSkip; break; } // End of this scope, pop it and try the next child in the containing // scope. MatchScopes.pop_back(); } } } void SelectionDAGISel::CannotYetSelect(SDNode *N) { std::string msg; raw_string_ostream Msg(msg); Msg << "Cannot select: "; if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && N->getOpcode() != ISD::INTRINSIC_VOID) { N->printrFull(Msg, CurDAG); Msg << "\nIn function: " << MF->getName(); } else { bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; unsigned iid = cast(N->getOperand(HasInputChain))->getZExtValue(); if (iid < Intrinsic::num_intrinsics) Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) Msg << "target intrinsic %" << TII->getName(iid); else Msg << "unknown intrinsic #" << iid; } report_fatal_error(Msg.str()); } char SelectionDAGISel::ID = 0;