//===--- RDFLiveness.cpp --------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Computation of the liveness information from the data-flow graph. // // The main functionality of this code is to compute block live-in // information. With the live-in information in place, the placement // of kill flags can also be recalculated. // // The block live-in calculation is based on the ideas from the following // publication: // // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." // ACM Transactions on Architecture and Code Optimization, Association for // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance // and Embedded Architectures and Compilers", 8 (4), // <10.1145/2086696.2086706>. // #include "RDFGraph.h" #include "RDFLiveness.h" #include "llvm/ADT/SetVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominanceFrontier.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; using namespace rdf; namespace llvm { namespace rdf { template<> raw_ostream &operator<< (raw_ostream &OS, const Print &P) { OS << '{'; for (auto I : P.Obj) { OS << ' ' << Print(I.first, P.G) << '{'; for (auto J = I.second.begin(), E = I.second.end(); J != E; ) { OS << Print(*J, P.G); if (++J != E) OS << ','; } OS << '}'; } OS << " }"; return OS; } } // namespace rdf } // namespace llvm // The order in the returned sequence is the order of reaching defs in the // upward traversal: the first def is the closest to the given reference RefA, // the next one is further up, and so on. // The list ends at a reaching phi def, or when the reference from RefA is // covered by the defs in the list (see FullChain). // This function provides two modes of operation: // (1) Returning the sequence of reaching defs for a particular reference // node. This sequence will terminate at the first phi node [1]. // (2) Returning a partial sequence of reaching defs, where the final goal // is to traverse past phi nodes to the actual defs arising from the code // itself. // In mode (2), the register reference for which the search was started // may be different from the reference node RefA, for which this call was // made, hence the argument RefRR, which holds the original register. // Also, some definitions may have already been encountered in a previous // call that will influence register covering. The register references // already defined are passed in through DefRRs. // In mode (1), the "continuation" considerations do not apply, and the // RefRR is the same as the register in RefA, and the set DefRRs is empty. // // [1] It is possible for multiple phi nodes to be included in the returned // sequence: // SubA = phi ... // SubB = phi ... // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) // However, these phi nodes are independent from one another in terms of // the data-flow. NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, NodeAddr RefA, bool FullChain, const RegisterSet &DefRRs) { SetVector DefQ; SetVector Owners; // The initial queue should not have reaching defs for shadows. The // whole point of a shadow is that it will have a reaching def that // is not aliased to the reaching defs of the related shadows. NodeId Start = RefA.Id; auto SNA = DFG.addr(Start); if (NodeId RD = SNA.Addr->getReachingDef()) DefQ.insert(RD); // Collect all the reaching defs, going up until a phi node is encountered, // or there are no more reaching defs. From this set, the actual set of // reaching defs will be selected. // The traversal upwards must go on until a covering def is encountered. // It is possible that a collection of non-covering (individually) defs // will be sufficient, but keep going until a covering one is found. for (unsigned i = 0; i < DefQ.size(); ++i) { auto TA = DFG.addr(DefQ[i]); if (TA.Addr->getFlags() & NodeAttrs::PhiRef) continue; // Stop at the covering/overwriting def of the initial register reference. RegisterRef RR = TA.Addr->getRegRef(); if (RAI.covers(RR, RefRR)) { uint16_t Flags = TA.Addr->getFlags(); if (!(Flags & NodeAttrs::Preserving)) continue; } // Get the next level of reaching defs. This will include multiple // reaching defs for shadows. for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA)) if (auto RD = NodeAddr(S).Addr->getReachingDef()) DefQ.insert(RD); } // Remove all non-phi defs that are not aliased to RefRR, and collect // the owners of the remaining defs. SetVector Defs; for (auto N : DefQ) { auto TA = DFG.addr(N); bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef())) continue; Defs.insert(TA.Id); Owners.insert(TA.Addr->getOwner(DFG).Id); } // Return the MachineBasicBlock containing a given instruction. auto Block = [this] (NodeAddr IA) -> MachineBasicBlock* { if (IA.Addr->getKind() == NodeAttrs::Stmt) return NodeAddr(IA).Addr->getCode()->getParent(); assert(IA.Addr->getKind() == NodeAttrs::Phi); NodeAddr PA = IA; NodeAddr BA = PA.Addr->getOwner(DFG); return BA.Addr->getCode(); }; // Less(A,B) iff instruction A is further down in the dominator tree than B. auto Less = [&Block,this] (NodeId A, NodeId B) -> bool { if (A == B) return false; auto OA = DFG.addr(A), OB = DFG.addr(B); MachineBasicBlock *BA = Block(OA), *BB = Block(OB); if (BA != BB) return MDT.dominates(BB, BA); // They are in the same block. bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; if (StmtA) { if (!StmtB) // OB is a phi and phis dominate statements. return true; auto CA = NodeAddr(OA).Addr->getCode(); auto CB = NodeAddr(OB).Addr->getCode(); // The order must be linear, so tie-break such equalities. if (CA == CB) return A < B; return MDT.dominates(CB, CA); } else { // OA is a phi. if (StmtB) return false; // Both are phis. There is no ordering between phis (in terms of // the data-flow), so tie-break this via node id comparison. return A < B; } }; std::vector Tmp(Owners.begin(), Owners.end()); std::sort(Tmp.begin(), Tmp.end(), Less); // The vector is a list of instructions, so that defs coming from // the same instruction don't need to be artificially ordered. // Then, when computing the initial segment, and iterating over an // instruction, pick the defs that contribute to the covering (i.e. is // not covered by previously added defs). Check the defs individually, // i.e. first check each def if is covered or not (without adding them // to the tracking set), and then add all the selected ones. // The reason for this is this example: // *d1, *d2, ... Assume A and B are aliased (can happen in phi nodes). // *d3 If A \incl BuC, and B \incl AuC, then *d2 would be // covered if we added A first, and A would be covered // if we added B first. NodeList RDefs; RegisterSet RRs = DefRRs; auto DefInSet = [&Defs] (NodeAddr TA) -> bool { return TA.Addr->getKind() == NodeAttrs::Def && Defs.count(TA.Id); }; for (auto T : Tmp) { if (!FullChain && RAI.covers(RRs, RefRR)) break; auto TA = DFG.addr(T); bool IsPhi = DFG.IsCode(TA); NodeList Ds; for (NodeAddr DA : TA.Addr->members_if(DefInSet, DFG)) { auto QR = DA.Addr->getRegRef(); // Add phi defs even if they are covered by subsequent defs. This is // for cases where the reached use is not covered by any of the defs // encountered so far: the phi def is needed to expose the liveness // of that use to the entry of the block. // Example: // phi d1(,d2,), ... Phi def d1 is covered by d2. // d2(d1,,u3), ... // ..., u3(d2) This use needs to be live on entry. if (FullChain || IsPhi || !RAI.covers(RRs, QR)) Ds.push_back(DA); } RDefs.insert(RDefs.end(), Ds.begin(), Ds.end()); for (NodeAddr DA : Ds) { // When collecting a full chain of definitions, do not consider phi // defs to actually define a register. uint16_t Flags = DA.Addr->getFlags(); if (!FullChain || !(Flags & NodeAttrs::PhiRef)) if (!(Flags & NodeAttrs::Preserving)) RRs.insert(DA.Addr->getRegRef()); } } return RDefs; } static const RegisterSet NoRegs; NodeList Liveness::getAllReachingDefs(NodeAddr RefA) { return getAllReachingDefs(RefA.Addr->getRegRef(), RefA, false, NoRegs); } NodeSet Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr RefA, NodeSet &Visited, const NodeSet &Defs) { // Collect all defined registers. Do not consider phis to be defining // anything, only collect "real" definitions. RegisterSet DefRRs; for (const auto D : Defs) { const auto DA = DFG.addr(D); if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) DefRRs.insert(DA.Addr->getRegRef()); } auto RDs = getAllReachingDefs(RefRR, RefA, true, DefRRs); if (RDs.empty()) return Defs; // Make a copy of the preexisting definitions and add the newly found ones. NodeSet TmpDefs = Defs; for (auto R : RDs) TmpDefs.insert(R.Id); NodeSet Result = Defs; for (NodeAddr DA : RDs) { Result.insert(DA.Id); if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) continue; NodeAddr PA = DA.Addr->getOwner(DFG); if (Visited.count(PA.Id)) continue; Visited.insert(PA.Id); // Go over all phi uses and get the reaching defs for each use. for (auto U : PA.Addr->members_if(DFG.IsRef, DFG)) { const auto &T = getAllReachingDefsRec(RefRR, U, Visited, TmpDefs); Result.insert(T.begin(), T.end()); } } return Result; } NodeSet Liveness::getAllReachedUses(RegisterRef RefRR, NodeAddr DefA, const RegisterSet &DefRRs) { NodeSet Uses; // If the original register is already covered by all the intervening // defs, no more uses can be reached. if (RAI.covers(DefRRs, RefRR)) return Uses; // Add all directly reached uses. NodeId U = DefA.Addr->getReachedUse(); while (U != 0) { auto UA = DFG.addr(U); auto UR = UA.Addr->getRegRef(); if (RAI.alias(RefRR, UR) && !RAI.covers(DefRRs, UR)) Uses.insert(U); U = UA.Addr->getSibling(); } // Traverse all reached defs. for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) { auto DA = DFG.addr(D); NextD = DA.Addr->getSibling(); auto DR = DA.Addr->getRegRef(); // If this def is already covered, it cannot reach anything new. // Similarly, skip it if it is not aliased to the interesting register. if (RAI.covers(DefRRs, DR) || !RAI.alias(RefRR, DR)) continue; NodeSet T; if (DA.Addr->getFlags() & NodeAttrs::Preserving) { // If it is a preserving def, do not update the set of intervening defs. T = getAllReachedUses(RefRR, DA, DefRRs); } else { RegisterSet NewDefRRs = DefRRs; NewDefRRs.insert(DR); T = getAllReachedUses(RefRR, DA, NewDefRRs); } Uses.insert(T.begin(), T.end()); } return Uses; } void Liveness::computePhiInfo() { RealUseMap.clear(); NodeList Phis; NodeAddr FA = DFG.getFunc(); auto Blocks = FA.Addr->members(DFG); for (NodeAddr BA : Blocks) { auto Ps = BA.Addr->members_if(DFG.IsCode, DFG); Phis.insert(Phis.end(), Ps.begin(), Ps.end()); } // phi use -> (map: reaching phi -> set of registers defined in between) std::map> PhiUp; std::vector PhiUQ; // Work list of phis for upward propagation. // Go over all phis. for (NodeAddr PhiA : Phis) { // Go over all defs and collect the reached uses that are non-phi uses // (i.e. the "real uses"). auto &RealUses = RealUseMap[PhiA.Id]; auto PhiRefs = PhiA.Addr->members(DFG); // Have a work queue of defs whose reached uses need to be found. // For each def, add to the queue all reached (non-phi) defs. SetVector DefQ; NodeSet PhiDefs; for (auto R : PhiRefs) { if (!DFG.IsRef(R)) continue; DefQ.insert(R.Id); PhiDefs.insert(R.Id); } for (unsigned i = 0; i < DefQ.size(); ++i) { NodeAddr DA = DFG.addr(DefQ[i]); NodeId UN = DA.Addr->getReachedUse(); while (UN != 0) { NodeAddr A = DFG.addr(UN); if (!(A.Addr->getFlags() & NodeAttrs::PhiRef)) RealUses[getRestrictedRegRef(A)].insert(A.Id); UN = A.Addr->getSibling(); } NodeId DN = DA.Addr->getReachedDef(); while (DN != 0) { NodeAddr A = DFG.addr(DN); for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) { uint16_t Flags = NodeAddr(T).Addr->getFlags(); // Must traverse the reached-def chain. Consider: // def(D0) -> def(R0) -> def(R0) -> use(D0) // The reachable use of D0 passes through a def of R0. if (!(Flags & NodeAttrs::PhiRef)) DefQ.insert(T.Id); } DN = A.Addr->getSibling(); } } // Filter out these uses that appear to be reachable, but really // are not. For example: // // R1:0 = d1 // = R1:0 u2 Reached by d1. // R0 = d3 // = R1:0 u4 Still reached by d1: indirectly through // the def d3. // R1 = d5 // = R1:0 u6 Not reached by d1 (covered collectively // by d3 and d5), but following reached // defs and uses from d1 will lead here. auto HasDef = [&PhiDefs] (NodeAddr DA) -> bool { return PhiDefs.count(DA.Id); }; for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) { // For each reached register UI->first, there is a set UI->second, of // uses of it. For each such use, check if it is reached by this phi, // i.e. check if the set of its reaching uses intersects the set of // this phi's defs. auto &Uses = UI->second; for (auto I = Uses.begin(), E = Uses.end(); I != E; ) { auto UA = DFG.addr(*I); NodeList RDs = getAllReachingDefs(UI->first, UA); if (std::any_of(RDs.begin(), RDs.end(), HasDef)) ++I; else I = Uses.erase(I); } if (Uses.empty()) UI = RealUses.erase(UI); else ++UI; } // If this phi reaches some "real" uses, add it to the queue for upward // propagation. if (!RealUses.empty()) PhiUQ.push_back(PhiA.Id); // Go over all phi uses and check if the reaching def is another phi. // Collect the phis that are among the reaching defs of these uses. // While traversing the list of reaching defs for each phi use, collect // the set of registers defined between this phi (Phi) and the owner phi // of the reaching def. for (auto I : PhiRefs) { if (!DFG.IsRef(I)) continue; NodeAddr UA = I; auto &UpMap = PhiUp[UA.Id]; RegisterSet DefRRs; for (NodeAddr DA : getAllReachingDefs(UA)) { if (DA.Addr->getFlags() & NodeAttrs::PhiRef) UpMap[DA.Addr->getOwner(DFG).Id] = DefRRs; else DefRRs.insert(DA.Addr->getRegRef()); } } } if (Trace) { dbgs() << "Phi-up-to-phi map:\n"; for (auto I : PhiUp) { dbgs() << "phi " << Print(I.first, DFG) << " -> {"; for (auto R : I.second) dbgs() << ' ' << Print(R.first, DFG) << Print(R.second, DFG); dbgs() << " }\n"; } } // Propagate the reached registers up in the phi chain. // // The following type of situation needs careful handling: // // phi d1 (1) // | // ... d2 // | // phi u3 (2) // | // ... u4 // // The phi node (2) defines a register pair R1:0, and reaches a "real" // use u4 of just R1. The same phi node is also known to reach (upwards) // the phi node (1). However, the use u4 is not reached by phi (1), // because of the intervening definition d2 of R1. The data flow between // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. // // When propagating uses up the phi chains, get the all reaching defs // for a given phi use, and traverse the list until the propagated ref // is covered, or until or until reaching the final phi. Only assume // that the reference reaches the phi in the latter case. for (unsigned i = 0; i < PhiUQ.size(); ++i) { auto PA = DFG.addr(PhiUQ[i]); auto &RealUses = RealUseMap[PA.Id]; for (auto U : PA.Addr->members_if(DFG.IsRef, DFG)) { NodeAddr UA = U; auto &UpPhis = PhiUp[UA.Id]; for (auto UP : UpPhis) { bool Changed = false; auto &MidDefs = UP.second; // Collect the set UpReached of uses that are reached by the current // phi PA, and are not covered by any intervening def between PA and // the upward phi UP. RegisterSet UpReached; for (auto T : RealUses) { if (!isRestricted(PA, UA, T.first)) continue; if (!RAI.covers(MidDefs, T.first)) UpReached.insert(T.first); } if (UpReached.empty()) continue; // Update the set PRUs of real uses reached by the upward phi UP with // the actual set of uses (UpReached) that the UP phi reaches. auto &PRUs = RealUseMap[UP.first]; for (auto R : UpReached) { unsigned Z = PRUs[R].size(); PRUs[R].insert(RealUses[R].begin(), RealUses[R].end()); Changed |= (PRUs[R].size() != Z); } if (Changed) PhiUQ.push_back(UP.first); } } } if (Trace) { dbgs() << "Real use map:\n"; for (auto I : RealUseMap) { dbgs() << "phi " << Print(I.first, DFG); NodeAddr PA = DFG.addr(I.first); NodeList Ds = PA.Addr->members_if(DFG.IsRef, DFG); if (!Ds.empty()) { RegisterRef RR = NodeAddr(Ds[0]).Addr->getRegRef(); dbgs() << '<' << Print(RR, DFG) << '>'; } else { dbgs() << ""; } dbgs() << " -> " << Print(I.second, DFG) << '\n'; } } } void Liveness::computeLiveIns() { // Populate the node-to-block map. This speeds up the calculations // significantly. NBMap.clear(); for (NodeAddr BA : DFG.getFunc().Addr->members(DFG)) { MachineBasicBlock *BB = BA.Addr->getCode(); for (NodeAddr IA : BA.Addr->members(DFG)) { for (NodeAddr RA : IA.Addr->members(DFG)) NBMap.insert(std::make_pair(RA.Id, BB)); NBMap.insert(std::make_pair(IA.Id, BB)); } } MachineFunction &MF = DFG.getMF(); // Compute IDF first, then the inverse. decltype(IIDF) IDF; for (auto &B : MF) { auto F1 = MDF.find(&B); if (F1 == MDF.end()) continue; SetVector IDFB(F1->second.begin(), F1->second.end()); for (unsigned i = 0; i < IDFB.size(); ++i) { auto F2 = MDF.find(IDFB[i]); if (F2 != MDF.end()) IDFB.insert(F2->second.begin(), F2->second.end()); } // Add B to the IDF(B). This will put B in the IIDF(B). IDFB.insert(&B); IDF[&B].insert(IDFB.begin(), IDFB.end()); } for (auto I : IDF) for (auto S : I.second) IIDF[S].insert(I.first); computePhiInfo(); NodeAddr FA = DFG.getFunc(); auto Blocks = FA.Addr->members(DFG); // Build the phi live-on-entry map. for (NodeAddr BA : Blocks) { MachineBasicBlock *MB = BA.Addr->getCode(); auto &LON = PhiLON[MB]; for (auto P : BA.Addr->members_if(DFG.IsCode, DFG)) for (auto S : RealUseMap[P.Id]) LON[S.first].insert(S.second.begin(), S.second.end()); } if (Trace) { dbgs() << "Phi live-on-entry map:\n"; for (auto I : PhiLON) dbgs() << "block #" << I.first->getNumber() << " -> " << Print(I.second, DFG) << '\n'; } // Build the phi live-on-exit map. Each phi node has some set of reached // "real" uses. Propagate this set backwards into the block predecessors // through the reaching defs of the corresponding phi uses. for (NodeAddr BA : Blocks) { auto Phis = BA.Addr->members_if(DFG.IsCode, DFG); for (NodeAddr PA : Phis) { auto &RUs = RealUseMap[PA.Id]; if (RUs.empty()) continue; for (auto U : PA.Addr->members_if(DFG.IsRef, DFG)) { NodeAddr UA = U; if (UA.Addr->getReachingDef() == 0) continue; // Mark all reached "real" uses of P as live on exit in the // predecessor. // Remap all the RUs so that they have a correct reaching def. auto PrA = DFG.addr(UA.Addr->getPredecessor()); auto &LOX = PhiLOX[PrA.Addr->getCode()]; for (auto R : RUs) { RegisterRef RR = R.first; if (!isRestricted(PA, UA, RR)) RR = getRestrictedRegRef(UA); // The restricted ref may be different from the ref that was // accessed in the "real use". This means that this phi use // is not the one that carries this reference, so skip it. if (!RAI.alias(R.first, RR)) continue; for (auto D : getAllReachingDefs(RR, UA)) LOX[RR].insert(D.Id); } } // for U : phi uses } // for P : Phis } // for B : Blocks if (Trace) { dbgs() << "Phi live-on-exit map:\n"; for (auto I : PhiLOX) dbgs() << "block #" << I.first->getNumber() << " -> " << Print(I.second, DFG) << '\n'; } RefMap LiveIn; traverse(&MF.front(), LiveIn); // Add function live-ins to the live-in set of the function entry block. auto &EntryIn = LiveMap[&MF.front()]; for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) EntryIn.insert({I->first,0}); if (Trace) { // Dump the liveness map for (auto &B : MF) { BitVector LV(TRI.getNumRegs()); for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) LV.set(I->PhysReg); dbgs() << "BB#" << B.getNumber() << "\t rec = {"; for (int x = LV.find_first(); x >= 0; x = LV.find_next(x)) dbgs() << ' ' << Print({unsigned(x),0}, DFG); dbgs() << " }\n"; dbgs() << "\tcomp = " << Print(LiveMap[&B], DFG) << '\n'; } } } void Liveness::resetLiveIns() { for (auto &B : DFG.getMF()) { // Remove all live-ins. std::vector T; for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) T.push_back(I->PhysReg); for (auto I : T) B.removeLiveIn(I); // Add the newly computed live-ins. auto &LiveIns = LiveMap[&B]; for (auto I : LiveIns) { assert(I.Sub == 0); B.addLiveIn(I.Reg); } } } void Liveness::resetKills() { for (auto &B : DFG.getMF()) resetKills(&B); } void Liveness::resetKills(MachineBasicBlock *B) { auto CopyLiveIns = [] (MachineBasicBlock *B, BitVector &LV) -> void { for (auto I = B->livein_begin(), E = B->livein_end(); I != E; ++I) LV.set(I->PhysReg); }; BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); CopyLiveIns(B, LiveIn); for (auto SI : B->successors()) CopyLiveIns(SI, Live); for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) { MachineInstr *MI = &*I; if (MI->isDebugValue()) continue; MI->clearKillInfo(); for (auto &Op : MI->operands()) { // An implicit def of a super-register may not necessarily start a // live range of it, since an implicit use could be used to keep parts // of it live. Instead of analyzing the implicit operands, ignore // implicit defs. if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) continue; unsigned R = Op.getReg(); if (!TargetRegisterInfo::isPhysicalRegister(R)) continue; for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) Live.reset(*SR); } for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isUse()) continue; unsigned R = Op.getReg(); if (!TargetRegisterInfo::isPhysicalRegister(R)) continue; bool IsLive = false; for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) { if (!Live[*AR]) continue; IsLive = true; break; } if (IsLive) continue; Op.setIsKill(true); for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) Live.set(*SR); } } } // For shadows, determine if RR is aliased to a reaching def of any other // shadow associated with RA. If it is not, then RR is "restricted" to RA, // and so it can be considered a value specific to RA. This is important // for accurately determining values associated with phi uses. // For non-shadows, this function returns "true". bool Liveness::isRestricted(NodeAddr IA, NodeAddr RA, RegisterRef RR) const { NodeId Start = RA.Id; for (NodeAddr TA = DFG.getNextShadow(IA, RA); TA.Id != 0 && TA.Id != Start; TA = DFG.getNextShadow(IA, TA)) { NodeId RD = TA.Addr->getReachingDef(); if (RD == 0) continue; if (RAI.alias(RR, DFG.addr(RD).Addr->getRegRef())) return false; } return true; } RegisterRef Liveness::getRestrictedRegRef(NodeAddr RA) const { assert(DFG.IsRef(RA)); if (RA.Addr->getFlags() & NodeAttrs::Shadow) { NodeId RD = RA.Addr->getReachingDef(); assert(RD); RA = DFG.addr(RD); } return RA.Addr->getRegRef(); } unsigned Liveness::getPhysReg(RegisterRef RR) const { if (!TargetRegisterInfo::isPhysicalRegister(RR.Reg)) return 0; return RR.Sub ? TRI.getSubReg(RR.Reg, RR.Sub) : RR.Reg; } // Helper function to obtain the basic block containing the reaching def // of the given use. MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { auto F = NBMap.find(RN); if (F != NBMap.end()) return F->second; llvm_unreachable("Node id not in map"); } void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { // The LiveIn map, for each (physical) register, contains the set of live // reaching defs of that register that are live on entry to the associated // block. // The summary of the traversal algorithm: // // R is live-in in B, if there exists a U(R), such that rdef(R) dom B // and (U \in IDF(B) or B dom U). // // for (C : children) { // LU = {} // traverse(C, LU) // LiveUses += LU // } // // LiveUses -= Defs(B); // LiveUses += UpwardExposedUses(B); // for (C : IIDF[B]) // for (U : LiveUses) // if (Rdef(U) dom C) // C.addLiveIn(U) // // Go up the dominator tree (depth-first). MachineDomTreeNode *N = MDT.getNode(B); for (auto I : *N) { RefMap L; MachineBasicBlock *SB = I->getBlock(); traverse(SB, L); for (auto S : L) LiveIn[S.first].insert(S.second.begin(), S.second.end()); } if (Trace) { dbgs() << LLVM_FUNCTION_NAME << " in BB#" << B->getNumber() << " after recursion into"; for (auto I : *N) dbgs() << ' ' << I->getBlock()->getNumber(); dbgs() << "\n LiveIn: " << Print(LiveIn, DFG); dbgs() << "\n Local: " << Print(LiveMap[B], DFG) << '\n'; } // Add phi uses that are live on exit from this block. RefMap &PUs = PhiLOX[B]; for (auto S : PUs) LiveIn[S.first].insert(S.second.begin(), S.second.end()); if (Trace) { dbgs() << "after LOX\n"; dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; } // Stop tracking all uses defined in this block: erase those records // where the reaching def is located in B and which cover all reached // uses. auto Copy = LiveIn; LiveIn.clear(); for (auto I : Copy) { auto &Defs = LiveIn[I.first]; NodeSet Rest; for (auto R : I.second) { auto DA = DFG.addr(R); RegisterRef DDR = DA.Addr->getRegRef(); NodeAddr IA = DA.Addr->getOwner(DFG); NodeAddr BA = IA.Addr->getOwner(DFG); // Defs from a different block need to be preserved. Defs from this // block will need to be processed further, except for phi defs, the // liveness of which is handled through the PhiLON/PhiLOX maps. if (B != BA.Addr->getCode()) Defs.insert(R); else { bool IsPreserving = DA.Addr->getFlags() & NodeAttrs::Preserving; if (IA.Addr->getKind() != NodeAttrs::Phi && !IsPreserving) { bool Covering = RAI.covers(DDR, I.first); NodeId U = DA.Addr->getReachedUse(); while (U && Covering) { auto DUA = DFG.addr(U); RegisterRef Q = DUA.Addr->getRegRef(); Covering = RAI.covers(DA.Addr->getRegRef(), Q); U = DUA.Addr->getSibling(); } if (!Covering) Rest.insert(R); } } } // Non-covering defs from B. for (auto R : Rest) { auto DA = DFG.addr(R); RegisterRef DRR = DA.Addr->getRegRef(); RegisterSet RRs; for (NodeAddr TA : getAllReachingDefs(DA)) { NodeAddr IA = TA.Addr->getOwner(DFG); NodeAddr BA = IA.Addr->getOwner(DFG); // Preserving defs do not count towards covering. if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) RRs.insert(TA.Addr->getRegRef()); if (BA.Addr->getCode() == B) continue; if (RAI.covers(RRs, DRR)) break; Defs.insert(TA.Id); } } } emptify(LiveIn); if (Trace) { dbgs() << "after defs in block\n"; dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; } // Scan the block for upward-exposed uses and add them to the tracking set. for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) { NodeAddr IA = I; if (IA.Addr->getKind() != NodeAttrs::Stmt) continue; for (NodeAddr UA : IA.Addr->members_if(DFG.IsUse, DFG)) { RegisterRef RR = UA.Addr->getRegRef(); for (auto D : getAllReachingDefs(UA)) if (getBlockWithRef(D.Id) != B) LiveIn[RR].insert(D.Id); } } if (Trace) { dbgs() << "after uses in block\n"; dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; } // Phi uses should not be propagated up the dominator tree, since they // are not dominated by their corresponding reaching defs. auto &Local = LiveMap[B]; auto &LON = PhiLON[B]; for (auto R : LON) Local.insert(R.first); if (Trace) { dbgs() << "after phi uses in block\n"; dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; dbgs() << " Local: " << Print(Local, DFG) << '\n'; } for (auto C : IIDF[B]) { auto &LiveC = LiveMap[C]; for (auto S : LiveIn) for (auto R : S.second) if (MDT.properlyDominates(getBlockWithRef(R), C)) LiveC.insert(S.first); } } void Liveness::emptify(RefMap &M) { for (auto I = M.begin(), E = M.end(); I != E; ) I = I->second.empty() ? M.erase(I) : std::next(I); }