//===- GVN.cpp - Eliminate redundant values and loads ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs global value numbering to eliminate fully redundant // instructions. It also performs simple dead load elimination. // // Note that this pass does the value numbering itself; it does not use the // ValueNumbering analysis passes. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Analysis/PHITransAddr.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include using namespace llvm; using namespace llvm::gvn; using namespace PatternMatch; #define DEBUG_TYPE "gvn" STATISTIC(NumGVNInstr, "Number of instructions deleted"); STATISTIC(NumGVNLoad, "Number of loads deleted"); STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); STATISTIC(NumGVNBlocks, "Number of blocks merged"); STATISTIC(NumGVNSimpl, "Number of instructions simplified"); STATISTIC(NumGVNEqProp, "Number of equalities propagated"); STATISTIC(NumPRELoad, "Number of loads PRE'd"); static cl::opt EnablePRE("enable-pre", cl::init(true), cl::Hidden); static cl::opt EnableLoadPRE("enable-load-pre", cl::init(true)); // Maximum allowed recursion depth. static cl::opt MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore, cl::desc("Max recurse depth (default = 1000)")); struct llvm::GVN::Expression { uint32_t opcode; Type *type; SmallVector varargs; Expression(uint32_t o = ~2U) : opcode(o) {} bool operator==(const Expression &other) const { if (opcode != other.opcode) return false; if (opcode == ~0U || opcode == ~1U) return true; if (type != other.type) return false; if (varargs != other.varargs) return false; return true; } friend hash_code hash_value(const Expression &Value) { return hash_combine( Value.opcode, Value.type, hash_combine_range(Value.varargs.begin(), Value.varargs.end())); } }; namespace llvm { template <> struct DenseMapInfo { static inline GVN::Expression getEmptyKey() { return ~0U; } static inline GVN::Expression getTombstoneKey() { return ~1U; } static unsigned getHashValue(const GVN::Expression &e) { using llvm::hash_value; return static_cast(hash_value(e)); } static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { return LHS == RHS; } }; } // End llvm namespace. /// Represents a particular available value that we know how to materialize. /// Materialization of an AvailableValue never fails. An AvailableValue is /// implicitly associated with a rematerialization point which is the /// location of the instruction from which it was formed. struct llvm::gvn::AvailableValue { enum ValType { SimpleVal, // A simple offsetted value that is accessed. LoadVal, // A value produced by a load. MemIntrin, // A memory intrinsic which is loaded from. UndefVal // A UndefValue representing a value from dead block (which // is not yet physically removed from the CFG). }; /// V - The value that is live out of the block. PointerIntPair Val; /// Offset - The byte offset in Val that is interesting for the load query. unsigned Offset; static AvailableValue get(Value *V, unsigned Offset = 0) { AvailableValue Res; Res.Val.setPointer(V); Res.Val.setInt(SimpleVal); Res.Offset = Offset; return Res; } static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { AvailableValue Res; Res.Val.setPointer(MI); Res.Val.setInt(MemIntrin); Res.Offset = Offset; return Res; } static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) { AvailableValue Res; Res.Val.setPointer(LI); Res.Val.setInt(LoadVal); Res.Offset = Offset; return Res; } static AvailableValue getUndef() { AvailableValue Res; Res.Val.setPointer(nullptr); Res.Val.setInt(UndefVal); Res.Offset = 0; return Res; } bool isSimpleValue() const { return Val.getInt() == SimpleVal; } bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } bool isUndefValue() const { return Val.getInt() == UndefVal; } Value *getSimpleValue() const { assert(isSimpleValue() && "Wrong accessor"); return Val.getPointer(); } LoadInst *getCoercedLoadValue() const { assert(isCoercedLoadValue() && "Wrong accessor"); return cast(Val.getPointer()); } MemIntrinsic *getMemIntrinValue() const { assert(isMemIntrinValue() && "Wrong accessor"); return cast(Val.getPointer()); } /// Emit code at the specified insertion point to adjust the value defined /// here to the specified type. This handles various coercion cases. Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt, GVN &gvn) const; }; /// Represents an AvailableValue which can be rematerialized at the end of /// the associated BasicBlock. struct llvm::gvn::AvailableValueInBlock { /// BB - The basic block in question. BasicBlock *BB; /// AV - The actual available value AvailableValue AV; static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { AvailableValueInBlock Res; Res.BB = BB; Res.AV = std::move(AV); return Res; } static AvailableValueInBlock get(BasicBlock *BB, Value *V, unsigned Offset = 0) { return get(BB, AvailableValue::get(V, Offset)); } static AvailableValueInBlock getUndef(BasicBlock *BB) { return get(BB, AvailableValue::getUndef()); } /// Emit code at the end of this block to adjust the value defined here to /// the specified type. This handles various coercion cases. Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const { return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn); } }; //===----------------------------------------------------------------------===// // ValueTable Internal Functions //===----------------------------------------------------------------------===// GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { Expression e; e.type = I->getType(); e.opcode = I->getOpcode(); for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) e.varargs.push_back(lookupOrAdd(*OI)); if (I->isCommutative()) { // Ensure that commutative instructions that only differ by a permutation // of their operands get the same value number by sorting the operand value // numbers. Since all commutative instructions have two operands it is more // efficient to sort by hand rather than using, say, std::sort. assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); if (e.varargs[0] > e.varargs[1]) std::swap(e.varargs[0], e.varargs[1]); } if (CmpInst *C = dyn_cast(I)) { // Sort the operand value numbers so xx get the same value number. CmpInst::Predicate Predicate = C->getPredicate(); if (e.varargs[0] > e.varargs[1]) { std::swap(e.varargs[0], e.varargs[1]); Predicate = CmpInst::getSwappedPredicate(Predicate); } e.opcode = (C->getOpcode() << 8) | Predicate; } else if (InsertValueInst *E = dyn_cast(I)) { for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); II != IE; ++II) e.varargs.push_back(*II); } return e; } GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) { assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && "Not a comparison!"); Expression e; e.type = CmpInst::makeCmpResultType(LHS->getType()); e.varargs.push_back(lookupOrAdd(LHS)); e.varargs.push_back(lookupOrAdd(RHS)); // Sort the operand value numbers so xx get the same value number. if (e.varargs[0] > e.varargs[1]) { std::swap(e.varargs[0], e.varargs[1]); Predicate = CmpInst::getSwappedPredicate(Predicate); } e.opcode = (Opcode << 8) | Predicate; return e; } GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { assert(EI && "Not an ExtractValueInst?"); Expression e; e.type = EI->getType(); e.opcode = 0; IntrinsicInst *I = dyn_cast(EI->getAggregateOperand()); if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) { // EI might be an extract from one of our recognised intrinsics. If it // is we'll synthesize a semantically equivalent expression instead on // an extract value expression. switch (I->getIntrinsicID()) { case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: e.opcode = Instruction::Add; break; case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: e.opcode = Instruction::Sub; break; case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: e.opcode = Instruction::Mul; break; default: break; } if (e.opcode != 0) { // Intrinsic recognized. Grab its args to finish building the expression. assert(I->getNumArgOperands() == 2 && "Expect two args for recognised intrinsics."); e.varargs.push_back(lookupOrAdd(I->getArgOperand(0))); e.varargs.push_back(lookupOrAdd(I->getArgOperand(1))); return e; } } // Not a recognised intrinsic. Fall back to producing an extract value // expression. e.opcode = EI->getOpcode(); for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); OI != OE; ++OI) e.varargs.push_back(lookupOrAdd(*OI)); for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end(); II != IE; ++II) e.varargs.push_back(*II); return e; } //===----------------------------------------------------------------------===// // ValueTable External Functions //===----------------------------------------------------------------------===// GVN::ValueTable::ValueTable() : nextValueNumber(1) {} GVN::ValueTable::ValueTable(const ValueTable &Arg) : valueNumbering(Arg.valueNumbering), expressionNumbering(Arg.expressionNumbering), AA(Arg.AA), MD(Arg.MD), DT(Arg.DT), nextValueNumber(Arg.nextValueNumber) {} GVN::ValueTable::ValueTable(ValueTable &&Arg) : valueNumbering(std::move(Arg.valueNumbering)), expressionNumbering(std::move(Arg.expressionNumbering)), AA(std::move(Arg.AA)), MD(std::move(Arg.MD)), DT(std::move(Arg.DT)), nextValueNumber(std::move(Arg.nextValueNumber)) {} GVN::ValueTable::~ValueTable() {} /// add - Insert a value into the table with a specified value number. void GVN::ValueTable::add(Value *V, uint32_t num) { valueNumbering.insert(std::make_pair(V, num)); } uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { if (AA->doesNotAccessMemory(C)) { Expression exp = createExpr(C); uint32_t &e = expressionNumbering[exp]; if (!e) e = nextValueNumber++; valueNumbering[C] = e; return e; } else if (AA->onlyReadsMemory(C)) { Expression exp = createExpr(C); uint32_t &e = expressionNumbering[exp]; if (!e) { e = nextValueNumber++; valueNumbering[C] = e; return e; } if (!MD) { e = nextValueNumber++; valueNumbering[C] = e; return e; } MemDepResult local_dep = MD->getDependency(C); if (!local_dep.isDef() && !local_dep.isNonLocal()) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } if (local_dep.isDef()) { CallInst* local_cdep = cast(local_dep.getInst()); if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); if (c_vn != cd_vn) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } } uint32_t v = lookupOrAdd(local_cdep); valueNumbering[C] = v; return v; } // Non-local case. const MemoryDependenceResults::NonLocalDepInfo &deps = MD->getNonLocalCallDependency(CallSite(C)); // FIXME: Move the checking logic to MemDep! CallInst* cdep = nullptr; // Check to see if we have a single dominating call instruction that is // identical to C. for (unsigned i = 0, e = deps.size(); i != e; ++i) { const NonLocalDepEntry *I = &deps[i]; if (I->getResult().isNonLocal()) continue; // We don't handle non-definitions. If we already have a call, reject // instruction dependencies. if (!I->getResult().isDef() || cdep != nullptr) { cdep = nullptr; break; } CallInst *NonLocalDepCall = dyn_cast(I->getResult().getInst()); // FIXME: All duplicated with non-local case. if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ cdep = NonLocalDepCall; continue; } cdep = nullptr; break; } if (!cdep) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } if (cdep->getNumArgOperands() != C->getNumArgOperands()) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); if (c_vn != cd_vn) { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } } uint32_t v = lookupOrAdd(cdep); valueNumbering[C] = v; return v; } else { valueNumbering[C] = nextValueNumber; return nextValueNumber++; } } /// Returns true if a value number exists for the specified value. bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } /// lookup_or_add - Returns the value number for the specified value, assigning /// it a new number if it did not have one before. uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { DenseMap::iterator VI = valueNumbering.find(V); if (VI != valueNumbering.end()) return VI->second; if (!isa(V)) { valueNumbering[V] = nextValueNumber; return nextValueNumber++; } Instruction* I = cast(V); Expression exp; switch (I->getOpcode()) { case Instruction::Call: return lookupOrAddCall(cast(I)); case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::ICmp: case Instruction::FCmp: case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: case Instruction::Select: case Instruction::ExtractElement: case Instruction::InsertElement: case Instruction::ShuffleVector: case Instruction::InsertValue: case Instruction::GetElementPtr: exp = createExpr(I); break; case Instruction::ExtractValue: exp = createExtractvalueExpr(cast(I)); break; default: valueNumbering[V] = nextValueNumber; return nextValueNumber++; } uint32_t& e = expressionNumbering[exp]; if (!e) e = nextValueNumber++; valueNumbering[V] = e; return e; } /// Returns the value number of the specified value. Fails if /// the value has not yet been numbered. uint32_t GVN::ValueTable::lookup(Value *V) const { DenseMap::const_iterator VI = valueNumbering.find(V); assert(VI != valueNumbering.end() && "Value not numbered?"); return VI->second; } /// Returns the value number of the given comparison, /// assigning it a new number if it did not have one before. Useful when /// we deduced the result of a comparison, but don't immediately have an /// instruction realizing that comparison to hand. uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, CmpInst::Predicate Predicate, Value *LHS, Value *RHS) { Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); uint32_t& e = expressionNumbering[exp]; if (!e) e = nextValueNumber++; return e; } /// Remove all entries from the ValueTable. void GVN::ValueTable::clear() { valueNumbering.clear(); expressionNumbering.clear(); nextValueNumber = 1; } /// Remove a value from the value numbering. void GVN::ValueTable::erase(Value *V) { valueNumbering.erase(V); } /// verifyRemoved - Verify that the value is removed from all internal data /// structures. void GVN::ValueTable::verifyRemoved(const Value *V) const { for (DenseMap::const_iterator I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { assert(I->first != V && "Inst still occurs in value numbering map!"); } } //===----------------------------------------------------------------------===// // GVN Pass //===----------------------------------------------------------------------===// PreservedAnalyses GVN::run(Function &F, AnalysisManager &AM) { // FIXME: The order of evaluation of these 'getResult' calls is very // significant! Re-ordering these variables will cause GVN when run alone to // be less effective! We should fix memdep and basic-aa to not exhibit this // behavior, but until then don't change the order here. auto &AC = AM.getResult(F); auto &DT = AM.getResult(F); auto &TLI = AM.getResult(F); auto &AA = AM.getResult(F); auto &MemDep = AM.getResult(F); bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); return PA; } LLVM_DUMP_METHOD void GVN::dump(DenseMap& d) { errs() << "{\n"; for (DenseMap::iterator I = d.begin(), E = d.end(); I != E; ++I) { errs() << I->first << "\n"; I->second->dump(); } errs() << "}\n"; } /// Return true if we can prove that the value /// we're analyzing is fully available in the specified block. As we go, keep /// track of which blocks we know are fully alive in FullyAvailableBlocks. This /// map is actually a tri-state map with the following values: /// 0) we know the block *is not* fully available. /// 1) we know the block *is* fully available. /// 2) we do not know whether the block is fully available or not, but we are /// currently speculating that it will be. /// 3) we are speculating for this block and have used that to speculate for /// other blocks. static bool IsValueFullyAvailableInBlock(BasicBlock *BB, DenseMap &FullyAvailableBlocks, uint32_t RecurseDepth) { if (RecurseDepth > MaxRecurseDepth) return false; // Optimistically assume that the block is fully available and check to see // if we already know about this block in one lookup. std::pair::iterator, char> IV = FullyAvailableBlocks.insert(std::make_pair(BB, 2)); // If the entry already existed for this block, return the precomputed value. if (!IV.second) { // If this is a speculative "available" value, mark it as being used for // speculation of other blocks. if (IV.first->second == 2) IV.first->second = 3; return IV.first->second != 0; } // Otherwise, see if it is fully available in all predecessors. pred_iterator PI = pred_begin(BB), PE = pred_end(BB); // If this block has no predecessors, it isn't live-in here. if (PI == PE) goto SpeculationFailure; for (; PI != PE; ++PI) // If the value isn't fully available in one of our predecessors, then it // isn't fully available in this block either. Undo our previous // optimistic assumption and bail out. if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1)) goto SpeculationFailure; return true; // If we get here, we found out that this is not, after // all, a fully-available block. We have a problem if we speculated on this and // used the speculation to mark other blocks as available. SpeculationFailure: char &BBVal = FullyAvailableBlocks[BB]; // If we didn't speculate on this, just return with it set to false. if (BBVal == 2) { BBVal = 0; return false; } // If we did speculate on this value, we could have blocks set to 1 that are // incorrect. Walk the (transitive) successors of this block and mark them as // 0 if set to one. SmallVector BBWorklist; BBWorklist.push_back(BB); do { BasicBlock *Entry = BBWorklist.pop_back_val(); // Note that this sets blocks to 0 (unavailable) if they happen to not // already be in FullyAvailableBlocks. This is safe. char &EntryVal = FullyAvailableBlocks[Entry]; if (EntryVal == 0) continue; // Already unavailable. // Mark as unavailable. EntryVal = 0; BBWorklist.append(succ_begin(Entry), succ_end(Entry)); } while (!BBWorklist.empty()); return false; } /// Return true if CoerceAvailableValueToLoadType will succeed. static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, const DataLayout &DL) { // If the loaded or stored value is an first class array or struct, don't try // to transform them. We need to be able to bitcast to integer. if (LoadTy->isStructTy() || LoadTy->isArrayTy() || StoredVal->getType()->isStructTy() || StoredVal->getType()->isArrayTy()) return false; // The store has to be at least as big as the load. if (DL.getTypeSizeInBits(StoredVal->getType()) < DL.getTypeSizeInBits(LoadTy)) return false; return true; } /// If we saw a store of a value to memory, and /// then a load from a must-aliased pointer of a different type, try to coerce /// the stored value. LoadedTy is the type of the load we want to replace. /// IRB is IRBuilder used to insert new instructions. /// /// If we can't do it, return null. static Value *CoerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, IRBuilder<> &IRB, const DataLayout &DL) { assert(CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && "precondition violation - materialization can't fail"); // If this is already the right type, just return it. Type *StoredValTy = StoredVal->getType(); uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy); uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy); // If the store and reload are the same size, we can always reuse it. if (StoredValSize == LoadedValSize) { // Pointer to Pointer -> use bitcast. if (StoredValTy->getScalarType()->isPointerTy() && LoadedTy->getScalarType()->isPointerTy()) return IRB.CreateBitCast(StoredVal, LoadedTy); // Convert source pointers to integers, which can be bitcast. if (StoredValTy->getScalarType()->isPointerTy()) { StoredValTy = DL.getIntPtrType(StoredValTy); StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy); } Type *TypeToCastTo = LoadedTy; if (TypeToCastTo->getScalarType()->isPointerTy()) TypeToCastTo = DL.getIntPtrType(TypeToCastTo); if (StoredValTy != TypeToCastTo) StoredVal = IRB.CreateBitCast(StoredVal, TypeToCastTo); // Cast to pointer if the load needs a pointer type. if (LoadedTy->getScalarType()->isPointerTy()) StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy); return StoredVal; } // If the loaded value is smaller than the available value, then we can // extract out a piece from it. If the available value is too small, then we // can't do anything. assert(StoredValSize >= LoadedValSize && "CanCoerceMustAliasedValueToLoad fail"); // Convert source pointers to integers, which can be manipulated. if (StoredValTy->getScalarType()->isPointerTy()) { StoredValTy = DL.getIntPtrType(StoredValTy); StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy); } // Convert vectors and fp to integer, which can be manipulated. if (!StoredValTy->isIntegerTy()) { StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); StoredVal = IRB.CreateBitCast(StoredVal, StoredValTy); } // If this is a big-endian system, we need to shift the value down to the low // bits so that a truncate will work. if (DL.isBigEndian()) { uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) - DL.getTypeStoreSizeInBits(LoadedTy); StoredVal = IRB.CreateLShr(StoredVal, ShiftAmt, "tmp"); } // Truncate the integer to the right size now. Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); StoredVal = IRB.CreateTrunc(StoredVal, NewIntTy, "trunc"); if (LoadedTy == NewIntTy) return StoredVal; // If the result is a pointer, inttoptr. if (LoadedTy->getScalarType()->isPointerTy()) return IRB.CreateIntToPtr(StoredVal, LoadedTy, "inttoptr"); // Otherwise, bitcast. return IRB.CreateBitCast(StoredVal, LoadedTy, "bitcast"); } /// This function is called when we have a /// memdep query of a load that ends up being a clobbering memory write (store, /// memset, memcpy, memmove). This means that the write *may* provide bits used /// by the load but we can't be sure because the pointers don't mustalias. /// /// Check this case to see if there is anything more we can do before we give /// up. This returns -1 if we have to give up, or a byte number in the stored /// value of the piece that feeds the load. static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, Value *WritePtr, uint64_t WriteSizeInBits, const DataLayout &DL) { // If the loaded or stored value is a first class array or struct, don't try // to transform them. We need to be able to bitcast to integer. if (LoadTy->isStructTy() || LoadTy->isArrayTy()) return -1; int64_t StoreOffset = 0, LoadOffset = 0; Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); if (StoreBase != LoadBase) return -1; // If the load and store are to the exact same address, they should have been // a must alias. AA must have gotten confused. // FIXME: Study to see if/when this happens. One case is forwarding a memset // to a load from the base of the memset. #if 0 if (LoadOffset == StoreOffset) { dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n" << "Base = " << *StoreBase << "\n" << "Store Ptr = " << *WritePtr << "\n" << "Store Offs = " << StoreOffset << "\n" << "Load Ptr = " << *LoadPtr << "\n"; abort(); } #endif // If the load and store don't overlap at all, the store doesn't provide // anything to the load. In this case, they really don't alias at all, AA // must have gotten confused. uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy); if ((WriteSizeInBits & 7) | (LoadSize & 7)) return -1; uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes. LoadSize >>= 3; bool isAAFailure = false; if (StoreOffset < LoadOffset) isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset; else isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset; if (isAAFailure) { #if 0 dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n" << "Base = " << *StoreBase << "\n" << "Store Ptr = " << *WritePtr << "\n" << "Store Offs = " << StoreOffset << "\n" << "Load Ptr = " << *LoadPtr << "\n"; abort(); #endif return -1; } // If the Load isn't completely contained within the stored bits, we don't // have all the bits to feed it. We could do something crazy in the future // (issue a smaller load then merge the bits in) but this seems unlikely to be // valuable. if (StoreOffset > LoadOffset || StoreOffset+StoreSize < LoadOffset+LoadSize) return -1; // Okay, we can do this transformation. Return the number of bytes into the // store that the load is. return LoadOffset-StoreOffset; } /// This function is called when we have a /// memdep query of a load that ends up being a clobbering store. static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, StoreInst *DepSI) { // Cannot handle reading from store of first-class aggregate yet. if (DepSI->getValueOperand()->getType()->isStructTy() || DepSI->getValueOperand()->getType()->isArrayTy()) return -1; const DataLayout &DL = DepSI->getModule()->getDataLayout(); Value *StorePtr = DepSI->getPointerOperand(); uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()); return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, DL); } /// This function is called when we have a /// memdep query of a load that ends up being clobbered by another load. See if /// the other load can feed into the second load. static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, const DataLayout &DL){ // Cannot handle reading from store of first-class aggregate yet. if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) return -1; Value *DepPtr = DepLI->getPointerOperand(); uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()); int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); if (R != -1) return R; // If we have a load/load clobber an DepLI can be widened to cover this load, // then we should widen it! int64_t LoadOffs = 0; const Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); unsigned LoadSize = DL.getTypeStoreSize(LoadTy); unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize( LoadBase, LoadOffs, LoadSize, DepLI); if (Size == 0) return -1; // Check non-obvious conditions enforced by MDA which we rely on for being // able to materialize this potentially available value assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL); } static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, MemIntrinsic *MI, const DataLayout &DL) { // If the mem operation is a non-constant size, we can't handle it. ConstantInt *SizeCst = dyn_cast(MI->getLength()); if (!SizeCst) return -1; uint64_t MemSizeInBits = SizeCst->getZExtValue()*8; // If this is memset, we just need to see if the offset is valid in the size // of the memset.. if (MI->getIntrinsicID() == Intrinsic::memset) return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), MemSizeInBits, DL); // If we have a memcpy/memmove, the only case we can handle is if this is a // copy from constant memory. In that case, we can read directly from the // constant memory. MemTransferInst *MTI = cast(MI); Constant *Src = dyn_cast(MTI->getSource()); if (!Src) return -1; GlobalVariable *GV = dyn_cast(GetUnderlyingObject(Src, DL)); if (!GV || !GV->isConstant()) return -1; // See if the access is within the bounds of the transfer. int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), MemSizeInBits, DL); if (Offset == -1) return Offset; unsigned AS = Src->getType()->getPointerAddressSpace(); // Otherwise, see if we can constant fold a load from the constant with the // offset applied as appropriate. Src = ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); Constant *OffsetCst = ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, OffsetCst); Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL)) return Offset; return -1; } /// This function is called when we have a /// memdep query of a load that ends up being a clobbering store. This means /// that the store provides bits used by the load but we the pointers don't /// mustalias. Check this case to see if there is anything more we can do /// before we give up. static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL){ LLVMContext &Ctx = SrcVal->getType()->getContext(); uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8; uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8; IRBuilder<> Builder(InsertPt); // Compute which bits of the stored value are being used by the load. Convert // to an integer type to start with. if (SrcVal->getType()->getScalarType()->isPointerTy()) SrcVal = Builder.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType())); if (!SrcVal->getType()->isIntegerTy()) SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8)); // Shift the bits to the least significant depending on endianness. unsigned ShiftAmt; if (DL.isLittleEndian()) ShiftAmt = Offset*8; else ShiftAmt = (StoreSize-LoadSize-Offset)*8; if (ShiftAmt) SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt); if (LoadSize != StoreSize) SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8)); return CoerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL); } /// This function is called when we have a /// memdep query of a load that ends up being a clobbering load. This means /// that the load *may* provide bits used by the load but we can't be sure /// because the pointers don't mustalias. Check this case to see if there is /// anything more we can do before we give up. static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, Instruction *InsertPt, GVN &gvn) { const DataLayout &DL = SrcVal->getModule()->getDataLayout(); // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to // widen SrcVal out to a larger load. unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType()); unsigned LoadSize = DL.getTypeStoreSize(LoadTy); if (Offset+LoadSize > SrcValStoreSize) { assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); // If we have a load/load clobber an DepLI can be widened to cover this // load, then we should widen it to the next power of 2 size big enough! unsigned NewLoadSize = Offset+LoadSize; if (!isPowerOf2_32(NewLoadSize)) NewLoadSize = NextPowerOf2(NewLoadSize); Value *PtrVal = SrcVal->getPointerOperand(); // Insert the new load after the old load. This ensures that subsequent // memdep queries will find the new load. We can't easily remove the old // load completely because it is already in the value numbering table. IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); Type *DestPTy = IntegerType::get(LoadTy->getContext(), NewLoadSize*8); DestPTy = PointerType::get(DestPTy, PtrVal->getType()->getPointerAddressSpace()); Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); LoadInst *NewLoad = Builder.CreateLoad(PtrVal); NewLoad->takeName(SrcVal); NewLoad->setAlignment(SrcVal->getAlignment()); DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); // Replace uses of the original load with the wider load. On a big endian // system, we need to shift down to get the relevant bits. Value *RV = NewLoad; if (DL.isBigEndian()) RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); RV = Builder.CreateTrunc(RV, SrcVal->getType()); SrcVal->replaceAllUsesWith(RV); // We would like to use gvn.markInstructionForDeletion here, but we can't // because the load is already memoized into the leader map table that GVN // tracks. It is potentially possible to remove the load from the table, // but then there all of the operations based on it would need to be // rehashed. Just leave the dead load around. gvn.getMemDep().removeInstruction(SrcVal); SrcVal = NewLoad; } return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); } /// This function is called when we have a /// memdep query of a load that ends up being a clobbering mem intrinsic. static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &DL){ LLVMContext &Ctx = LoadTy->getContext(); uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8; IRBuilder<> Builder(InsertPt); // We know that this method is only called when the mem transfer fully // provides the bits for the load. if (MemSetInst *MSI = dyn_cast(SrcInst)) { // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and // independently of what the offset is. Value *Val = MSI->getValue(); if (LoadSize != 1) Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8)); Value *OneElt = Val; // Splat the value out to the right number of bits. for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) { // If we can double the number of bytes set, do it. if (NumBytesSet*2 <= LoadSize) { Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8); Val = Builder.CreateOr(Val, ShVal); NumBytesSet <<= 1; continue; } // Otherwise insert one byte at a time. Value *ShVal = Builder.CreateShl(Val, 1*8); Val = Builder.CreateOr(OneElt, ShVal); ++NumBytesSet; } return CoerceAvailableValueToLoadType(Val, LoadTy, Builder, DL); } // Otherwise, this is a memcpy/memmove from a constant global. MemTransferInst *MTI = cast(SrcInst); Constant *Src = cast(MTI->getSource()); unsigned AS = Src->getType()->getPointerAddressSpace(); // Otherwise, see if we can constant fold a load from the constant with the // offset applied as appropriate. Src = ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); Constant *OffsetCst = ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, OffsetCst); Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL); } /// Given a set of loads specified by ValuesPerBlock, /// construct SSA form, allowing us to eliminate LI. This returns the value /// that should be used at LI's definition site. static Value *ConstructSSAForLoadSet(LoadInst *LI, SmallVectorImpl &ValuesPerBlock, GVN &gvn) { // Check for the fully redundant, dominating load case. In this case, we can // just use the dominating value directly. if (ValuesPerBlock.size() == 1 && gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, LI->getParent())) { assert(!ValuesPerBlock[0].AV.isUndefValue() && "Dead BB dominate this block"); return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn); } // Otherwise, we have to construct SSA form. SmallVector NewPHIs; SSAUpdater SSAUpdate(&NewPHIs); SSAUpdate.Initialize(LI->getType(), LI->getName()); for (const AvailableValueInBlock &AV : ValuesPerBlock) { BasicBlock *BB = AV.BB; if (SSAUpdate.HasValueForBlock(BB)) continue; SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn)); } // Perform PHI construction. return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); } Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt, GVN &gvn) const { Value *Res; Type *LoadTy = LI->getType(); const DataLayout &DL = LI->getModule()->getDataLayout(); if (isSimpleValue()) { Res = getSimpleValue(); if (Res->getType() != LoadTy) { Res = GetStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " " << *getSimpleValue() << '\n' << *Res << '\n' << "\n\n\n"); } } else if (isCoercedLoadValue()) { LoadInst *Load = getCoercedLoadValue(); if (Load->getType() == LoadTy && Offset == 0) { Res = Load; } else { Res = GetLoadValueForLoad(Load, Offset, LoadTy, InsertPt, gvn); DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " " << *getCoercedLoadValue() << '\n' << *Res << '\n' << "\n\n\n"); } } else if (isMemIntrinValue()) { Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, InsertPt, DL); DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset << " " << *getMemIntrinValue() << '\n' << *Res << '\n' << "\n\n\n"); } else { assert(isUndefValue() && "Should be UndefVal"); DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";); return UndefValue::get(LoadTy); } assert(Res && "failed to materialize?"); return Res; } static bool isLifetimeStart(const Instruction *Inst) { if (const IntrinsicInst* II = dyn_cast(Inst)) return II->getIntrinsicID() == Intrinsic::lifetime_start; return false; } bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo, Value *Address, AvailableValue &Res) { assert((DepInfo.isDef() || DepInfo.isClobber()) && "expected a local dependence"); assert(LI->isUnordered() && "rules below are incorrect for ordered access"); const DataLayout &DL = LI->getModule()->getDataLayout(); if (DepInfo.isClobber()) { // If the dependence is to a store that writes to a superset of the bits // read by the load, we can extract the bits we need for the load from the // stored value. if (StoreInst *DepSI = dyn_cast(DepInfo.getInst())) { // Can't forward from non-atomic to atomic without violating memory model. if (Address && LI->isAtomic() <= DepSI->isAtomic()) { int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI); if (Offset != -1) { Res = AvailableValue::get(DepSI->getValueOperand(), Offset); return true; } } } // Check to see if we have something like this: // load i32* P // load i8* (P+1) // if we have this, replace the later with an extraction from the former. if (LoadInst *DepLI = dyn_cast(DepInfo.getInst())) { // If this is a clobber and L is the first instruction in its block, then // we have the first instruction in the entry block. // Can't forward from non-atomic to atomic without violating memory model. if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) { int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL); if (Offset != -1) { Res = AvailableValue::getLoad(DepLI, Offset); return true; } } } // If the clobbering value is a memset/memcpy/memmove, see if we can // forward a value on from it. if (MemIntrinsic *DepMI = dyn_cast(DepInfo.getInst())) { if (Address && !LI->isAtomic()) { int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address, DepMI, DL); if (Offset != -1) { Res = AvailableValue::getMI(DepMI, Offset); return true; } } } // Nothing known about this clobber, have to be conservative DEBUG( // fast print dep, using operator<< on instruction is too slow. dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); Instruction *I = DepInfo.getInst(); dbgs() << " is clobbered by " << *I << '\n'; ); return false; } assert(DepInfo.isDef() && "follows from above"); Instruction *DepInst = DepInfo.getInst(); // Loading the allocation -> undef. if (isa(DepInst) || isMallocLikeFn(DepInst, TLI) || // Loading immediately after lifetime begin -> undef. isLifetimeStart(DepInst)) { Res = AvailableValue::get(UndefValue::get(LI->getType())); return true; } // Loading from calloc (which zero initializes memory) -> zero if (isCallocLikeFn(DepInst, TLI)) { Res = AvailableValue::get(Constant::getNullValue(LI->getType())); return true; } if (StoreInst *S = dyn_cast(DepInst)) { // Reject loads and stores that are to the same address but are of // different types if we have to. If the stored value is larger or equal to // the loaded value, we can reuse it. if (S->getValueOperand()->getType() != LI->getType() && !CanCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(), DL)) return false; // Can't forward from non-atomic to atomic without violating memory model. if (S->isAtomic() < LI->isAtomic()) return false; Res = AvailableValue::get(S->getValueOperand()); return true; } if (LoadInst *LD = dyn_cast(DepInst)) { // If the types mismatch and we can't handle it, reject reuse of the load. // If the stored value is larger or equal to the loaded value, we can reuse // it. if (LD->getType() != LI->getType() && !CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) return false; // Can't forward from non-atomic to atomic without violating memory model. if (LD->isAtomic() < LI->isAtomic()) return false; Res = AvailableValue::getLoad(LD); return true; } // Unknown def - must be conservative DEBUG( // fast print dep, using operator<< on instruction is too slow. dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); dbgs() << " has unknown def " << *DepInst << '\n'; ); return false; } void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, AvailValInBlkVect &ValuesPerBlock, UnavailBlkVect &UnavailableBlocks) { // Filter out useless results (non-locals, etc). Keep track of the blocks // where we have a value available in repl, also keep track of whether we see // dependencies that produce an unknown value for the load (such as a call // that could potentially clobber the load). unsigned NumDeps = Deps.size(); for (unsigned i = 0, e = NumDeps; i != e; ++i) { BasicBlock *DepBB = Deps[i].getBB(); MemDepResult DepInfo = Deps[i].getResult(); if (DeadBlocks.count(DepBB)) { // Dead dependent mem-op disguise as a load evaluating the same value // as the load in question. ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); continue; } if (!DepInfo.isDef() && !DepInfo.isClobber()) { UnavailableBlocks.push_back(DepBB); continue; } // The address being loaded in this non-local block may not be the same as // the pointer operand of the load if PHI translation occurs. Make sure // to consider the right address. Value *Address = Deps[i].getAddress(); AvailableValue AV; if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) { // subtlety: because we know this was a non-local dependency, we know // it's safe to materialize anywhere between the instruction within // DepInfo and the end of it's block. ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, std::move(AV))); } else { UnavailableBlocks.push_back(DepBB); } } assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && "post condition violation"); } bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, UnavailBlkVect &UnavailableBlocks) { // Okay, we have *some* definitions of the value. This means that the value // is available in some of our (transitive) predecessors. Lets think about // doing PRE of this load. This will involve inserting a new load into the // predecessor when it's not available. We could do this in general, but // prefer to not increase code size. As such, we only do this when we know // that we only have to insert *one* load (which means we're basically moving // the load, not inserting a new one). SmallPtrSet Blockers(UnavailableBlocks.begin(), UnavailableBlocks.end()); // Let's find the first basic block with more than one predecessor. Walk // backwards through predecessors if needed. BasicBlock *LoadBB = LI->getParent(); BasicBlock *TmpBB = LoadBB; while (TmpBB->getSinglePredecessor()) { TmpBB = TmpBB->getSinglePredecessor(); if (TmpBB == LoadBB) // Infinite (unreachable) loop. return false; if (Blockers.count(TmpBB)) return false; // If any of these blocks has more than one successor (i.e. if the edge we // just traversed was critical), then there are other paths through this // block along which the load may not be anticipated. Hoisting the load // above this block would be adding the load to execution paths along // which it was not previously executed. if (TmpBB->getTerminator()->getNumSuccessors() != 1) return false; } assert(TmpBB); LoadBB = TmpBB; // Check to see how many predecessors have the loaded value fully // available. MapVector PredLoads; DenseMap FullyAvailableBlocks; for (const AvailableValueInBlock &AV : ValuesPerBlock) FullyAvailableBlocks[AV.BB] = true; for (BasicBlock *UnavailableBB : UnavailableBlocks) FullyAvailableBlocks[UnavailableBB] = false; SmallVector CriticalEdgePred; for (BasicBlock *Pred : predecessors(LoadBB)) { // If any predecessor block is an EH pad that does not allow non-PHI // instructions before the terminator, we can't PRE the load. if (Pred->getTerminator()->isEHPad()) { DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" << Pred->getName() << "': " << *LI << '\n'); return false; } if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) { continue; } if (Pred->getTerminator()->getNumSuccessors() != 1) { if (isa(Pred->getTerminator())) { DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" << Pred->getName() << "': " << *LI << '\n'); return false; } if (LoadBB->isEHPad()) { DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" << Pred->getName() << "': " << *LI << '\n'); return false; } CriticalEdgePred.push_back(Pred); } else { // Only add the predecessors that will not be split for now. PredLoads[Pred] = nullptr; } } // Decide whether PRE is profitable for this load. unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); assert(NumUnavailablePreds != 0 && "Fully available value should already be eliminated!"); // If this load is unavailable in multiple predecessors, reject it. // FIXME: If we could restructure the CFG, we could make a common pred with // all the preds that don't have an available LI and insert a new load into // that one block. if (NumUnavailablePreds != 1) return false; // Split critical edges, and update the unavailable predecessors accordingly. for (BasicBlock *OrigPred : CriticalEdgePred) { BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); PredLoads[NewPred] = nullptr; DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" << LoadBB->getName() << '\n'); } // Check if the load can safely be moved to all the unavailable predecessors. bool CanDoPRE = true; const DataLayout &DL = LI->getModule()->getDataLayout(); SmallVector NewInsts; for (auto &PredLoad : PredLoads) { BasicBlock *UnavailablePred = PredLoad.first; // Do PHI translation to get its value in the predecessor if necessary. The // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. // If all preds have a single successor, then we know it is safe to insert // the load on the pred (?!?), so we can insert code to materialize the // pointer if it is not available. PHITransAddr Address(LI->getPointerOperand(), DL, AC); Value *LoadPtr = nullptr; LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT, NewInsts); // If we couldn't find or insert a computation of this phi translated value, // we fail PRE. if (!LoadPtr) { DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " << *LI->getPointerOperand() << "\n"); CanDoPRE = false; break; } PredLoad.second = LoadPtr; } if (!CanDoPRE) { while (!NewInsts.empty()) { Instruction *I = NewInsts.pop_back_val(); if (MD) MD->removeInstruction(I); I->eraseFromParent(); } // HINT: Don't revert the edge-splitting as following transformation may // also need to split these critical edges. return !CriticalEdgePred.empty(); } // Okay, we can eliminate this load by inserting a reload in the predecessor // and using PHI construction to get the value in the other predecessors, do // it. DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back() << '\n'); // Assign value numbers to the new instructions. for (Instruction *I : NewInsts) { // FIXME: We really _ought_ to insert these value numbers into their // parent's availability map. However, in doing so, we risk getting into // ordering issues. If a block hasn't been processed yet, we would be // marking a value as AVAIL-IN, which isn't what we intend. VN.lookupOrAdd(I); } for (const auto &PredLoad : PredLoads) { BasicBlock *UnavailablePred = PredLoad.first; Value *LoadPtr = PredLoad.second; auto *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", LI->isVolatile(), LI->getAlignment(), LI->getOrdering(), LI->getSynchScope(), UnavailablePred->getTerminator()); // Transfer the old load's AA tags to the new load. AAMDNodes Tags; LI->getAAMetadata(Tags); if (Tags) NewLoad->setAAMetadata(Tags); if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load)) NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group)) NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); // Transfer DebugLoc. NewLoad->setDebugLoc(LI->getDebugLoc()); // Add the newly created load. ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, NewLoad)); MD->invalidateCachedPointerInfo(LoadPtr); DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); } // Perform PHI construction. Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); LI->replaceAllUsesWith(V); if (isa(V)) V->takeName(LI); if (Instruction *I = dyn_cast(V)) I->setDebugLoc(LI->getDebugLoc()); if (V->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(V); markInstructionForDeletion(LI); ++NumPRELoad; return true; } /// Attempt to eliminate a load whose dependencies are /// non-local by performing PHI construction. bool GVN::processNonLocalLoad(LoadInst *LI) { // non-local speculations are not allowed under asan. if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeAddress)) return false; // Step 1: Find the non-local dependencies of the load. LoadDepVect Deps; MD->getNonLocalPointerDependency(LI, Deps); // If we had to process more than one hundred blocks to find the // dependencies, this load isn't worth worrying about. Optimizing // it will be too expensive. unsigned NumDeps = Deps.size(); if (NumDeps > 100) return false; // If we had a phi translation failure, we'll have a single entry which is a // clobber in the current block. Reject this early. if (NumDeps == 1 && !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { DEBUG( dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs()); dbgs() << " has unknown dependencies\n"; ); return false; } // If this load follows a GEP, see if we can PRE the indices before analyzing. if (GetElementPtrInst *GEP = dyn_cast(LI->getOperand(0))) { for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), OE = GEP->idx_end(); OI != OE; ++OI) if (Instruction *I = dyn_cast(OI->get())) performScalarPRE(I); } // Step 2: Analyze the availability of the load AvailValInBlkVect ValuesPerBlock; UnavailBlkVect UnavailableBlocks; AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks); // If we have no predecessors that produce a known value for this load, exit // early. if (ValuesPerBlock.empty()) return false; // Step 3: Eliminate fully redundancy. // // If all of the instructions we depend on produce a known value for this // load, then it is fully redundant and we can use PHI insertion to compute // its value. Insert PHIs and remove the fully redundant value now. if (UnavailableBlocks.empty()) { DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); // Perform PHI construction. Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); LI->replaceAllUsesWith(V); if (isa(V)) V->takeName(LI); if (Instruction *I = dyn_cast(V)) if (LI->getDebugLoc()) I->setDebugLoc(LI->getDebugLoc()); if (V->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(V); markInstructionForDeletion(LI); ++NumGVNLoad; return true; } // Step 4: Eliminate partial redundancy. if (!EnablePRE || !EnableLoadPRE) return false; return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks); } bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) { assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume && "This function can only be called with llvm.assume intrinsic"); Value *V = IntrinsicI->getArgOperand(0); if (ConstantInt *Cond = dyn_cast(V)) { if (Cond->isZero()) { Type *Int8Ty = Type::getInt8Ty(V->getContext()); // Insert a new store to null instruction before the load to indicate that // this code is not reachable. FIXME: We could insert unreachable // instruction directly because we can modify the CFG. new StoreInst(UndefValue::get(Int8Ty), Constant::getNullValue(Int8Ty->getPointerTo()), IntrinsicI); } markInstructionForDeletion(IntrinsicI); return false; } Constant *True = ConstantInt::getTrue(V->getContext()); bool Changed = false; for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); // This property is only true in dominated successors, propagateEquality // will check dominance for us. Changed |= propagateEquality(V, True, Edge, false); } // We can replace assume value with true, which covers cases like this: // call void @llvm.assume(i1 %cmp) // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true ReplaceWithConstMap[V] = True; // If one of *cmp *eq operand is const, adding it to map will cover this: // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen // call void @llvm.assume(i1 %cmp) // ret float %0 ; will change it to ret float 3.000000e+00 if (auto *CmpI = dyn_cast(V)) { if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ || CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ || (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ && CmpI->getFastMathFlags().noNaNs())) { Value *CmpLHS = CmpI->getOperand(0); Value *CmpRHS = CmpI->getOperand(1); if (isa(CmpLHS)) std::swap(CmpLHS, CmpRHS); auto *RHSConst = dyn_cast(CmpRHS); // If only one operand is constant. if (RHSConst != nullptr && !isa(CmpLHS)) ReplaceWithConstMap[CmpLHS] = RHSConst; } } return Changed; } static void patchReplacementInstruction(Instruction *I, Value *Repl) { auto *ReplInst = dyn_cast(Repl); if (!ReplInst) return; // Patch the replacement so that it is not more restrictive than the value // being replaced. ReplInst->andIRFlags(I); // FIXME: If both the original and replacement value are part of the // same control-flow region (meaning that the execution of one // guarantees the execution of the other), then we can combine the // noalias scopes here and do better than the general conservative // answer used in combineMetadata(). // In general, GVN unifies expressions over different control-flow // regions, and so we need a conservative combination of the noalias // scopes. static const unsigned KnownIDs[] = { LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, LLVMContext::MD_noalias, LLVMContext::MD_range, LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, LLVMContext::MD_invariant_group}; combineMetadata(ReplInst, I, KnownIDs); } static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { patchReplacementInstruction(I, Repl); I->replaceAllUsesWith(Repl); } /// Attempt to eliminate a load, first by eliminating it /// locally, and then attempting non-local elimination if that fails. bool GVN::processLoad(LoadInst *L) { if (!MD) return false; // This code hasn't been audited for ordered or volatile memory access if (!L->isUnordered()) return false; if (L->use_empty()) { markInstructionForDeletion(L); return true; } // ... to a pointer that has been loaded from before... MemDepResult Dep = MD->getDependency(L); // If it is defined in another block, try harder. if (Dep.isNonLocal()) return processNonLocalLoad(L); // Only handle the local case below if (!Dep.isDef() && !Dep.isClobber()) { // This might be a NonFuncLocal or an Unknown DEBUG( // fast print dep, using operator<< on instruction is too slow. dbgs() << "GVN: load "; L->printAsOperand(dbgs()); dbgs() << " has unknown dependence\n"; ); return false; } AvailableValue AV; if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); // Replace the load! patchAndReplaceAllUsesWith(L, AvailableValue); markInstructionForDeletion(L); ++NumGVNLoad; // Tell MDA to rexamine the reused pointer since we might have more // information after forwarding it. if (MD && AvailableValue->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(AvailableValue); return true; } return false; } // In order to find a leader for a given value number at a // specific basic block, we first obtain the list of all Values for that number, // and then scan the list to find one whose block dominates the block in // question. This is fast because dominator tree queries consist of only // a few comparisons of DFS numbers. Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { LeaderTableEntry Vals = LeaderTable[num]; if (!Vals.Val) return nullptr; Value *Val = nullptr; if (DT->dominates(Vals.BB, BB)) { Val = Vals.Val; if (isa(Val)) return Val; } LeaderTableEntry* Next = Vals.Next; while (Next) { if (DT->dominates(Next->BB, BB)) { if (isa(Next->Val)) return Next->Val; if (!Val) Val = Next->Val; } Next = Next->Next; } return Val; } /// There is an edge from 'Src' to 'Dst'. Return /// true if every path from the entry block to 'Dst' passes via this edge. In /// particular 'Dst' must not be reachable via another edge from 'Src'. static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, DominatorTree *DT) { // While in theory it is interesting to consider the case in which Dst has // more than one predecessor, because Dst might be part of a loop which is // only reachable from Src, in practice it is pointless since at the time // GVN runs all such loops have preheaders, which means that Dst will have // been changed to have only one predecessor, namely Src. const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); assert((!Pred || Pred == E.getStart()) && "No edge between these basic blocks!"); return Pred != nullptr; } // Tries to replace instruction with const, using information from // ReplaceWithConstMap. bool GVN::replaceOperandsWithConsts(Instruction *Instr) const { bool Changed = false; for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { Value *Operand = Instr->getOperand(OpNum); auto it = ReplaceWithConstMap.find(Operand); if (it != ReplaceWithConstMap.end()) { assert(!isa(Operand) && "Replacing constants with constants is invalid"); DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " << *it->second << " in instruction " << *Instr << '\n'); Instr->setOperand(OpNum, it->second); Changed = true; } } return Changed; } /// The given values are known to be equal in every block /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with /// 'RHS' everywhere in the scope. Returns whether a change was made. /// If DominatesByEdge is false, then it means that we will propagate the RHS /// value starting from the end of Root.Start. bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, bool DominatesByEdge) { SmallVector, 4> Worklist; Worklist.push_back(std::make_pair(LHS, RHS)); bool Changed = false; // For speed, compute a conservative fast approximation to // DT->dominates(Root, Root.getEnd()); const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); while (!Worklist.empty()) { std::pair Item = Worklist.pop_back_val(); LHS = Item.first; RHS = Item.second; if (LHS == RHS) continue; assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); // Don't try to propagate equalities between constants. if (isa(LHS) && isa(RHS)) continue; // Prefer a constant on the right-hand side, or an Argument if no constants. if (isa(LHS) || (isa(LHS) && !isa(RHS))) std::swap(LHS, RHS); assert((isa(LHS) || isa(LHS)) && "Unexpected value!"); // If there is no obvious reason to prefer the left-hand side over the // right-hand side, ensure the longest lived term is on the right-hand side, // so the shortest lived term will be replaced by the longest lived. // This tends to expose more simplifications. uint32_t LVN = VN.lookupOrAdd(LHS); if ((isa(LHS) && isa(RHS)) || (isa(LHS) && isa(RHS))) { // Move the 'oldest' value to the right-hand side, using the value number // as a proxy for age. uint32_t RVN = VN.lookupOrAdd(RHS); if (LVN < RVN) { std::swap(LHS, RHS); LVN = RVN; } } // If value numbering later sees that an instruction in the scope is equal // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve // the invariant that instructions only occur in the leader table for their // own value number (this is used by removeFromLeaderTable), do not do this // if RHS is an instruction (if an instruction in the scope is morphed into // LHS then it will be turned into RHS by the next GVN iteration anyway, so // using the leader table is about compiling faster, not optimizing better). // The leader table only tracks basic blocks, not edges. Only add to if we // have the simple case where the edge dominates the end. if (RootDominatesEnd && !isa(RHS)) addToLeaderTable(LVN, RHS, Root.getEnd()); // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As // LHS always has at least one use that is not dominated by Root, this will // never do anything if LHS has only one use. if (!LHS->hasOneUse()) { unsigned NumReplacements = DominatesByEdge ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); Changed |= NumReplacements > 0; NumGVNEqProp += NumReplacements; } // Now try to deduce additional equalities from this one. For example, if // the known equality was "(A != B)" == "false" then it follows that A and B // are equal in the scope. Only boolean equalities with an explicit true or // false RHS are currently supported. if (!RHS->getType()->isIntegerTy(1)) // Not a boolean equality - bail out. continue; ConstantInt *CI = dyn_cast(RHS); if (!CI) // RHS neither 'true' nor 'false' - bail out. continue; // Whether RHS equals 'true'. Otherwise it equals 'false'. bool isKnownTrue = CI->isAllOnesValue(); bool isKnownFalse = !isKnownTrue; // If "A && B" is known true then both A and B are known true. If "A || B" // is known false then both A and B are known false. Value *A, *B; if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { Worklist.push_back(std::make_pair(A, RHS)); Worklist.push_back(std::make_pair(B, RHS)); continue; } // If we are propagating an equality like "(A == B)" == "true" then also // propagate the equality A == B. When propagating a comparison such as // "(A >= B)" == "true", replace all instances of "A < B" with "false". if (CmpInst *Cmp = dyn_cast(LHS)) { Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); // If "A == B" is known true, or "A != B" is known false, then replace // A with B everywhere in the scope. if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) Worklist.push_back(std::make_pair(Op0, Op1)); // Handle the floating point versions of equality comparisons too. if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) || (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) { // Floating point -0.0 and 0.0 compare equal, so we can only // propagate values if we know that we have a constant and that // its value is non-zero. // FIXME: We should do this optimization if 'no signed zeros' is // applicable via an instruction-level fast-math-flag or some other // indicator that relaxed FP semantics are being used. if (isa(Op1) && !cast(Op1)->isZero()) Worklist.push_back(std::make_pair(Op0, Op1)); } // If "A >= B" is known true, replace "A < B" with false everywhere. CmpInst::Predicate NotPred = Cmp->getInversePredicate(); Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); // Since we don't have the instruction "A < B" immediately to hand, work // out the value number that it would have and use that to find an // appropriate instruction (if any). uint32_t NextNum = VN.getNextUnusedValueNumber(); uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); // If the number we were assigned was brand new then there is no point in // looking for an instruction realizing it: there cannot be one! if (Num < NextNum) { Value *NotCmp = findLeader(Root.getEnd(), Num); if (NotCmp && isa(NotCmp)) { unsigned NumReplacements = DominatesByEdge ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) : replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root.getStart()); Changed |= NumReplacements > 0; NumGVNEqProp += NumReplacements; } } // Ensure that any instruction in scope that gets the "A < B" value number // is replaced with false. // The leader table only tracks basic blocks, not edges. Only add to if we // have the simple case where the edge dominates the end. if (RootDominatesEnd) addToLeaderTable(Num, NotVal, Root.getEnd()); continue; } } return Changed; } /// When calculating availability, handle an instruction /// by inserting it into the appropriate sets bool GVN::processInstruction(Instruction *I) { // Ignore dbg info intrinsics. if (isa(I)) return false; // If the instruction can be easily simplified then do so now in preference // to value numbering it. Value numbering often exposes redundancies, for // example if it determines that %y is equal to %x then the instruction // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. const DataLayout &DL = I->getModule()->getDataLayout(); if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) { bool Changed = false; if (!I->use_empty()) { I->replaceAllUsesWith(V); Changed = true; } if (isInstructionTriviallyDead(I, TLI)) { markInstructionForDeletion(I); Changed = true; } if (Changed) { if (MD && V->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(V); ++NumGVNSimpl; return true; } } if (IntrinsicInst *IntrinsicI = dyn_cast(I)) if (IntrinsicI->getIntrinsicID() == Intrinsic::assume) return processAssumeIntrinsic(IntrinsicI); if (LoadInst *LI = dyn_cast(I)) { if (processLoad(LI)) return true; unsigned Num = VN.lookupOrAdd(LI); addToLeaderTable(Num, LI, LI->getParent()); return false; } // For conditional branches, we can perform simple conditional propagation on // the condition value itself. if (BranchInst *BI = dyn_cast(I)) { if (!BI->isConditional()) return false; if (isa(BI->getCondition())) return processFoldableCondBr(BI); Value *BranchCond = BI->getCondition(); BasicBlock *TrueSucc = BI->getSuccessor(0); BasicBlock *FalseSucc = BI->getSuccessor(1); // Avoid multiple edges early. if (TrueSucc == FalseSucc) return false; BasicBlock *Parent = BI->getParent(); bool Changed = false; Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); BasicBlockEdge TrueE(Parent, TrueSucc); Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); BasicBlockEdge FalseE(Parent, FalseSucc); Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); return Changed; } // For switches, propagate the case values into the case destinations. if (SwitchInst *SI = dyn_cast(I)) { Value *SwitchCond = SI->getCondition(); BasicBlock *Parent = SI->getParent(); bool Changed = false; // Remember how many outgoing edges there are to every successor. SmallDenseMap SwitchEdges; for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) ++SwitchEdges[SI->getSuccessor(i)]; for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) { BasicBlock *Dst = i.getCaseSuccessor(); // If there is only a single edge, propagate the case value into it. if (SwitchEdges.lookup(Dst) == 1) { BasicBlockEdge E(Parent, Dst); Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E, true); } } return Changed; } // Instructions with void type don't return a value, so there's // no point in trying to find redundancies in them. if (I->getType()->isVoidTy()) return false; uint32_t NextNum = VN.getNextUnusedValueNumber(); unsigned Num = VN.lookupOrAdd(I); // Allocations are always uniquely numbered, so we can save time and memory // by fast failing them. if (isa(I) || isa(I) || isa(I)) { addToLeaderTable(Num, I, I->getParent()); return false; } // If the number we were assigned was a brand new VN, then we don't // need to do a lookup to see if the number already exists // somewhere in the domtree: it can't! if (Num >= NextNum) { addToLeaderTable(Num, I, I->getParent()); return false; } // Perform fast-path value-number based elimination of values inherited from // dominators. Value *Repl = findLeader(I->getParent(), Num); if (!Repl) { // Failure, just remember this instance for future use. addToLeaderTable(Num, I, I->getParent()); return false; } else if (Repl == I) { // If I was the result of a shortcut PRE, it might already be in the table // and the best replacement for itself. Nothing to do. return false; } // Remove it! patchAndReplaceAllUsesWith(I, Repl); if (MD && Repl->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(Repl); markInstructionForDeletion(I); return true; } /// runOnFunction - This is the main transformation entry point for a function. bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, const TargetLibraryInfo &RunTLI, AAResults &RunAA, MemoryDependenceResults *RunMD) { AC = &RunAC; DT = &RunDT; VN.setDomTree(DT); TLI = &RunTLI; VN.setAliasAnalysis(&RunAA); MD = RunMD; VN.setMemDep(MD); bool Changed = false; bool ShouldContinue = true; // Merge unconditional branches, allowing PRE to catch more // optimization opportunities. for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { BasicBlock *BB = &*FI++; bool removedBlock = MergeBlockIntoPredecessor(BB, DT, /* LoopInfo */ nullptr, MD); if (removedBlock) ++NumGVNBlocks; Changed |= removedBlock; } unsigned Iteration = 0; while (ShouldContinue) { DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); ShouldContinue = iterateOnFunction(F); Changed |= ShouldContinue; ++Iteration; } if (EnablePRE) { // Fabricate val-num for dead-code in order to suppress assertion in // performPRE(). assignValNumForDeadCode(); bool PREChanged = true; while (PREChanged) { PREChanged = performPRE(F); Changed |= PREChanged; } } // FIXME: Should perform GVN again after PRE does something. PRE can move // computations into blocks where they become fully redundant. Note that // we can't do this until PRE's critical edge splitting updates memdep. // Actually, when this happens, we should just fully integrate PRE into GVN. cleanupGlobalSets(); // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each // iteration. DeadBlocks.clear(); return Changed; } bool GVN::processBlock(BasicBlock *BB) { // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function // (and incrementing BI before processing an instruction). assert(InstrsToErase.empty() && "We expect InstrsToErase to be empty across iterations"); if (DeadBlocks.count(BB)) return false; // Clearing map before every BB because it can be used only for single BB. ReplaceWithConstMap.clear(); bool ChangedFunction = false; for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { if (!ReplaceWithConstMap.empty()) ChangedFunction |= replaceOperandsWithConsts(&*BI); ChangedFunction |= processInstruction(&*BI); if (InstrsToErase.empty()) { ++BI; continue; } // If we need some instructions deleted, do it now. NumGVNInstr += InstrsToErase.size(); // Avoid iterator invalidation. bool AtStart = BI == BB->begin(); if (!AtStart) --BI; for (SmallVectorImpl::iterator I = InstrsToErase.begin(), E = InstrsToErase.end(); I != E; ++I) { DEBUG(dbgs() << "GVN removed: " << **I << '\n'); if (MD) MD->removeInstruction(*I); DEBUG(verifyRemoved(*I)); (*I)->eraseFromParent(); } InstrsToErase.clear(); if (AtStart) BI = BB->begin(); else ++BI; } return ChangedFunction; } // Instantiate an expression in a predecessor that lacked it. bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, unsigned int ValNo) { // Because we are going top-down through the block, all value numbers // will be available in the predecessor by the time we need them. Any // that weren't originally present will have been instantiated earlier // in this loop. bool success = true; for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { Value *Op = Instr->getOperand(i); if (isa(Op) || isa(Op) || isa(Op)) continue; // This could be a newly inserted instruction, in which case, we won't // find a value number, and should give up before we hurt ourselves. // FIXME: Rewrite the infrastructure to let it easier to value number // and process newly inserted instructions. if (!VN.exists(Op)) { success = false; break; } if (Value *V = findLeader(Pred, VN.lookup(Op))) { Instr->setOperand(i, V); } else { success = false; break; } } // Fail out if we encounter an operand that is not available in // the PRE predecessor. This is typically because of loads which // are not value numbered precisely. if (!success) return false; Instr->insertBefore(Pred->getTerminator()); Instr->setName(Instr->getName() + ".pre"); Instr->setDebugLoc(Instr->getDebugLoc()); VN.add(Instr, ValNo); // Update the availability map to include the new instruction. addToLeaderTable(ValNo, Instr, Pred); return true; } bool GVN::performScalarPRE(Instruction *CurInst) { if (isa(CurInst) || isa(CurInst) || isa(CurInst) || CurInst->getType()->isVoidTy() || CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || isa(CurInst)) return false; // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from // sinking the compare again, and it would force the code generator to // move the i1 from processor flags or predicate registers into a general // purpose register. if (isa(CurInst)) return false; // We don't currently value number ANY inline asm calls. if (CallInst *CallI = dyn_cast(CurInst)) if (CallI->isInlineAsm()) return false; uint32_t ValNo = VN.lookup(CurInst); // Look for the predecessors for PRE opportunities. We're // only trying to solve the basic diamond case, where // a value is computed in the successor and one predecessor, // but not the other. We also explicitly disallow cases // where the successor is its own predecessor, because they're // more complicated to get right. unsigned NumWith = 0; unsigned NumWithout = 0; BasicBlock *PREPred = nullptr; BasicBlock *CurrentBlock = CurInst->getParent(); SmallVector, 8> predMap; for (BasicBlock *P : predecessors(CurrentBlock)) { // We're not interested in PRE where the block is its // own predecessor, or in blocks with predecessors // that are not reachable. if (P == CurrentBlock) { NumWithout = 2; break; } else if (!DT->isReachableFromEntry(P)) { NumWithout = 2; break; } Value *predV = findLeader(P, ValNo); if (!predV) { predMap.push_back(std::make_pair(static_cast(nullptr), P)); PREPred = P; ++NumWithout; } else if (predV == CurInst) { /* CurInst dominates this predecessor. */ NumWithout = 2; break; } else { predMap.push_back(std::make_pair(predV, P)); ++NumWith; } } // Don't do PRE when it might increase code size, i.e. when // we would need to insert instructions in more than one pred. if (NumWithout > 1 || NumWith == 0) return false; // We may have a case where all predecessors have the instruction, // and we just need to insert a phi node. Otherwise, perform // insertion. Instruction *PREInstr = nullptr; if (NumWithout != 0) { // Don't do PRE across indirect branch. if (isa(PREPred->getTerminator())) return false; // We can't do PRE safely on a critical edge, so instead we schedule // the edge to be split and perform the PRE the next time we iterate // on the function. unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); return false; } // We need to insert somewhere, so let's give it a shot PREInstr = CurInst->clone(); if (!performScalarPREInsertion(PREInstr, PREPred, ValNo)) { // If we failed insertion, make sure we remove the instruction. DEBUG(verifyRemoved(PREInstr)); delete PREInstr; return false; } } // Either we should have filled in the PRE instruction, or we should // not have needed insertions. assert (PREInstr != nullptr || NumWithout == 0); ++NumGVNPRE; // Create a PHI to make the value available in this block. PHINode *Phi = PHINode::Create(CurInst->getType(), predMap.size(), CurInst->getName() + ".pre-phi", &CurrentBlock->front()); for (unsigned i = 0, e = predMap.size(); i != e; ++i) { if (Value *V = predMap[i].first) Phi->addIncoming(V, predMap[i].second); else Phi->addIncoming(PREInstr, PREPred); } VN.add(Phi, ValNo); addToLeaderTable(ValNo, Phi, CurrentBlock); Phi->setDebugLoc(CurInst->getDebugLoc()); CurInst->replaceAllUsesWith(Phi); if (MD && Phi->getType()->getScalarType()->isPointerTy()) MD->invalidateCachedPointerInfo(Phi); VN.erase(CurInst); removeFromLeaderTable(ValNo, CurInst, CurrentBlock); DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); if (MD) MD->removeInstruction(CurInst); DEBUG(verifyRemoved(CurInst)); CurInst->eraseFromParent(); ++NumGVNInstr; return true; } /// Perform a purely local form of PRE that looks for diamond /// control flow patterns and attempts to perform simple PRE at the join point. bool GVN::performPRE(Function &F) { bool Changed = false; for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { // Nothing to PRE in the entry block. if (CurrentBlock == &F.getEntryBlock()) continue; // Don't perform PRE on an EH pad. if (CurrentBlock->isEHPad()) continue; for (BasicBlock::iterator BI = CurrentBlock->begin(), BE = CurrentBlock->end(); BI != BE;) { Instruction *CurInst = &*BI++; Changed |= performScalarPRE(CurInst); } } if (splitCriticalEdges()) Changed = true; return Changed; } /// Split the critical edge connecting the given two blocks, and return /// the block inserted to the critical edge. BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { BasicBlock *BB = SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT)); if (MD) MD->invalidateCachedPredecessors(); return BB; } /// Split critical edges found during the previous /// iteration that may enable further optimization. bool GVN::splitCriticalEdges() { if (toSplit.empty()) return false; do { std::pair Edge = toSplit.pop_back_val(); SplitCriticalEdge(Edge.first, Edge.second, CriticalEdgeSplittingOptions(DT)); } while (!toSplit.empty()); if (MD) MD->invalidateCachedPredecessors(); return true; } /// Executes one iteration of GVN bool GVN::iterateOnFunction(Function &F) { cleanupGlobalSets(); // Top-down walk of the dominator tree bool Changed = false; // Save the blocks this function have before transformation begins. GVN may // split critical edge, and hence may invalidate the RPO/DT iterator. // std::vector BBVect; BBVect.reserve(256); // Needed for value numbering with phi construction to work. ReversePostOrderTraversal RPOT(&F); for (ReversePostOrderTraversal::rpo_iterator RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) BBVect.push_back(*RI); for (std::vector::iterator I = BBVect.begin(), E = BBVect.end(); I != E; I++) Changed |= processBlock(*I); return Changed; } void GVN::cleanupGlobalSets() { VN.clear(); LeaderTable.clear(); TableAllocator.Reset(); } /// Verify that the specified instruction does not occur in our /// internal data structures. void GVN::verifyRemoved(const Instruction *Inst) const { VN.verifyRemoved(Inst); // Walk through the value number scope to make sure the instruction isn't // ferreted away in it. for (DenseMap::const_iterator I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { const LeaderTableEntry *Node = &I->second; assert(Node->Val != Inst && "Inst still in value numbering scope!"); while (Node->Next) { Node = Node->Next; assert(Node->Val != Inst && "Inst still in value numbering scope!"); } } } /// BB is declared dead, which implied other blocks become dead as well. This /// function is to add all these blocks to "DeadBlocks". For the dead blocks' /// live successors, update their phi nodes by replacing the operands /// corresponding to dead blocks with UndefVal. void GVN::addDeadBlock(BasicBlock *BB) { SmallVector NewDead; SmallSetVector DF; NewDead.push_back(BB); while (!NewDead.empty()) { BasicBlock *D = NewDead.pop_back_val(); if (DeadBlocks.count(D)) continue; // All blocks dominated by D are dead. SmallVector Dom; DT->getDescendants(D, Dom); DeadBlocks.insert(Dom.begin(), Dom.end()); // Figure out the dominance-frontier(D). for (BasicBlock *B : Dom) { for (BasicBlock *S : successors(B)) { if (DeadBlocks.count(S)) continue; bool AllPredDead = true; for (BasicBlock *P : predecessors(S)) if (!DeadBlocks.count(P)) { AllPredDead = false; break; } if (!AllPredDead) { // S could be proved dead later on. That is why we don't update phi // operands at this moment. DF.insert(S); } else { // While S is not dominated by D, it is dead by now. This could take // place if S already have a dead predecessor before D is declared // dead. NewDead.push_back(S); } } } } // For the dead blocks' live successors, update their phi nodes by replacing // the operands corresponding to dead blocks with UndefVal. for(SmallSetVector::iterator I = DF.begin(), E = DF.end(); I != E; I++) { BasicBlock *B = *I; if (DeadBlocks.count(B)) continue; SmallVector Preds(pred_begin(B), pred_end(B)); for (BasicBlock *P : Preds) { if (!DeadBlocks.count(P)) continue; if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) { if (BasicBlock *S = splitCriticalEdges(P, B)) DeadBlocks.insert(P = S); } for (BasicBlock::iterator II = B->begin(); isa(II); ++II) { PHINode &Phi = cast(*II); Phi.setIncomingValue(Phi.getBasicBlockIndex(P), UndefValue::get(Phi.getType())); } } } } // If the given branch is recognized as a foldable branch (i.e. conditional // branch with constant condition), it will perform following analyses and // transformation. // 1) If the dead out-coming edge is a critical-edge, split it. Let // R be the target of the dead out-coming edge. // 1) Identify the set of dead blocks implied by the branch's dead outcoming // edge. The result of this step will be {X| X is dominated by R} // 2) Identify those blocks which haves at least one dead predecessor. The // result of this step will be dominance-frontier(R). // 3) Update the PHIs in DF(R) by replacing the operands corresponding to // dead blocks with "UndefVal" in an hope these PHIs will optimized away. // // Return true iff *NEW* dead code are found. bool GVN::processFoldableCondBr(BranchInst *BI) { if (!BI || BI->isUnconditional()) return false; // If a branch has two identical successors, we cannot declare either dead. if (BI->getSuccessor(0) == BI->getSuccessor(1)) return false; ConstantInt *Cond = dyn_cast(BI->getCondition()); if (!Cond) return false; BasicBlock *DeadRoot = Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); if (DeadBlocks.count(DeadRoot)) return false; if (!DeadRoot->getSinglePredecessor()) DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); addDeadBlock(DeadRoot); return true; } // performPRE() will trigger assert if it comes across an instruction without // associated val-num. As it normally has far more live instructions than dead // instructions, it makes more sense just to "fabricate" a val-number for the // dead code than checking if instruction involved is dead or not. void GVN::assignValNumForDeadCode() { for (BasicBlock *BB : DeadBlocks) { for (Instruction &Inst : *BB) { unsigned ValNum = VN.lookupOrAdd(&Inst); addToLeaderTable(ValNum, &Inst, BB); } } } class llvm::gvn::GVNLegacyPass : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid explicit GVNLegacyPass(bool NoLoads = false) : FunctionPass(ID), NoLoads(NoLoads) { initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; return Impl.runImpl( F, getAnalysis().getAssumptionCache(F), getAnalysis().getDomTree(), getAnalysis().getTLI(), getAnalysis().getAAResults(), NoLoads ? nullptr : &getAnalysis().getMemDep()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); if (!NoLoads) AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } private: bool NoLoads; GVN Impl; }; char GVNLegacyPass::ID = 0; // The public interface to this file... FunctionPass *llvm::createGVNPass(bool NoLoads) { return new GVNLegacyPass(NoLoads); } INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)