=pod
=begin html
=end html
=head1 NAME
lmcurve - Levenberg-Marquardt least-squares fit of a curve (t,y)
=head1 SYNOPSIS
B<#include >
B IB<, double *>IB<, const int> IB<,
constS< >double *>IB<, constS< >double *>IB<,
double (*>IB<)( const double >IB<, const double *>IB< ),
constS< >lm_control_struct *>IB<,
lm_status_struct *>IB<);>
B IB<, double *>IB<, const int> IB<,
constS< >double *>IB<, constS< >double *>IB<, constS< >double *>IB<,
double (*>IB<)( const double >IB<, const double *>IB< ),
constS< >lm_control_struct *>IB<,
lm_status_struct *>IB<);>
B
B
B
B
=head1 DESCRIPTION
B and B wrap the more generic minimization function B, for use in curve fitting.
B determines a vector I that minimizes the sum of squared elements of a residue vector I[i] := I[i] - I(I[i];I). Typically, B is used to approximate a data set I,I by a parametric function I(I;I). On success, I represents a local minimum, not necessarily a global one; it may depend on its starting value.
B does the same for a data set I,I,I, where I represents the standard deviation of empirical data I. Residues are computed as I[i] := (I[i] - I(I[i];I))/I[i]. Users must ensure that all I[i] are positive.
Function arguments:
=over
=item I
Number of free variables.
Length of parameter vector I.
=item I
Parameter vector.
On input, it must contain a reasonable guess.
On output, it contains the solution found to minimize ||I||.
=item I
Number of data points.
Length of vectors I and I.
Must statisfy I <= I.
=item I
Array of length I.
Contains the abcissae (time, or "x") for which function I will be evaluated.
=item I
Array of length I.
Contains the ordinate values that shall be fitted.
=item I
Only in B.
Array of length I.
Contains the standard deviations of the values I.
=item I
A user-supplied parametric function I(ti;I).
=item I
Parameter collection for tuning the fit procedure.
In most cases, the default &I is adequate.
If I is only computed with single-precision accuracy,
I<&lm_control_float> should be used.
Parameters are explained in B.
=item I
A record used to return information about the minimization process:
For details, see B.
=back
=head1 EXAMPLE
Fit a data set y(x) by a curve f(x;p):
#include "lmcurve.h"
#include
/* model function: a parabola */
double f( double t, const double *p )
{
return p[0] + p[1]*t + p[2]*t*t;
}
int main()
{
int n = 3; /* number of parameters in model function f */
double par[3] = { 100, 0, -10 }; /* really bad starting value */
/* data points: a slightly distorted standard parabola */
int m = 9;
int i;
double t[9] = { -4., -3., -2., -1., 0., 1., 2., 3., 4. };
double y[9] = { 16.6, 9.9, 4.4, 1.1, 0., 1.1, 4.2, 9.3, 16.4 };
lm_control_struct control = lm_control_double;
lm_status_struct status;
control.verbosity = 7;
printf( "Fitting ...\n" );
lmcurve( n, par, m, t, y, f, &control, &status );
printf( "Results:\n" );
printf( "status after %d function evaluations:\n %s\n",
status.nfev, lm_infmsg[status.outcome] );
printf("obtained parameters:\n");
for ( i = 0; i < n; ++i)
printf(" par[%i] = %12g\n", i, par[i]);
printf("obtained norm:\n %12g\n", status.fnorm );
printf("fitting data as follows:\n");
for ( i = 0; i < m; ++i)
printf( " t[%2d]=%4g y=%6g fit=%10g residue=%12g\n",
i, t[i], y[i], f(t[i],par), y[i] - f(t[i],par) );
return 0;
}
=head1 COPYING
Copyright (C) 2009-2015 Joachim Wuttke, Forschungszentrum Juelich GmbH
Software: FreeBSD License
Documentation: Creative Commons Attribution Share Alike
=head1 SEE ALSO
=begin html
lmmin(3)
=end html
=begin man
\fBlmmin\fR(3)
.PP
=end man
Homepage: http://apps.jcns.fz-juelich.de/lmfit
=head1 BUGS
Please send bug reports and suggestions to the author .