/* -*- Mode: C; tab-width: 4 -*- * * Copyright (c) 2002-2003 Apple Computer, Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef __cplusplus extern "C" { #endif #include "mDNSEmbeddedAPI.h" #include "DNSCommon.h" // Disable certain benign warnings with Microsoft compilers #if(defined(_MSC_VER)) // Disable "conditional expression is constant" warning for debug macros. // Otherwise, this generates warnings for the perfectly natural construct "while(1)" // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know #pragma warning(disable:4127) #endif // *************************************************************************** #if COMPILER_LIKES_PRAGMA_MARK #pragma mark - Byte Swapping Functions #endif mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes) { return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]); } mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes) { return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]); } // *************************************************************************** #if COMPILER_LIKES_PRAGMA_MARK #pragma mark - MD5 Hash Functions #endif /* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h. * The following changes have been made to the original sources: * replaced CC_LONG w/ mDNSu32 * replaced CC_MD5* with MD5* * replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h * removed extern decls for MD5_Init/Update/Final from CommonDigest.h * removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h * * Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code * to aid in platform-specific optimizations and debugging. * Sources originally distributed under the following license headers: * CommonDigest.h - APSL * * md32_Common.h * ==================================================================== * Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * * md5_dgst.c, md5_locl.h * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * * Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] * */ //from CommonDigest.h #define MD5_DIGEST_LENGTH 16 /* digest length in bytes */ #define MD5_BLOCK_BYTES 64 /* block size in bytes */ #define MD5_BLOCK_LONG (MD5_BLOCK_BYTES / sizeof(mDNSu32)) typedef struct MD5state_st { mDNSu32 A,B,C,D; mDNSu32 Nl,Nh; mDNSu32 data[MD5_BLOCK_LONG]; int num; } MD5_CTX; #ifndef HAVE_MD5 // from openssl/md5.h #define MD5_CBLOCK 64 #define MD5_LBLOCK (MD5_CBLOCK/4) #define MD5_DIGEST_LENGTH 16 int MD5_Init(MD5_CTX *c); int MD5_Update(MD5_CTX *c, const void *data, unsigned long len); int MD5_Final(unsigned char *md, MD5_CTX *c); void MD5_Transform(MD5_CTX *c, const unsigned char *b); // From md5_locl.h #ifndef MD5_LONG_LOG2 #define MD5_LONG_LOG2 2 /* default to 32 bits */ #endif #ifdef MD5_ASM # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) # define md5_block_host_order md5_block_asm_host_order # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC) void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num); # define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned # endif #endif void md5_block_host_order (MD5_CTX *c, const void *p,int num); void md5_block_data_order (MD5_CTX *c, const void *p,int num); #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__) /* * *_block_host_order is expected to handle aligned data while * *_block_data_order - unaligned. As algorithm and host (x86) * are in this case of the same "endianness" these two are * otherwise indistinguishable. But normally you don't want to * call the same function because unaligned access in places * where alignment is expected is usually a "Bad Thing". Indeed, * on RISCs you get punished with BUS ERROR signal or *severe* * performance degradation. Intel CPUs are in turn perfectly * capable of loading unaligned data without such drastic side * effect. Yes, they say it's slower than aligned load, but no * exception is generated and therefore performance degradation * is *incomparable* with RISCs. What we should weight here is * costs of unaligned access against costs of aligning data. * According to my measurements allowing unaligned access results * in ~9% performance improvement on Pentium II operating at * 266MHz. I won't be surprised if the difference will be higher * on faster systems:-) * * */ #define md5_block_data_order md5_block_host_order #endif #define DATA_ORDER_IS_LITTLE_ENDIAN #define HASH_LONG mDNSu32 #define HASH_LONG_LOG2 MD5_LONG_LOG2 #define HASH_CTX MD5_CTX #define HASH_CBLOCK MD5_CBLOCK #define HASH_LBLOCK MD5_LBLOCK #define HASH_UPDATE MD5_Update #define HASH_TRANSFORM MD5_Transform #define HASH_FINAL MD5_Final #define HASH_MAKE_STRING(c,s) do { \ unsigned long ll; \ ll=(c)->A; HOST_l2c(ll,(s)); \ ll=(c)->B; HOST_l2c(ll,(s)); \ ll=(c)->C; HOST_l2c(ll,(s)); \ ll=(c)->D; HOST_l2c(ll,(s)); \ } while (0) #define HASH_BLOCK_HOST_ORDER md5_block_host_order #if !defined(L_ENDIAN) || defined(md5_block_data_order) #define HASH_BLOCK_DATA_ORDER md5_block_data_order /* * Little-endians (Intel and Alpha) feel better without this. * It looks like memcpy does better job than generic * md5_block_data_order on copying-n-aligning input data. * But frankly speaking I didn't expect such result on Alpha. * On the other hand I've got this with egcs-1.0.2 and if * program is compiled with another (better?) compiler it * might turn out other way around. * * */ #endif // from md32_common.h /* * This is a generic 32 bit "collector" for message digest algorithms. * Whenever needed it collects input character stream into chunks of * 32 bit values and invokes a block function that performs actual hash * calculations. * * Porting guide. * * Obligatory macros: * * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN * this macro defines byte order of input stream. * HASH_CBLOCK * size of a unit chunk HASH_BLOCK operates on. * HASH_LONG * has to be at lest 32 bit wide, if it's wider, then * HASH_LONG_LOG2 *has to* be defined along * HASH_CTX * context structure that at least contains following * members: * typedef struct { * ... * HASH_LONG Nl,Nh; * HASH_LONG data[HASH_LBLOCK]; * int num; * ... * } HASH_CTX; * HASH_UPDATE * name of "Update" function, implemented here. * HASH_TRANSFORM * name of "Transform" function, implemented here. * HASH_FINAL * name of "Final" function, implemented here. * HASH_BLOCK_HOST_ORDER * name of "block" function treating *aligned* input message * in host byte order, implemented externally. * HASH_BLOCK_DATA_ORDER * name of "block" function treating *unaligned* input message * in original (data) byte order, implemented externally (it * actually is optional if data and host are of the same * "endianess"). * HASH_MAKE_STRING * macro convering context variables to an ASCII hash string. * * Optional macros: * * B_ENDIAN or L_ENDIAN * defines host byte-order. * HASH_LONG_LOG2 * defaults to 2 if not states otherwise. * HASH_LBLOCK * assumed to be HASH_CBLOCK/4 if not stated otherwise. * HASH_BLOCK_DATA_ORDER_ALIGNED * alternative "block" function capable of treating * aligned input message in original (data) order, * implemented externally. * * MD5 example: * * #define DATA_ORDER_IS_LITTLE_ENDIAN * * #define HASH_LONG mDNSu32 * #define HASH_LONG_LOG2 mDNSu32_LOG2 * #define HASH_CTX MD5_CTX * #define HASH_CBLOCK MD5_CBLOCK * #define HASH_LBLOCK MD5_LBLOCK * #define HASH_UPDATE MD5_Update * #define HASH_TRANSFORM MD5_Transform * #define HASH_FINAL MD5_Final * #define HASH_BLOCK_HOST_ORDER md5_block_host_order * #define HASH_BLOCK_DATA_ORDER md5_block_data_order * * */ #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN) #error "DATA_ORDER must be defined!" #endif #ifndef HASH_CBLOCK #error "HASH_CBLOCK must be defined!" #endif #ifndef HASH_LONG #error "HASH_LONG must be defined!" #endif #ifndef HASH_CTX #error "HASH_CTX must be defined!" #endif #ifndef HASH_UPDATE #error "HASH_UPDATE must be defined!" #endif #ifndef HASH_TRANSFORM #error "HASH_TRANSFORM must be defined!" #endif #ifndef HASH_FINAL #error "HASH_FINAL must be defined!" #endif #ifndef HASH_BLOCK_HOST_ORDER #error "HASH_BLOCK_HOST_ORDER must be defined!" #endif #if 0 /* * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED * isn't defined. */ #ifndef HASH_BLOCK_DATA_ORDER #error "HASH_BLOCK_DATA_ORDER must be defined!" #endif #endif #ifndef HASH_LBLOCK #define HASH_LBLOCK (HASH_CBLOCK/4) #endif #ifndef HASH_LONG_LOG2 #define HASH_LONG_LOG2 2 #endif /* * Engage compiler specific rotate intrinsic function if available. */ #undef ROTATE #ifndef PEDANTIC # if 0 /* defined(_MSC_VER) */ # define ROTATE(a,n) _lrotl(a,n) # elif defined(__MWERKS__) # if defined(__POWERPC__) # define ROTATE(a,n) (unsigned MD32_REG_T)__rlwinm((int)a,n,0,31) # elif defined(__MC68K__) /* Motorola specific tweak. */ # define ROTATE(a,n) (n<24 ? __rol(a,n) : __ror(a,32-n)) # else # define ROTATE(a,n) __rol(a,n) # endif # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) /* * Some GNU C inline assembler templates. Note that these are * rotates by *constant* number of bits! But that's exactly * what we need here... * * */ /* * LLVM is more strict about compatibility of types between input & output constraints, * but we want these to be rotations of 32 bits, not 64, so we explicitly drop the * most significant bytes by casting to an unsigned int. */ # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__) # define ROTATE(a,n) ({ register unsigned int ret; \ asm ( \ "roll %1,%0" \ : "=r"(ret) \ : "I"(n), "0"((unsigned int)a) \ : "cc"); \ ret; \ }) # elif defined(__powerpc) || defined(__ppc) # define ROTATE(a,n) ({ register unsigned int ret; \ asm ( \ "rlwinm %0,%1,%2,0,31" \ : "=r"(ret) \ : "r"(a), "I"(n)); \ ret; \ }) # endif # endif /* * Engage compiler specific "fetch in reverse byte order" * intrinsic function if available. */ # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) /* some GNU C inline assembler templates by */ # if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY) # define BE_FETCH32(a) ({ register unsigned int l=(a);\ asm ( \ "bswapl %0" \ : "=r"(l) : "0"(l)); \ l; \ }) # elif defined(__powerpc) # define LE_FETCH32(a) ({ register unsigned int l; \ asm ( \ "lwbrx %0,0,%1" \ : "=r"(l) \ : "r"(a)); \ l; \ }) # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC) # define LE_FETCH32(a) ({ register unsigned int l; \ asm ( \ "lda [%1]#ASI_PRIMARY_LITTLE,%0"\ : "=r"(l) \ : "r"(a)); \ l; \ }) # endif # endif #endif /* PEDANTIC */ #if HASH_LONG_LOG2==2 /* Engage only if sizeof(HASH_LONG)== 4 */ /* A nice byte order reversal from Wei Dai */ #ifdef ROTATE /* 5 instructions with rotate instruction, else 9 */ #define REVERSE_FETCH32(a,l) ( \ l=*(const HASH_LONG *)(a), \ ((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24))) \ ) #else /* 6 instructions with rotate instruction, else 8 */ #define REVERSE_FETCH32(a,l) ( \ l=*(const HASH_LONG *)(a), \ l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)), \ ROTATE(l,16) \ ) /* * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|... * It's rewritten as above for two reasons: * - RISCs aren't good at long constants and have to explicitely * compose 'em with several (well, usually 2) instructions in a * register before performing the actual operation and (as you * already realized:-) having same constant should inspire the * compiler to permanently allocate the only register for it; * - most modern CPUs have two ALUs, but usually only one has * circuitry for shifts:-( this minor tweak inspires compiler * to schedule shift instructions in a better way... * * */ #endif #endif #ifndef ROTATE #define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n)))) #endif /* * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED * and HASH_BLOCK_HOST_ORDER ought to be the same if input data * and host are of the same "endianess". It's possible to mask * this with blank #define HASH_BLOCK_DATA_ORDER though... * * */ #if defined(B_ENDIAN) # if defined(DATA_ORDER_IS_BIG_ENDIAN) # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER # endif # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) # ifndef HOST_FETCH32 # ifdef LE_FETCH32 # define HOST_FETCH32(p,l) LE_FETCH32(p) # elif defined(REVERSE_FETCH32) # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l) # endif # endif # endif #elif defined(L_ENDIAN) # if defined(DATA_ORDER_IS_LITTLE_ENDIAN) # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER # endif # elif defined(DATA_ORDER_IS_BIG_ENDIAN) # ifndef HOST_FETCH32 # ifdef BE_FETCH32 # define HOST_FETCH32(p,l) BE_FETCH32(p) # elif defined(REVERSE_FETCH32) # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l) # endif # endif # endif #endif #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) #ifndef HASH_BLOCK_DATA_ORDER #error "HASH_BLOCK_DATA_ORDER must be defined!" #endif #endif #if defined(DATA_ORDER_IS_BIG_ENDIAN) #define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \ l|=(((unsigned long)(*((c)++)))<<16), \ l|=(((unsigned long)(*((c)++)))<< 8), \ l|=(((unsigned long)(*((c)++))) ), \ l) #define HOST_p_c2l(c,l,n) { \ switch (n) { \ case 0: l =((unsigned long)(*((c)++)))<<24; \ case 1: l|=((unsigned long)(*((c)++)))<<16; \ case 2: l|=((unsigned long)(*((c)++)))<< 8; \ case 3: l|=((unsigned long)(*((c)++))); \ } } #define HOST_p_c2l_p(c,l,sc,len) { \ switch (sc) { \ case 0: l =((unsigned long)(*((c)++)))<<24; \ if (--len == 0) break; \ case 1: l|=((unsigned long)(*((c)++)))<<16; \ if (--len == 0) break; \ case 2: l|=((unsigned long)(*((c)++)))<< 8; \ } } /* NOTE the pointer is not incremented at the end of this */ #define HOST_c2l_p(c,l,n) { \ l=0; (c)+=n; \ switch (n) { \ case 3: l =((unsigned long)(*(--(c))))<< 8; \ case 2: l|=((unsigned long)(*(--(c))))<<16; \ case 1: l|=((unsigned long)(*(--(c))))<<24; \ } } #define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \ *((c)++)=(unsigned char)(((l)>>16)&0xff), \ *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ *((c)++)=(unsigned char)(((l) )&0xff), \ l) #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) #define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \ l|=(((unsigned long)(*((c)++)))<< 8), \ l|=(((unsigned long)(*((c)++)))<<16), \ l|=(((unsigned long)(*((c)++)))<<24), \ l) #define HOST_p_c2l(c,l,n) { \ switch (n) { \ case 0: l =((unsigned long)(*((c)++))); \ case 1: l|=((unsigned long)(*((c)++)))<< 8; \ case 2: l|=((unsigned long)(*((c)++)))<<16; \ case 3: l|=((unsigned long)(*((c)++)))<<24; \ } } #define HOST_p_c2l_p(c,l,sc,len) { \ switch (sc) { \ case 0: l =((unsigned long)(*((c)++))); \ if (--len == 0) break; \ case 1: l|=((unsigned long)(*((c)++)))<< 8; \ if (--len == 0) break; \ case 2: l|=((unsigned long)(*((c)++)))<<16; \ } } /* NOTE the pointer is not incremented at the end of this */ #define HOST_c2l_p(c,l,n) { \ l=0; (c)+=n; \ switch (n) { \ case 3: l =((unsigned long)(*(--(c))))<<16; \ case 2: l|=((unsigned long)(*(--(c))))<< 8; \ case 1: l|=((unsigned long)(*(--(c)))); \ } } #define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ *((c)++)=(unsigned char)(((l)>>16)&0xff), \ *((c)++)=(unsigned char)(((l)>>24)&0xff), \ l) #endif /* * Time for some action:-) */ int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len) { const unsigned char *data=(const unsigned char *)data_; register HASH_LONG * p; register unsigned long l; int sw,sc,ew,ec; if (len==0) return 1; l=(c->Nl+(len<<3))&0xffffffffL; /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to * Wei Dai for pointing it out. */ if (l < c->Nl) /* overflow */ c->Nh++; c->Nh+=(len>>29); c->Nl=l; if (c->num != 0) { p=c->data; sw=c->num>>2; sc=c->num&0x03; if ((c->num+len) >= HASH_CBLOCK) { l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l; for (; swnum); c->num=0; /* drop through and do the rest */ } else { c->num+=len; if ((sc+len) < 4) /* ugly, add char's to a word */ { l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l; } else { ew=(c->num>>2); ec=(c->num&0x03); if (sc) l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l; for (; sw < ew; sw++) { HOST_c2l(data,l); p[sw]=l; } if (ec) { HOST_c2l_p(data,l,ec); p[sw]=l; } } return 1; } } sw=(int)(len/HASH_CBLOCK); if (sw > 0) { #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED) /* * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined * only if sizeof(HASH_LONG)==4. */ if ((((unsigned long)data)%4) == 0) { /* data is properly aligned so that we can cast it: */ HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw); sw*=HASH_CBLOCK; data+=sw; len-=sw; } else #if !defined(HASH_BLOCK_DATA_ORDER) while (sw--) { mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK); HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1); data+=HASH_CBLOCK; len-=HASH_CBLOCK; } #endif #endif #if defined(HASH_BLOCK_DATA_ORDER) { HASH_BLOCK_DATA_ORDER(c,data,sw); sw*=HASH_CBLOCK; data+=sw; len-=sw; } #endif } if (len!=0) { p = c->data; c->num = (int)len; ew=(int)(len>>2); /* words to copy */ ec=(int)(len&0x03); for (; ew; ew--,p++) { HOST_c2l(data,l); *p=l; } HOST_c2l_p(data,l,ec); *p=l; } return 1; } void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data) { #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED) if ((((unsigned long)data)%4) == 0) /* data is properly aligned so that we can cast it: */ HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1); else #if !defined(HASH_BLOCK_DATA_ORDER) { mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK); HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1); } #endif #endif #if defined(HASH_BLOCK_DATA_ORDER) HASH_BLOCK_DATA_ORDER (c,data,1); #endif } int HASH_FINAL (unsigned char *md, HASH_CTX *c) { register HASH_LONG *p; register unsigned long l; register int i,j; static const unsigned char end[4]={0x80,0x00,0x00,0x00}; const unsigned char *cp=end; /* c->num should definitly have room for at least one more byte. */ p=c->data; i=c->num>>2; j=c->num&0x03; #if 0 /* purify often complains about the following line as an * Uninitialized Memory Read. While this can be true, the * following p_c2l macro will reset l when that case is true. * This is because j&0x03 contains the number of 'valid' bytes * already in p[i]. If and only if j&0x03 == 0, the UMR will * occur but this is also the only time p_c2l will do * l= *(cp++) instead of l|= *(cp++) * Many thanks to Alex Tang for pickup this * 'potential bug' */ #ifdef PURIFY if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */ #endif l=p[i]; #else l = (j==0) ? 0 : p[i]; #endif HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */ if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */ { if (iNh; p[HASH_LBLOCK-1]=c->Nl; #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) p[HASH_LBLOCK-2]=c->Nl; p[HASH_LBLOCK-1]=c->Nh; #endif HASH_BLOCK_HOST_ORDER (c,p,1); #ifndef HASH_MAKE_STRING #error "HASH_MAKE_STRING must be defined!" #else HASH_MAKE_STRING(c,md); #endif c->num=0; /* clear stuff, HASH_BLOCK may be leaving some stuff on the stack * but I'm not worried :-) OPENSSL_cleanse((void *)c,sizeof(HASH_CTX)); */ return 1; } #ifndef MD32_REG_T #define MD32_REG_T long /* * This comment was originaly written for MD5, which is why it * discusses A-D. But it basically applies to all 32-bit digests, * which is why it was moved to common header file. * * In case you wonder why A-D are declared as long and not * as mDNSu32. Doing so results in slight performance * boost on LP64 architectures. The catch is we don't * really care if 32 MSBs of a 64-bit register get polluted * with eventual overflows as we *save* only 32 LSBs in * *either* case. Now declaring 'em long excuses the compiler * from keeping 32 MSBs zeroed resulting in 13% performance * improvement under SPARC Solaris7/64 and 5% under AlphaLinux. * Well, to be honest it should say that this *prevents* * performance degradation. * * Apparently there're LP64 compilers that generate better * code if A-D are declared int. Most notably GCC-x86_64 * generates better code. * */ #endif // from md5_locl.h (continued) /* #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z))) #define G(x,y,z) (((x) & (z)) | ((y) & (~(z)))) */ /* As pointed out by Wei Dai , the above can be * simplified to the code below. Wei attributes these optimizations * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel. */ #define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d)) #define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c)) #define H(b,c,d) ((b) ^ (c) ^ (d)) #define I(b,c,d) (((~(d)) | (b)) ^ (c)) #define R0(a,b,c,d,k,s,t) { \ a+=((k)+(t)+F((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; };\ #define R1(a,b,c,d,k,s,t) { \ a+=((k)+(t)+G((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; }; #define R2(a,b,c,d,k,s,t) { \ a+=((k)+(t)+H((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; }; #define R3(a,b,c,d,k,s,t) { \ a+=((k)+(t)+I((b),(c),(d))); \ a=ROTATE(a,s); \ a+=b; }; // from md5_dgst.c /* Implemented from RFC1321 The MD5 Message-Digest Algorithm */ #define INIT_DATA_A (unsigned long)0x67452301L #define INIT_DATA_B (unsigned long)0xefcdab89L #define INIT_DATA_C (unsigned long)0x98badcfeL #define INIT_DATA_D (unsigned long)0x10325476L int MD5_Init(MD5_CTX *c) { c->A=INIT_DATA_A; c->B=INIT_DATA_B; c->C=INIT_DATA_C; c->D=INIT_DATA_D; c->Nl=0; c->Nh=0; c->num=0; return 1; } #ifndef md5_block_host_order void md5_block_host_order (MD5_CTX *c, const void *data, int num) { const mDNSu32 *X=(const mDNSu32 *)data; register unsigned MD32_REG_T A,B,C,D; A=c->A; B=c->B; C=c->C; D=c->D; for (;num--;X+=HASH_LBLOCK) { /* Round 0 */ R0(A,B,C,D,X[ 0], 7,0xd76aa478L); R0(D,A,B,C,X[ 1],12,0xe8c7b756L); R0(C,D,A,B,X[ 2],17,0x242070dbL); R0(B,C,D,A,X[ 3],22,0xc1bdceeeL); R0(A,B,C,D,X[ 4], 7,0xf57c0fafL); R0(D,A,B,C,X[ 5],12,0x4787c62aL); R0(C,D,A,B,X[ 6],17,0xa8304613L); R0(B,C,D,A,X[ 7],22,0xfd469501L); R0(A,B,C,D,X[ 8], 7,0x698098d8L); R0(D,A,B,C,X[ 9],12,0x8b44f7afL); R0(C,D,A,B,X[10],17,0xffff5bb1L); R0(B,C,D,A,X[11],22,0x895cd7beL); R0(A,B,C,D,X[12], 7,0x6b901122L); R0(D,A,B,C,X[13],12,0xfd987193L); R0(C,D,A,B,X[14],17,0xa679438eL); R0(B,C,D,A,X[15],22,0x49b40821L); /* Round 1 */ R1(A,B,C,D,X[ 1], 5,0xf61e2562L); R1(D,A,B,C,X[ 6], 9,0xc040b340L); R1(C,D,A,B,X[11],14,0x265e5a51L); R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL); R1(A,B,C,D,X[ 5], 5,0xd62f105dL); R1(D,A,B,C,X[10], 9,0x02441453L); R1(C,D,A,B,X[15],14,0xd8a1e681L); R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L); R1(A,B,C,D,X[ 9], 5,0x21e1cde6L); R1(D,A,B,C,X[14], 9,0xc33707d6L); R1(C,D,A,B,X[ 3],14,0xf4d50d87L); R1(B,C,D,A,X[ 8],20,0x455a14edL); R1(A,B,C,D,X[13], 5,0xa9e3e905L); R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L); R1(C,D,A,B,X[ 7],14,0x676f02d9L); R1(B,C,D,A,X[12],20,0x8d2a4c8aL); /* Round 2 */ R2(A,B,C,D,X[ 5], 4,0xfffa3942L); R2(D,A,B,C,X[ 8],11,0x8771f681L); R2(C,D,A,B,X[11],16,0x6d9d6122L); R2(B,C,D,A,X[14],23,0xfde5380cL); R2(A,B,C,D,X[ 1], 4,0xa4beea44L); R2(D,A,B,C,X[ 4],11,0x4bdecfa9L); R2(C,D,A,B,X[ 7],16,0xf6bb4b60L); R2(B,C,D,A,X[10],23,0xbebfbc70L); R2(A,B,C,D,X[13], 4,0x289b7ec6L); R2(D,A,B,C,X[ 0],11,0xeaa127faL); R2(C,D,A,B,X[ 3],16,0xd4ef3085L); R2(B,C,D,A,X[ 6],23,0x04881d05L); R2(A,B,C,D,X[ 9], 4,0xd9d4d039L); R2(D,A,B,C,X[12],11,0xe6db99e5L); R2(C,D,A,B,X[15],16,0x1fa27cf8L); R2(B,C,D,A,X[ 2],23,0xc4ac5665L); /* Round 3 */ R3(A,B,C,D,X[ 0], 6,0xf4292244L); R3(D,A,B,C,X[ 7],10,0x432aff97L); R3(C,D,A,B,X[14],15,0xab9423a7L); R3(B,C,D,A,X[ 5],21,0xfc93a039L); R3(A,B,C,D,X[12], 6,0x655b59c3L); R3(D,A,B,C,X[ 3],10,0x8f0ccc92L); R3(C,D,A,B,X[10],15,0xffeff47dL); R3(B,C,D,A,X[ 1],21,0x85845dd1L); R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL); R3(D,A,B,C,X[15],10,0xfe2ce6e0L); R3(C,D,A,B,X[ 6],15,0xa3014314L); R3(B,C,D,A,X[13],21,0x4e0811a1L); R3(A,B,C,D,X[ 4], 6,0xf7537e82L); R3(D,A,B,C,X[11],10,0xbd3af235L); R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL); R3(B,C,D,A,X[ 9],21,0xeb86d391L); A = c->A += A; B = c->B += B; C = c->C += C; D = c->D += D; } } #endif #ifndef md5_block_data_order #ifdef X #undef X #endif void md5_block_data_order (MD5_CTX *c, const void *data_, int num) { const unsigned char *data=data_; register unsigned MD32_REG_T A,B,C,D,l; #ifndef MD32_XARRAY /* See comment in crypto/sha/sha_locl.h for details. */ unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15; # define X(i) XX##i #else mDNSu32 XX[MD5_LBLOCK]; # define X(i) XX[i] #endif A=c->A; B=c->B; C=c->C; D=c->D; for (;num--;) { HOST_c2l(data,l); X( 0)=l; HOST_c2l(data,l); X( 1)=l; /* Round 0 */ R0(A,B,C,D,X( 0), 7,0xd76aa478L); HOST_c2l(data,l); X( 2)=l; R0(D,A,B,C,X( 1),12,0xe8c7b756L); HOST_c2l(data,l); X( 3)=l; R0(C,D,A,B,X( 2),17,0x242070dbL); HOST_c2l(data,l); X( 4)=l; R0(B,C,D,A,X( 3),22,0xc1bdceeeL); HOST_c2l(data,l); X( 5)=l; R0(A,B,C,D,X( 4), 7,0xf57c0fafL); HOST_c2l(data,l); X( 6)=l; R0(D,A,B,C,X( 5),12,0x4787c62aL); HOST_c2l(data,l); X( 7)=l; R0(C,D,A,B,X( 6),17,0xa8304613L); HOST_c2l(data,l); X( 8)=l; R0(B,C,D,A,X( 7),22,0xfd469501L); HOST_c2l(data,l); X( 9)=l; R0(A,B,C,D,X( 8), 7,0x698098d8L); HOST_c2l(data,l); X(10)=l; R0(D,A,B,C,X( 9),12,0x8b44f7afL); HOST_c2l(data,l); X(11)=l; R0(C,D,A,B,X(10),17,0xffff5bb1L); HOST_c2l(data,l); X(12)=l; R0(B,C,D,A,X(11),22,0x895cd7beL); HOST_c2l(data,l); X(13)=l; R0(A,B,C,D,X(12), 7,0x6b901122L); HOST_c2l(data,l); X(14)=l; R0(D,A,B,C,X(13),12,0xfd987193L); HOST_c2l(data,l); X(15)=l; R0(C,D,A,B,X(14),17,0xa679438eL); R0(B,C,D,A,X(15),22,0x49b40821L); /* Round 1 */ R1(A,B,C,D,X( 1), 5,0xf61e2562L); R1(D,A,B,C,X( 6), 9,0xc040b340L); R1(C,D,A,B,X(11),14,0x265e5a51L); R1(B,C,D,A,X( 0),20,0xe9b6c7aaL); R1(A,B,C,D,X( 5), 5,0xd62f105dL); R1(D,A,B,C,X(10), 9,0x02441453L); R1(C,D,A,B,X(15),14,0xd8a1e681L); R1(B,C,D,A,X( 4),20,0xe7d3fbc8L); R1(A,B,C,D,X( 9), 5,0x21e1cde6L); R1(D,A,B,C,X(14), 9,0xc33707d6L); R1(C,D,A,B,X( 3),14,0xf4d50d87L); R1(B,C,D,A,X( 8),20,0x455a14edL); R1(A,B,C,D,X(13), 5,0xa9e3e905L); R1(D,A,B,C,X( 2), 9,0xfcefa3f8L); R1(C,D,A,B,X( 7),14,0x676f02d9L); R1(B,C,D,A,X(12),20,0x8d2a4c8aL); /* Round 2 */ R2(A,B,C,D,X( 5), 4,0xfffa3942L); R2(D,A,B,C,X( 8),11,0x8771f681L); R2(C,D,A,B,X(11),16,0x6d9d6122L); R2(B,C,D,A,X(14),23,0xfde5380cL); R2(A,B,C,D,X( 1), 4,0xa4beea44L); R2(D,A,B,C,X( 4),11,0x4bdecfa9L); R2(C,D,A,B,X( 7),16,0xf6bb4b60L); R2(B,C,D,A,X(10),23,0xbebfbc70L); R2(A,B,C,D,X(13), 4,0x289b7ec6L); R2(D,A,B,C,X( 0),11,0xeaa127faL); R2(C,D,A,B,X( 3),16,0xd4ef3085L); R2(B,C,D,A,X( 6),23,0x04881d05L); R2(A,B,C,D,X( 9), 4,0xd9d4d039L); R2(D,A,B,C,X(12),11,0xe6db99e5L); R2(C,D,A,B,X(15),16,0x1fa27cf8L); R2(B,C,D,A,X( 2),23,0xc4ac5665L); /* Round 3 */ R3(A,B,C,D,X( 0), 6,0xf4292244L); R3(D,A,B,C,X( 7),10,0x432aff97L); R3(C,D,A,B,X(14),15,0xab9423a7L); R3(B,C,D,A,X( 5),21,0xfc93a039L); R3(A,B,C,D,X(12), 6,0x655b59c3L); R3(D,A,B,C,X( 3),10,0x8f0ccc92L); R3(C,D,A,B,X(10),15,0xffeff47dL); R3(B,C,D,A,X( 1),21,0x85845dd1L); R3(A,B,C,D,X( 8), 6,0x6fa87e4fL); R3(D,A,B,C,X(15),10,0xfe2ce6e0L); R3(C,D,A,B,X( 6),15,0xa3014314L); R3(B,C,D,A,X(13),21,0x4e0811a1L); R3(A,B,C,D,X( 4), 6,0xf7537e82L); R3(D,A,B,C,X(11),10,0xbd3af235L); R3(C,D,A,B,X( 2),15,0x2ad7d2bbL); R3(B,C,D,A,X( 9),21,0xeb86d391L); A = c->A += A; B = c->B += B; C = c->C += C; D = c->D += D; } } #endif #endif // !HAVE_MD5 // *************************************************************************** #if COMPILER_LIKES_PRAGMA_MARK #pragma mark - base64 -> binary conversion #endif static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; static const char Pad64 = '='; #define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ') mDNSlocal const char *mDNSstrchr(const char *s, int c) { while (1) { if (c == *s) return s; if (!*s) return mDNSNULL; s++; } } // skips all whitespace anywhere. // converts characters, four at a time, starting at (or after) // src from base - 64 numbers into three 8 bit bytes in the target area. // it returns the number of data bytes stored at the target, or -1 on error. // adapted from BIND sources mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize) { int tarindex, state, ch; const char *pos; state = 0; tarindex = 0; while ((ch = *src++) != '\0') { if (mDNSisspace(ch)) /* Skip whitespace anywhere. */ continue; if (ch == Pad64) break; pos = mDNSstrchr(Base64, ch); if (pos == 0) /* A non-base64 character. */ return (-1); switch (state) { case 0: if (target) { if ((mDNSu32)tarindex >= targsize) return (-1); target[tarindex] = (mDNSu8)((pos - Base64) << 2); } state = 1; break; case 1: if (target) { if ((mDNSu32)tarindex + 1 >= targsize) return (-1); target[tarindex] |= (pos - Base64) >> 4; target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x0f) << 4); } tarindex++; state = 2; break; case 2: if (target) { if ((mDNSu32)tarindex + 1 >= targsize) return (-1); target[tarindex] |= (pos - Base64) >> 2; target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x03) << 6); } tarindex++; state = 3; break; case 3: if (target) { if ((mDNSu32)tarindex >= targsize) return (-1); target[tarindex] |= (pos - Base64); } tarindex++; state = 0; break; default: return -1; } } /* * We are done decoding Base-64 chars. Let's see if we ended * on a byte boundary, and/or with erroneous trailing characters. */ if (ch == Pad64) { /* We got a pad char. */ ch = *src++; /* Skip it, get next. */ switch (state) { case 0: /* Invalid = in first position */ case 1: /* Invalid = in second position */ return (-1); case 2: /* Valid, means one byte of info */ /* Skip any number of spaces. */ for ((void)mDNSNULL; ch != '\0'; ch = *src++) if (!mDNSisspace(ch)) break; /* Make sure there is another trailing = sign. */ if (ch != Pad64) return (-1); ch = *src++; /* Skip the = */ /* Fall through to "single trailing =" case. */ /* FALLTHROUGH */ case 3: /* Valid, means two bytes of info */ /* * We know this char is an =. Is there anything but * whitespace after it? */ for ((void)mDNSNULL; ch != '\0'; ch = *src++) if (!mDNSisspace(ch)) return (-1); /* * Now make sure for cases 2 and 3 that the "extra" * bits that slopped past the last full byte were * zeros. If we don't check them, they become a * subliminal channel. */ if (target && target[tarindex] != 0) return (-1); } } else { /* * We ended by seeing the end of the string. Make sure we * have no partial bytes lying around. */ if (state != 0) return (-1); } return (tarindex); } // *************************************************************************** #if COMPILER_LIKES_PRAGMA_MARK #pragma mark - API exported to mDNS Core #endif // Constants #define HMAC_IPAD 0x36 #define HMAC_OPAD 0x5c #define MD5_LEN 16 #define HMAC_MD5_AlgName (*(const domainname*) "\010" "hmac-md5" "\007" "sig-alg" "\003" "reg" "\003" "int") // Adapted from Appendix, RFC 2104 mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len) { MD5_CTX k; mDNSu8 buf[MD5_LEN]; int i; // If key is longer than HMAC_LEN reset it to MD5(key) if (len > HMAC_LEN) { MD5_Init(&k); MD5_Update(&k, key, len); MD5_Final(buf, &k); key = buf; len = MD5_LEN; } // store key in pads mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN); mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN); mDNSPlatformMemCopy(info->keydata_ipad, key, len); mDNSPlatformMemCopy(info->keydata_opad, key, len); // XOR key with ipad and opad values for (i = 0; i < HMAC_LEN; i++) { info->keydata_ipad[i] ^= HMAC_IPAD; info->keydata_opad[i] ^= HMAC_OPAD; } } mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key) { mDNSu8 keybuf[1024]; mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf)); if (keylen < 0) return(keylen); DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen); return(keylen); } mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode) { AuthRecord tsig; mDNSu8 *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals; // Get existing numAdditionals value mDNSu32 utc32; mDNSu8 utc48[6]; mDNSu8 digest[MD5_LEN]; mDNSu8 *ptr = *end; mDNSu32 len; mDNSOpaque16 buf; MD5_CTX c; mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]); // Init MD5 context, digest inner key pad and message MD5_Init(&c); MD5_Update(&c, info->keydata_ipad, HMAC_LEN); MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg)); // Construct TSIG RR, digesting variables as apporpriate mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL); // key name AssignDomainName(&tsig.namestorage, &info->keyname); MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname)); // class tsig.resrec.rrclass = kDNSQClass_ANY; buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY); MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // ttl tsig.resrec.rroriginalttl = 0; MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl)); // alg name AssignDomainName(&tsig.resrec.rdata->u.name, &HMAC_MD5_AlgName); len = DomainNameLength(&HMAC_MD5_AlgName); rdata = tsig.resrec.rdata->u.data + len; MD5_Update(&c, HMAC_MD5_AlgName.c, len); // time // get UTC (universal time), convert to 48-bit unsigned in network byte order utc32 = (mDNSu32)mDNSPlatformUTC(); if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; } utc48[0] = 0; utc48[1] = 0; utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff); utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff); utc48[4] = (mDNSu8)((utc32 >> 8) & 0xff); utc48[5] = (mDNSu8)( utc32 & 0xff); mDNSPlatformMemCopy(rdata, utc48, 6); rdata += 6; MD5_Update(&c, utc48, 6); // 300 sec is fudge recommended in RFC 2485 rdata[0] = (mDNSu8)((300 >> 8) & 0xff); rdata[1] = (mDNSu8)( 300 & 0xff); MD5_Update(&c, rdata, sizeof(mDNSOpaque16)); rdata += sizeof(mDNSOpaque16); // digest error (tcode) and other data len (zero) - we'll add them to the rdata later buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff); buf.b[1] = (mDNSu8)( tcode & 0xff); MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error buf.NotAnInteger = 0; MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len // finish the message & tsig var hash MD5_Final(digest, &c); // perform outer MD5 (outer key pad, inner digest) MD5_Init(&c); MD5_Update(&c, info->keydata_opad, HMAC_LEN); MD5_Update(&c, digest, MD5_LEN); MD5_Final(digest, &c); // set remaining rdata fields rdata[0] = (mDNSu8)((MD5_LEN >> 8) & 0xff); rdata[1] = (mDNSu8)( MD5_LEN & 0xff); rdata += sizeof(mDNSOpaque16); mDNSPlatformMemCopy(rdata, digest, MD5_LEN); // MAC rdata += MD5_LEN; rdata[0] = msg->h.id.b[0]; // original ID rdata[1] = msg->h.id.b[1]; rdata[2] = (mDNSu8)((tcode >> 8) & 0xff); rdata[3] = (mDNSu8)( tcode & 0xff); rdata[4] = 0; // other data len rdata[5] = 0; rdata += 6; tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data); *end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0); if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; } // Write back updated numAdditionals value countPtr[0] = (mDNSu8)(numAdditionals >> 8); countPtr[1] = (mDNSu8)(numAdditionals & 0xFF); } mDNSexport mDNSBool DNSDigest_VerifyMessage(DNSMessage *msg, mDNSu8 *end, LargeCacheRecord * lcr, DomainAuthInfo *info, mDNSu16 * rcode, mDNSu16 * tcode) { mDNSu8 * ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data; mDNSs32 now; mDNSs32 then; mDNSu8 thisDigest[MD5_LEN]; mDNSu8 thatDigest[MD5_LEN]; mDNSu32 macsize; mDNSOpaque16 buf; mDNSu8 utc48[6]; mDNSs32 delta; mDNSu16 fudge; domainname * algo; MD5_CTX c; mDNSBool ok = mDNSfalse; // We only support HMAC-MD5 for now algo = (domainname*) ptr; if (!SameDomainName(algo, &HMAC_MD5_AlgName)) { LogMsg("ERROR: DNSDigest_VerifyMessage - TSIG algorithm not supported: %##s", algo->c); *rcode = kDNSFlag1_RC_NotAuth; *tcode = TSIG_ErrBadKey; ok = mDNSfalse; goto exit; } ptr += DomainNameLength(algo); // Check the times now = mDNSPlatformUTC(); if (now == -1) { LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1"); *rcode = kDNSFlag1_RC_NotAuth; *tcode = TSIG_ErrBadTime; ok = mDNSfalse; goto exit; } // Get the 48 bit time field, skipping over the first word utc48[0] = *ptr++; utc48[1] = *ptr++; utc48[2] = *ptr++; utc48[3] = *ptr++; utc48[4] = *ptr++; utc48[5] = *ptr++; then = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16)); fudge = NToH16(ptr); ptr += sizeof(mDNSu16); delta = (now > then) ? now - then : then - now; if (delta > fudge) { LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge); *rcode = kDNSFlag1_RC_NotAuth; *tcode = TSIG_ErrBadTime; ok = mDNSfalse; goto exit; } // MAC size macsize = (mDNSu32) NToH16(ptr); ptr += sizeof(mDNSu16); // MAC mDNSPlatformMemCopy(thatDigest, ptr, MD5_LEN); // Init MD5 context, digest inner key pad and message MD5_Init(&c); MD5_Update(&c, info->keydata_ipad, HMAC_LEN); MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg)); // Key name MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name)); // Class name buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass); MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // TTL MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl)); // Algorithm MD5_Update(&c, algo->c, DomainNameLength(algo)); // Time MD5_Update(&c, utc48, 6); // Fudge buf = mDNSOpaque16fromIntVal(fudge); MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // Digest error and other data len (both zero) - we'll add them to the rdata later buf.NotAnInteger = 0; MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len // Finish the message & tsig var hash MD5_Final(thisDigest, &c); // perform outer MD5 (outer key pad, inner digest) MD5_Init(&c); MD5_Update(&c, info->keydata_opad, HMAC_LEN); MD5_Update(&c, thisDigest, MD5_LEN); MD5_Final(thisDigest, &c); if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN)) { LogMsg("ERROR: DNSDigest_VerifyMessage - bad signature"); *rcode = kDNSFlag1_RC_NotAuth; *tcode = TSIG_ErrBadSig; ok = mDNSfalse; goto exit; } // set remaining rdata fields ok = mDNStrue; exit: return ok; } #ifdef __cplusplus } #endif