/* * Copyright 2011 Christoph Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "tgsi/tgsi_build.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_scan.h" #include "tgsi/tgsi_util.h" #include #include "codegen/nv50_ir.h" #include "codegen/nv50_ir_util.h" #include "codegen/nv50_ir_build_util.h" namespace tgsi { class Source; static nv50_ir::operation translateOpcode(uint opcode); static nv50_ir::DataFile translateFile(uint file); static nv50_ir::TexTarget translateTexture(uint texTarg); static nv50_ir::SVSemantic translateSysVal(uint sysval); static nv50_ir::CacheMode translateCacheMode(uint qualifier); static nv50_ir::ImgFormat translateImgFormat(uint format); class Instruction { public: Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { } class SrcRegister { public: SrcRegister(const struct tgsi_full_src_register *src) : reg(src->Register), fsr(src) { } SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { } SrcRegister(const struct tgsi_ind_register& ind) : reg(tgsi_util_get_src_from_ind(&ind)), fsr(NULL) { } struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off) { struct tgsi_src_register reg; memset(®, 0, sizeof(reg)); reg.Index = off.Index; reg.File = off.File; reg.SwizzleX = off.SwizzleX; reg.SwizzleY = off.SwizzleY; reg.SwizzleZ = off.SwizzleZ; return reg; } SrcRegister(const struct tgsi_texture_offset& off) : reg(offsetToSrc(off)), fsr(NULL) { } uint getFile() const { return reg.File; } bool is2D() const { return reg.Dimension; } bool isIndirect(int dim) const { return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect; } int getIndex(int dim) const { return (dim && fsr) ? fsr->Dimension.Index : reg.Index; } int getSwizzle(int chan) const { return tgsi_util_get_src_register_swizzle(®, chan); } int getArrayId() const { if (isIndirect(0)) return fsr->Indirect.ArrayID; return 0; } nv50_ir::Modifier getMod(int chan) const; SrcRegister getIndirect(int dim) const { assert(fsr && isIndirect(dim)); if (dim) return SrcRegister(fsr->DimIndirect); return SrcRegister(fsr->Indirect); } uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const { assert(reg.File == TGSI_FILE_IMMEDIATE); assert(!reg.Absolute); assert(!reg.Negate); return info->immd.data[reg.Index * 4 + getSwizzle(c)]; } private: const struct tgsi_src_register reg; const struct tgsi_full_src_register *fsr; }; class DstRegister { public: DstRegister(const struct tgsi_full_dst_register *dst) : reg(dst->Register), fdr(dst) { } DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { } uint getFile() const { return reg.File; } bool is2D() const { return reg.Dimension; } bool isIndirect(int dim) const { return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect; } int getIndex(int dim) const { return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index; } unsigned int getMask() const { return reg.WriteMask; } bool isMasked(int chan) const { return !(getMask() & (1 << chan)); } SrcRegister getIndirect(int dim) const { assert(fdr && isIndirect(dim)); if (dim) return SrcRegister(fdr->DimIndirect); return SrcRegister(fdr->Indirect); } struct tgsi_full_src_register asSrc() { assert(fdr); return tgsi_full_src_register_from_dst(fdr); } int getArrayId() const { if (isIndirect(0)) return fdr->Indirect.ArrayID; return 0; } private: const struct tgsi_dst_register reg; const struct tgsi_full_dst_register *fdr; }; inline uint getOpcode() const { return insn->Instruction.Opcode; } unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; } unsigned int dstCount() const { return insn->Instruction.NumDstRegs; } // mask of used components of source s unsigned int srcMask(unsigned int s) const; unsigned int texOffsetMask() const; SrcRegister getSrc(unsigned int s) const { assert(s < srcCount()); return SrcRegister(&insn->Src[s]); } DstRegister getDst(unsigned int d) const { assert(d < dstCount()); return DstRegister(&insn->Dst[d]); } SrcRegister getTexOffset(unsigned int i) const { assert(i < TGSI_FULL_MAX_TEX_OFFSETS); return SrcRegister(insn->TexOffsets[i]); } unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; } bool checkDstSrcAliasing() const; inline nv50_ir::operation getOP() const { return translateOpcode(getOpcode()); } nv50_ir::DataType inferSrcType() const; nv50_ir::DataType inferDstType() const; nv50_ir::CondCode getSetCond() const; nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const; const nv50_ir::TexInstruction::ImgFormatDesc *getImageFormat() const { return &nv50_ir::TexInstruction::formatTable[ translateImgFormat(insn->Memory.Format)]; } nv50_ir::TexTarget getImageTarget() const { return translateTexture(insn->Memory.Texture); } nv50_ir::CacheMode getCacheMode() const { if (!insn->Instruction.Memory) return nv50_ir::CACHE_CA; return translateCacheMode(insn->Memory.Qualifier); } inline uint getLabel() { return insn->Label.Label; } unsigned getSaturate() const { return insn->Instruction.Saturate; } void print() const { tgsi_dump_instruction(insn, 1); } private: const struct tgsi_full_instruction *insn; }; unsigned int Instruction::texOffsetMask() const { const struct tgsi_instruction_texture *tex = &insn->Texture; assert(insn->Instruction.Texture); switch (tex->Texture) { case TGSI_TEXTURE_BUFFER: case TGSI_TEXTURE_1D: case TGSI_TEXTURE_SHADOW1D: case TGSI_TEXTURE_1D_ARRAY: case TGSI_TEXTURE_SHADOW1D_ARRAY: return 0x1; case TGSI_TEXTURE_2D: case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_2D_ARRAY: case TGSI_TEXTURE_SHADOW2D_ARRAY: case TGSI_TEXTURE_RECT: case TGSI_TEXTURE_SHADOWRECT: case TGSI_TEXTURE_2D_MSAA: case TGSI_TEXTURE_2D_ARRAY_MSAA: return 0x3; case TGSI_TEXTURE_3D: return 0x7; default: assert(!"Unexpected texture target"); return 0xf; } } unsigned int Instruction::srcMask(unsigned int s) const { unsigned int mask = insn->Dst[0].Register.WriteMask; switch (insn->Instruction.Opcode) { case TGSI_OPCODE_COS: case TGSI_OPCODE_SIN: return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0); case TGSI_OPCODE_DP2: return 0x3; case TGSI_OPCODE_DP3: return 0x7; case TGSI_OPCODE_DP4: case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */ return 0xf; case TGSI_OPCODE_DST: return mask & (s ? 0xa : 0x6); case TGSI_OPCODE_EX2: case TGSI_OPCODE_EXP: case TGSI_OPCODE_LG2: case TGSI_OPCODE_LOG: case TGSI_OPCODE_POW: case TGSI_OPCODE_RCP: case TGSI_OPCODE_RSQ: return 0x1; case TGSI_OPCODE_IF: case TGSI_OPCODE_UIF: return 0x1; case TGSI_OPCODE_LIT: return 0xb; case TGSI_OPCODE_TEX2: case TGSI_OPCODE_TXB2: case TGSI_OPCODE_TXL2: return (s == 0) ? 0xf : 0x3; case TGSI_OPCODE_TEX: case TGSI_OPCODE_TXB: case TGSI_OPCODE_TXD: case TGSI_OPCODE_TXL: case TGSI_OPCODE_TXP: case TGSI_OPCODE_TXF: case TGSI_OPCODE_TG4: case TGSI_OPCODE_TEX_LZ: case TGSI_OPCODE_TXF_LZ: case TGSI_OPCODE_LODQ: { const struct tgsi_instruction_texture *tex = &insn->Texture; assert(insn->Instruction.Texture); mask = 0x7; if (insn->Instruction.Opcode != TGSI_OPCODE_TEX && insn->Instruction.Opcode != TGSI_OPCODE_TEX_LZ && insn->Instruction.Opcode != TGSI_OPCODE_TXF_LZ && insn->Instruction.Opcode != TGSI_OPCODE_TXD) mask |= 0x8; /* bias, lod or proj */ switch (tex->Texture) { case TGSI_TEXTURE_1D: mask &= 0x9; break; case TGSI_TEXTURE_SHADOW1D: mask &= 0xd; break; case TGSI_TEXTURE_1D_ARRAY: case TGSI_TEXTURE_2D: case TGSI_TEXTURE_RECT: mask &= 0xb; break; case TGSI_TEXTURE_CUBE_ARRAY: case TGSI_TEXTURE_SHADOW2D_ARRAY: case TGSI_TEXTURE_SHADOWCUBE: case TGSI_TEXTURE_SHADOWCUBE_ARRAY: mask |= 0x8; break; default: break; } } return mask; case TGSI_OPCODE_TXQ: return 1; case TGSI_OPCODE_D2I: case TGSI_OPCODE_D2U: case TGSI_OPCODE_D2F: case TGSI_OPCODE_DSLT: case TGSI_OPCODE_DSGE: case TGSI_OPCODE_DSEQ: case TGSI_OPCODE_DSNE: case TGSI_OPCODE_U64SEQ: case TGSI_OPCODE_U64SNE: case TGSI_OPCODE_I64SLT: case TGSI_OPCODE_U64SLT: case TGSI_OPCODE_I64SGE: case TGSI_OPCODE_U64SGE: case TGSI_OPCODE_I642F: case TGSI_OPCODE_U642F: switch (util_bitcount(mask)) { case 1: return 0x3; case 2: return 0xf; default: assert(!"unexpected mask"); return 0xf; } case TGSI_OPCODE_I2D: case TGSI_OPCODE_U2D: case TGSI_OPCODE_F2D: { unsigned int x = 0; if ((mask & 0x3) == 0x3) x |= 1; if ((mask & 0xc) == 0xc) x |= 2; return x; } case TGSI_OPCODE_PK2H: return 0x3; case TGSI_OPCODE_UP2H: return 0x1; default: break; } return mask; } nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const { nv50_ir::Modifier m(0); if (reg.Absolute) m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS); if (reg.Negate) m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG); return m; } static nv50_ir::DataFile translateFile(uint file) { switch (file) { case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST; case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT; case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT; case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR; case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS; case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE; case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE; case TGSI_FILE_BUFFER: return nv50_ir::FILE_MEMORY_BUFFER; case TGSI_FILE_IMAGE: return nv50_ir::FILE_MEMORY_GLOBAL; case TGSI_FILE_MEMORY: return nv50_ir::FILE_MEMORY_GLOBAL; case TGSI_FILE_SAMPLER: case TGSI_FILE_NULL: default: return nv50_ir::FILE_NULL; } } static nv50_ir::SVSemantic translateSysVal(uint sysval) { switch (sysval) { case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE; case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE; case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID; case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID; case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID; case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID; case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID; case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID; case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID; case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX; case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS; case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK; case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID; case TGSI_SEMANTIC_TESSCOORD: return nv50_ir::SV_TESS_COORD; case TGSI_SEMANTIC_TESSOUTER: return nv50_ir::SV_TESS_OUTER; case TGSI_SEMANTIC_TESSINNER: return nv50_ir::SV_TESS_INNER; case TGSI_SEMANTIC_VERTICESIN: return nv50_ir::SV_VERTEX_COUNT; case TGSI_SEMANTIC_HELPER_INVOCATION: return nv50_ir::SV_THREAD_KILL; case TGSI_SEMANTIC_BASEVERTEX: return nv50_ir::SV_BASEVERTEX; case TGSI_SEMANTIC_BASEINSTANCE: return nv50_ir::SV_BASEINSTANCE; case TGSI_SEMANTIC_DRAWID: return nv50_ir::SV_DRAWID; case TGSI_SEMANTIC_WORK_DIM: return nv50_ir::SV_WORK_DIM; case TGSI_SEMANTIC_SUBGROUP_INVOCATION: return nv50_ir::SV_LANEID; case TGSI_SEMANTIC_SUBGROUP_EQ_MASK: return nv50_ir::SV_LANEMASK_EQ; case TGSI_SEMANTIC_SUBGROUP_LT_MASK: return nv50_ir::SV_LANEMASK_LT; case TGSI_SEMANTIC_SUBGROUP_LE_MASK: return nv50_ir::SV_LANEMASK_LE; case TGSI_SEMANTIC_SUBGROUP_GT_MASK: return nv50_ir::SV_LANEMASK_GT; case TGSI_SEMANTIC_SUBGROUP_GE_MASK: return nv50_ir::SV_LANEMASK_GE; default: assert(0); return nv50_ir::SV_CLOCK; } } #define NV50_IR_TEX_TARG_CASE(a, b) \ case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b; static nv50_ir::TexTarget translateTexture(uint tex) { switch (tex) { NV50_IR_TEX_TARG_CASE(1D, 1D); NV50_IR_TEX_TARG_CASE(2D, 2D); NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS); NV50_IR_TEX_TARG_CASE(3D, 3D); NV50_IR_TEX_TARG_CASE(CUBE, CUBE); NV50_IR_TEX_TARG_CASE(RECT, RECT); NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY); NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY); NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY); NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY); NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW); NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW); NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW); NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW); NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW); NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW); NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW); NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER); case TGSI_TEXTURE_UNKNOWN: default: assert(!"invalid texture target"); return nv50_ir::TEX_TARGET_2D; } } static nv50_ir::CacheMode translateCacheMode(uint qualifier) { if (qualifier & TGSI_MEMORY_VOLATILE) return nv50_ir::CACHE_CV; if (qualifier & TGSI_MEMORY_COHERENT) return nv50_ir::CACHE_CG; return nv50_ir::CACHE_CA; } static nv50_ir::ImgFormat translateImgFormat(uint format) { #define FMT_CASE(a, b) \ case PIPE_FORMAT_ ## a: return nv50_ir::FMT_ ## b switch (format) { FMT_CASE(NONE, NONE); FMT_CASE(R32G32B32A32_FLOAT, RGBA32F); FMT_CASE(R16G16B16A16_FLOAT, RGBA16F); FMT_CASE(R32G32_FLOAT, RG32F); FMT_CASE(R16G16_FLOAT, RG16F); FMT_CASE(R11G11B10_FLOAT, R11G11B10F); FMT_CASE(R32_FLOAT, R32F); FMT_CASE(R16_FLOAT, R16F); FMT_CASE(R32G32B32A32_UINT, RGBA32UI); FMT_CASE(R16G16B16A16_UINT, RGBA16UI); FMT_CASE(R10G10B10A2_UINT, RGB10A2UI); FMT_CASE(R8G8B8A8_UINT, RGBA8UI); FMT_CASE(R32G32_UINT, RG32UI); FMT_CASE(R16G16_UINT, RG16UI); FMT_CASE(R8G8_UINT, RG8UI); FMT_CASE(R32_UINT, R32UI); FMT_CASE(R16_UINT, R16UI); FMT_CASE(R8_UINT, R8UI); FMT_CASE(R32G32B32A32_SINT, RGBA32I); FMT_CASE(R16G16B16A16_SINT, RGBA16I); FMT_CASE(R8G8B8A8_SINT, RGBA8I); FMT_CASE(R32G32_SINT, RG32I); FMT_CASE(R16G16_SINT, RG16I); FMT_CASE(R8G8_SINT, RG8I); FMT_CASE(R32_SINT, R32I); FMT_CASE(R16_SINT, R16I); FMT_CASE(R8_SINT, R8I); FMT_CASE(R16G16B16A16_UNORM, RGBA16); FMT_CASE(R10G10B10A2_UNORM, RGB10A2); FMT_CASE(R8G8B8A8_UNORM, RGBA8); FMT_CASE(R16G16_UNORM, RG16); FMT_CASE(R8G8_UNORM, RG8); FMT_CASE(R16_UNORM, R16); FMT_CASE(R8_UNORM, R8); FMT_CASE(R16G16B16A16_SNORM, RGBA16_SNORM); FMT_CASE(R8G8B8A8_SNORM, RGBA8_SNORM); FMT_CASE(R16G16_SNORM, RG16_SNORM); FMT_CASE(R8G8_SNORM, RG8_SNORM); FMT_CASE(R16_SNORM, R16_SNORM); FMT_CASE(R8_SNORM, R8_SNORM); FMT_CASE(B8G8R8A8_UNORM, BGRA8); } assert(!"Unexpected format"); return nv50_ir::FMT_NONE; } nv50_ir::DataType Instruction::inferSrcType() const { switch (getOpcode()) { case TGSI_OPCODE_UIF: case TGSI_OPCODE_AND: case TGSI_OPCODE_OR: case TGSI_OPCODE_XOR: case TGSI_OPCODE_NOT: case TGSI_OPCODE_SHL: case TGSI_OPCODE_U2F: case TGSI_OPCODE_U2D: case TGSI_OPCODE_U2I64: case TGSI_OPCODE_UADD: case TGSI_OPCODE_UDIV: case TGSI_OPCODE_UMOD: case TGSI_OPCODE_UMAD: case TGSI_OPCODE_UMUL: case TGSI_OPCODE_UMUL_HI: case TGSI_OPCODE_UMAX: case TGSI_OPCODE_UMIN: case TGSI_OPCODE_USEQ: case TGSI_OPCODE_USGE: case TGSI_OPCODE_USLT: case TGSI_OPCODE_USNE: case TGSI_OPCODE_USHR: case TGSI_OPCODE_ATOMUADD: case TGSI_OPCODE_ATOMXCHG: case TGSI_OPCODE_ATOMCAS: case TGSI_OPCODE_ATOMAND: case TGSI_OPCODE_ATOMOR: case TGSI_OPCODE_ATOMXOR: case TGSI_OPCODE_ATOMUMIN: case TGSI_OPCODE_ATOMUMAX: case TGSI_OPCODE_UBFE: case TGSI_OPCODE_UMSB: case TGSI_OPCODE_UP2H: case TGSI_OPCODE_VOTE_ALL: case TGSI_OPCODE_VOTE_ANY: case TGSI_OPCODE_VOTE_EQ: return nv50_ir::TYPE_U32; case TGSI_OPCODE_I2F: case TGSI_OPCODE_I2D: case TGSI_OPCODE_I2I64: case TGSI_OPCODE_IDIV: case TGSI_OPCODE_IMUL_HI: case TGSI_OPCODE_IMAX: case TGSI_OPCODE_IMIN: case TGSI_OPCODE_IABS: case TGSI_OPCODE_INEG: case TGSI_OPCODE_ISGE: case TGSI_OPCODE_ISHR: case TGSI_OPCODE_ISLT: case TGSI_OPCODE_ISSG: case TGSI_OPCODE_MOD: case TGSI_OPCODE_UARL: case TGSI_OPCODE_ATOMIMIN: case TGSI_OPCODE_ATOMIMAX: case TGSI_OPCODE_IBFE: case TGSI_OPCODE_IMSB: return nv50_ir::TYPE_S32; case TGSI_OPCODE_D2F: case TGSI_OPCODE_D2I: case TGSI_OPCODE_D2U: case TGSI_OPCODE_D2I64: case TGSI_OPCODE_D2U64: case TGSI_OPCODE_DABS: case TGSI_OPCODE_DNEG: case TGSI_OPCODE_DADD: case TGSI_OPCODE_DMUL: case TGSI_OPCODE_DDIV: case TGSI_OPCODE_DMAX: case TGSI_OPCODE_DMIN: case TGSI_OPCODE_DSLT: case TGSI_OPCODE_DSGE: case TGSI_OPCODE_DSEQ: case TGSI_OPCODE_DSNE: case TGSI_OPCODE_DRCP: case TGSI_OPCODE_DSQRT: case TGSI_OPCODE_DMAD: case TGSI_OPCODE_DFMA: case TGSI_OPCODE_DFRAC: case TGSI_OPCODE_DRSQ: case TGSI_OPCODE_DTRUNC: case TGSI_OPCODE_DCEIL: case TGSI_OPCODE_DFLR: case TGSI_OPCODE_DROUND: return nv50_ir::TYPE_F64; case TGSI_OPCODE_U64SEQ: case TGSI_OPCODE_U64SNE: case TGSI_OPCODE_U64SLT: case TGSI_OPCODE_U64SGE: case TGSI_OPCODE_U64MIN: case TGSI_OPCODE_U64MAX: case TGSI_OPCODE_U64ADD: case TGSI_OPCODE_U64MUL: case TGSI_OPCODE_U64SHL: case TGSI_OPCODE_U64SHR: case TGSI_OPCODE_U64DIV: case TGSI_OPCODE_U64MOD: case TGSI_OPCODE_U642F: case TGSI_OPCODE_U642D: return nv50_ir::TYPE_U64; case TGSI_OPCODE_I64ABS: case TGSI_OPCODE_I64SSG: case TGSI_OPCODE_I64NEG: case TGSI_OPCODE_I64SLT: case TGSI_OPCODE_I64SGE: case TGSI_OPCODE_I64MIN: case TGSI_OPCODE_I64MAX: case TGSI_OPCODE_I64SHR: case TGSI_OPCODE_I64DIV: case TGSI_OPCODE_I64MOD: case TGSI_OPCODE_I642F: case TGSI_OPCODE_I642D: return nv50_ir::TYPE_S64; default: return nv50_ir::TYPE_F32; } } nv50_ir::DataType Instruction::inferDstType() const { switch (getOpcode()) { case TGSI_OPCODE_D2U: case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32; case TGSI_OPCODE_D2I: case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32; case TGSI_OPCODE_FSEQ: case TGSI_OPCODE_FSGE: case TGSI_OPCODE_FSLT: case TGSI_OPCODE_FSNE: case TGSI_OPCODE_DSEQ: case TGSI_OPCODE_DSGE: case TGSI_OPCODE_DSLT: case TGSI_OPCODE_DSNE: case TGSI_OPCODE_I64SLT: case TGSI_OPCODE_I64SGE: case TGSI_OPCODE_U64SEQ: case TGSI_OPCODE_U64SNE: case TGSI_OPCODE_U64SLT: case TGSI_OPCODE_U64SGE: case TGSI_OPCODE_PK2H: return nv50_ir::TYPE_U32; case TGSI_OPCODE_I2F: case TGSI_OPCODE_U2F: case TGSI_OPCODE_D2F: case TGSI_OPCODE_I642F: case TGSI_OPCODE_U642F: case TGSI_OPCODE_UP2H: return nv50_ir::TYPE_F32; case TGSI_OPCODE_I2D: case TGSI_OPCODE_U2D: case TGSI_OPCODE_F2D: case TGSI_OPCODE_I642D: case TGSI_OPCODE_U642D: return nv50_ir::TYPE_F64; case TGSI_OPCODE_I2I64: case TGSI_OPCODE_U2I64: case TGSI_OPCODE_F2I64: case TGSI_OPCODE_D2I64: return nv50_ir::TYPE_S64; case TGSI_OPCODE_F2U64: case TGSI_OPCODE_D2U64: return nv50_ir::TYPE_U64; default: return inferSrcType(); } } nv50_ir::CondCode Instruction::getSetCond() const { using namespace nv50_ir; switch (getOpcode()) { case TGSI_OPCODE_SLT: case TGSI_OPCODE_ISLT: case TGSI_OPCODE_USLT: case TGSI_OPCODE_FSLT: case TGSI_OPCODE_DSLT: case TGSI_OPCODE_I64SLT: case TGSI_OPCODE_U64SLT: return CC_LT; case TGSI_OPCODE_SLE: return CC_LE; case TGSI_OPCODE_SGE: case TGSI_OPCODE_ISGE: case TGSI_OPCODE_USGE: case TGSI_OPCODE_FSGE: case TGSI_OPCODE_DSGE: case TGSI_OPCODE_I64SGE: case TGSI_OPCODE_U64SGE: return CC_GE; case TGSI_OPCODE_SGT: return CC_GT; case TGSI_OPCODE_SEQ: case TGSI_OPCODE_USEQ: case TGSI_OPCODE_FSEQ: case TGSI_OPCODE_DSEQ: case TGSI_OPCODE_U64SEQ: return CC_EQ; case TGSI_OPCODE_SNE: case TGSI_OPCODE_FSNE: case TGSI_OPCODE_DSNE: case TGSI_OPCODE_U64SNE: return CC_NEU; case TGSI_OPCODE_USNE: return CC_NE; default: return CC_ALWAYS; } } #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b static nv50_ir::operation translateOpcode(uint opcode) { switch (opcode) { NV50_IR_OPCODE_CASE(ARL, SHL); NV50_IR_OPCODE_CASE(MOV, MOV); NV50_IR_OPCODE_CASE(RCP, RCP); NV50_IR_OPCODE_CASE(RSQ, RSQ); NV50_IR_OPCODE_CASE(SQRT, SQRT); NV50_IR_OPCODE_CASE(MUL, MUL); NV50_IR_OPCODE_CASE(ADD, ADD); NV50_IR_OPCODE_CASE(MIN, MIN); NV50_IR_OPCODE_CASE(MAX, MAX); NV50_IR_OPCODE_CASE(SLT, SET); NV50_IR_OPCODE_CASE(SGE, SET); NV50_IR_OPCODE_CASE(MAD, MAD); NV50_IR_OPCODE_CASE(FMA, FMA); NV50_IR_OPCODE_CASE(FLR, FLOOR); NV50_IR_OPCODE_CASE(ROUND, CVT); NV50_IR_OPCODE_CASE(EX2, EX2); NV50_IR_OPCODE_CASE(LG2, LG2); NV50_IR_OPCODE_CASE(POW, POW); NV50_IR_OPCODE_CASE(COS, COS); NV50_IR_OPCODE_CASE(DDX, DFDX); NV50_IR_OPCODE_CASE(DDX_FINE, DFDX); NV50_IR_OPCODE_CASE(DDY, DFDY); NV50_IR_OPCODE_CASE(DDY_FINE, DFDY); NV50_IR_OPCODE_CASE(KILL, DISCARD); NV50_IR_OPCODE_CASE(SEQ, SET); NV50_IR_OPCODE_CASE(SGT, SET); NV50_IR_OPCODE_CASE(SIN, SIN); NV50_IR_OPCODE_CASE(SLE, SET); NV50_IR_OPCODE_CASE(SNE, SET); NV50_IR_OPCODE_CASE(TEX, TEX); NV50_IR_OPCODE_CASE(TXD, TXD); NV50_IR_OPCODE_CASE(TXP, TEX); NV50_IR_OPCODE_CASE(CAL, CALL); NV50_IR_OPCODE_CASE(RET, RET); NV50_IR_OPCODE_CASE(CMP, SLCT); NV50_IR_OPCODE_CASE(TXB, TXB); NV50_IR_OPCODE_CASE(DIV, DIV); NV50_IR_OPCODE_CASE(TXL, TXL); NV50_IR_OPCODE_CASE(TEX_LZ, TXL); NV50_IR_OPCODE_CASE(CEIL, CEIL); NV50_IR_OPCODE_CASE(I2F, CVT); NV50_IR_OPCODE_CASE(NOT, NOT); NV50_IR_OPCODE_CASE(TRUNC, TRUNC); NV50_IR_OPCODE_CASE(SHL, SHL); NV50_IR_OPCODE_CASE(AND, AND); NV50_IR_OPCODE_CASE(OR, OR); NV50_IR_OPCODE_CASE(MOD, MOD); NV50_IR_OPCODE_CASE(XOR, XOR); NV50_IR_OPCODE_CASE(TXF, TXF); NV50_IR_OPCODE_CASE(TXF_LZ, TXF); NV50_IR_OPCODE_CASE(TXQ, TXQ); NV50_IR_OPCODE_CASE(TXQS, TXQ); NV50_IR_OPCODE_CASE(TG4, TXG); NV50_IR_OPCODE_CASE(LODQ, TXLQ); NV50_IR_OPCODE_CASE(EMIT, EMIT); NV50_IR_OPCODE_CASE(ENDPRIM, RESTART); NV50_IR_OPCODE_CASE(KILL_IF, DISCARD); NV50_IR_OPCODE_CASE(F2I, CVT); NV50_IR_OPCODE_CASE(FSEQ, SET); NV50_IR_OPCODE_CASE(FSGE, SET); NV50_IR_OPCODE_CASE(FSLT, SET); NV50_IR_OPCODE_CASE(FSNE, SET); NV50_IR_OPCODE_CASE(IDIV, DIV); NV50_IR_OPCODE_CASE(IMAX, MAX); NV50_IR_OPCODE_CASE(IMIN, MIN); NV50_IR_OPCODE_CASE(IABS, ABS); NV50_IR_OPCODE_CASE(INEG, NEG); NV50_IR_OPCODE_CASE(ISGE, SET); NV50_IR_OPCODE_CASE(ISHR, SHR); NV50_IR_OPCODE_CASE(ISLT, SET); NV50_IR_OPCODE_CASE(F2U, CVT); NV50_IR_OPCODE_CASE(U2F, CVT); NV50_IR_OPCODE_CASE(UADD, ADD); NV50_IR_OPCODE_CASE(UDIV, DIV); NV50_IR_OPCODE_CASE(UMAD, MAD); NV50_IR_OPCODE_CASE(UMAX, MAX); NV50_IR_OPCODE_CASE(UMIN, MIN); NV50_IR_OPCODE_CASE(UMOD, MOD); NV50_IR_OPCODE_CASE(UMUL, MUL); NV50_IR_OPCODE_CASE(USEQ, SET); NV50_IR_OPCODE_CASE(USGE, SET); NV50_IR_OPCODE_CASE(USHR, SHR); NV50_IR_OPCODE_CASE(USLT, SET); NV50_IR_OPCODE_CASE(USNE, SET); NV50_IR_OPCODE_CASE(DABS, ABS); NV50_IR_OPCODE_CASE(DNEG, NEG); NV50_IR_OPCODE_CASE(DADD, ADD); NV50_IR_OPCODE_CASE(DMUL, MUL); NV50_IR_OPCODE_CASE(DDIV, DIV); NV50_IR_OPCODE_CASE(DMAX, MAX); NV50_IR_OPCODE_CASE(DMIN, MIN); NV50_IR_OPCODE_CASE(DSLT, SET); NV50_IR_OPCODE_CASE(DSGE, SET); NV50_IR_OPCODE_CASE(DSEQ, SET); NV50_IR_OPCODE_CASE(DSNE, SET); NV50_IR_OPCODE_CASE(DRCP, RCP); NV50_IR_OPCODE_CASE(DSQRT, SQRT); NV50_IR_OPCODE_CASE(DMAD, MAD); NV50_IR_OPCODE_CASE(DFMA, FMA); NV50_IR_OPCODE_CASE(D2I, CVT); NV50_IR_OPCODE_CASE(D2U, CVT); NV50_IR_OPCODE_CASE(I2D, CVT); NV50_IR_OPCODE_CASE(U2D, CVT); NV50_IR_OPCODE_CASE(DRSQ, RSQ); NV50_IR_OPCODE_CASE(DTRUNC, TRUNC); NV50_IR_OPCODE_CASE(DCEIL, CEIL); NV50_IR_OPCODE_CASE(DFLR, FLOOR); NV50_IR_OPCODE_CASE(DROUND, CVT); NV50_IR_OPCODE_CASE(U64SEQ, SET); NV50_IR_OPCODE_CASE(U64SNE, SET); NV50_IR_OPCODE_CASE(U64SLT, SET); NV50_IR_OPCODE_CASE(U64SGE, SET); NV50_IR_OPCODE_CASE(I64SLT, SET); NV50_IR_OPCODE_CASE(I64SGE, SET); NV50_IR_OPCODE_CASE(I2I64, CVT); NV50_IR_OPCODE_CASE(U2I64, CVT); NV50_IR_OPCODE_CASE(F2I64, CVT); NV50_IR_OPCODE_CASE(F2U64, CVT); NV50_IR_OPCODE_CASE(D2I64, CVT); NV50_IR_OPCODE_CASE(D2U64, CVT); NV50_IR_OPCODE_CASE(I642F, CVT); NV50_IR_OPCODE_CASE(U642F, CVT); NV50_IR_OPCODE_CASE(I642D, CVT); NV50_IR_OPCODE_CASE(U642D, CVT); NV50_IR_OPCODE_CASE(I64MIN, MIN); NV50_IR_OPCODE_CASE(U64MIN, MIN); NV50_IR_OPCODE_CASE(I64MAX, MAX); NV50_IR_OPCODE_CASE(U64MAX, MAX); NV50_IR_OPCODE_CASE(I64ABS, ABS); NV50_IR_OPCODE_CASE(I64NEG, NEG); NV50_IR_OPCODE_CASE(U64ADD, ADD); NV50_IR_OPCODE_CASE(U64MUL, MUL); NV50_IR_OPCODE_CASE(U64SHL, SHL); NV50_IR_OPCODE_CASE(I64SHR, SHR); NV50_IR_OPCODE_CASE(U64SHR, SHR); NV50_IR_OPCODE_CASE(IMUL_HI, MUL); NV50_IR_OPCODE_CASE(UMUL_HI, MUL); NV50_IR_OPCODE_CASE(SAMPLE, TEX); NV50_IR_OPCODE_CASE(SAMPLE_B, TXB); NV50_IR_OPCODE_CASE(SAMPLE_C, TEX); NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX); NV50_IR_OPCODE_CASE(SAMPLE_D, TXD); NV50_IR_OPCODE_CASE(SAMPLE_L, TXL); NV50_IR_OPCODE_CASE(SAMPLE_I, TXF); NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF); NV50_IR_OPCODE_CASE(GATHER4, TXG); NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ); NV50_IR_OPCODE_CASE(ATOMUADD, ATOM); NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM); NV50_IR_OPCODE_CASE(ATOMCAS, ATOM); NV50_IR_OPCODE_CASE(ATOMAND, ATOM); NV50_IR_OPCODE_CASE(ATOMOR, ATOM); NV50_IR_OPCODE_CASE(ATOMXOR, ATOM); NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM); NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM); NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM); NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM); NV50_IR_OPCODE_CASE(TEX2, TEX); NV50_IR_OPCODE_CASE(TXB2, TXB); NV50_IR_OPCODE_CASE(TXL2, TXL); NV50_IR_OPCODE_CASE(IBFE, EXTBF); NV50_IR_OPCODE_CASE(UBFE, EXTBF); NV50_IR_OPCODE_CASE(BFI, INSBF); NV50_IR_OPCODE_CASE(BREV, EXTBF); NV50_IR_OPCODE_CASE(POPC, POPCNT); NV50_IR_OPCODE_CASE(LSB, BFIND); NV50_IR_OPCODE_CASE(IMSB, BFIND); NV50_IR_OPCODE_CASE(UMSB, BFIND); NV50_IR_OPCODE_CASE(VOTE_ALL, VOTE); NV50_IR_OPCODE_CASE(VOTE_ANY, VOTE); NV50_IR_OPCODE_CASE(VOTE_EQ, VOTE); NV50_IR_OPCODE_CASE(BALLOT, VOTE); NV50_IR_OPCODE_CASE(READ_INVOC, SHFL); NV50_IR_OPCODE_CASE(READ_FIRST, SHFL); NV50_IR_OPCODE_CASE(END, EXIT); default: return nv50_ir::OP_NOP; } } static uint16_t opcodeToSubOp(uint opcode) { switch (opcode) { case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD; case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH; case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS; case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND; case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR; case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR; case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN; case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN; case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX; case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX; case TGSI_OPCODE_IMUL_HI: case TGSI_OPCODE_UMUL_HI: return NV50_IR_SUBOP_MUL_HIGH; case TGSI_OPCODE_VOTE_ALL: return NV50_IR_SUBOP_VOTE_ALL; case TGSI_OPCODE_VOTE_ANY: return NV50_IR_SUBOP_VOTE_ANY; case TGSI_OPCODE_VOTE_EQ: return NV50_IR_SUBOP_VOTE_UNI; default: return 0; } } bool Instruction::checkDstSrcAliasing() const { if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory return false; for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) { if (insn->Src[s].Register.File == TGSI_FILE_NULL) break; if (insn->Src[s].Register.File == insn->Dst[0].Register.File && insn->Src[s].Register.Index == insn->Dst[0].Register.Index) return true; } return false; } class Source { public: Source(struct nv50_ir_prog_info *); ~Source(); public: bool scanSource(); unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; } public: struct tgsi_shader_info scan; struct tgsi_full_instruction *insns; const struct tgsi_token *tokens; struct nv50_ir_prog_info *info; nv50_ir::DynArray tempArrays; nv50_ir::DynArray immdArrays; typedef nv50_ir::BuildUtil::Location Location; // these registers are per-subroutine, cannot be used for parameter passing std::set locals; std::set indirectTempArrays; std::map indirectTempOffsets; std::map > tempArrayInfo; std::vector tempArrayId; int clipVertexOutput; struct TextureView { uint8_t target; // TGSI_TEXTURE_* }; std::vector textureViews; /* struct Resource { uint8_t target; // TGSI_TEXTURE_* bool raw; uint8_t slot; // $surface index }; std::vector resources; */ struct MemoryFile { uint8_t mem_type; // TGSI_MEMORY_TYPE_* }; std::vector memoryFiles; private: int inferSysValDirection(unsigned sn) const; bool scanDeclaration(const struct tgsi_full_declaration *); bool scanInstruction(const struct tgsi_full_instruction *); void scanInstructionSrc(const Instruction& insn, const Instruction::SrcRegister& src, unsigned mask); void scanProperty(const struct tgsi_full_property *); void scanImmediate(const struct tgsi_full_immediate *); inline bool isEdgeFlagPassthrough(const Instruction&) const; }; Source::Source(struct nv50_ir_prog_info *prog) : info(prog) { tokens = (const struct tgsi_token *)info->bin.source; if (prog->dbgFlags & NV50_IR_DEBUG_BASIC) tgsi_dump(tokens, 0); } Source::~Source() { if (insns) FREE(insns); if (info->immd.data) FREE(info->immd.data); if (info->immd.type) FREE(info->immd.type); } bool Source::scanSource() { unsigned insnCount = 0; struct tgsi_parse_context parse; tgsi_scan_shader(tokens, &scan); insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions * sizeof(insns[0])); if (!insns) return false; clipVertexOutput = -1; textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1); //resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1); tempArrayId.resize(scan.file_max[TGSI_FILE_TEMPORARY] + 1); memoryFiles.resize(scan.file_max[TGSI_FILE_MEMORY] + 1); info->immd.bufSize = 0; info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1; info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1; info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1; if (info->type == PIPE_SHADER_FRAGMENT) { info->prop.fp.writesDepth = scan.writes_z; info->prop.fp.usesDiscard = scan.uses_kill || info->io.alphaRefBase; } else if (info->type == PIPE_SHADER_GEOMETRY) { info->prop.gp.instanceCount = 1; // default value } info->io.viewportId = -1; info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16); info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte)); tgsi_parse_init(&parse, tokens); while (!tgsi_parse_end_of_tokens(&parse)) { tgsi_parse_token(&parse); switch (parse.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_IMMEDIATE: scanImmediate(&parse.FullToken.FullImmediate); break; case TGSI_TOKEN_TYPE_DECLARATION: scanDeclaration(&parse.FullToken.FullDeclaration); break; case TGSI_TOKEN_TYPE_INSTRUCTION: insns[insnCount++] = parse.FullToken.FullInstruction; scanInstruction(&parse.FullToken.FullInstruction); break; case TGSI_TOKEN_TYPE_PROPERTY: scanProperty(&parse.FullToken.FullProperty); break; default: INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type); break; } } tgsi_parse_free(&parse); if (indirectTempArrays.size()) { int tempBase = 0; for (std::set::const_iterator it = indirectTempArrays.begin(); it != indirectTempArrays.end(); ++it) { std::pair& info = tempArrayInfo[*it]; indirectTempOffsets.insert(std::make_pair(*it, tempBase - info.first)); tempBase += info.second; } info->bin.tlsSpace += tempBase * 16; } if (info->io.genUserClip > 0) { info->io.clipDistances = info->io.genUserClip; const unsigned int nOut = (info->io.genUserClip + 3) / 4; for (unsigned int n = 0; n < nOut; ++n) { unsigned int i = info->numOutputs++; info->out[i].id = i; info->out[i].sn = TGSI_SEMANTIC_CLIPDIST; info->out[i].si = n; info->out[i].mask = ((1 << info->io.clipDistances) - 1) >> (n * 4); } } return info->assignSlots(info) == 0; } void Source::scanProperty(const struct tgsi_full_property *prop) { switch (prop->Property.PropertyName) { case TGSI_PROPERTY_GS_OUTPUT_PRIM: info->prop.gp.outputPrim = prop->u[0].Data; break; case TGSI_PROPERTY_GS_INPUT_PRIM: info->prop.gp.inputPrim = prop->u[0].Data; break; case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES: info->prop.gp.maxVertices = prop->u[0].Data; break; case TGSI_PROPERTY_GS_INVOCATIONS: info->prop.gp.instanceCount = prop->u[0].Data; break; case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS: info->prop.fp.separateFragData = true; break; case TGSI_PROPERTY_FS_COORD_ORIGIN: case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER: case TGSI_PROPERTY_FS_DEPTH_LAYOUT: // we don't care break; case TGSI_PROPERTY_VS_PROHIBIT_UCPS: info->io.genUserClip = -1; break; case TGSI_PROPERTY_TCS_VERTICES_OUT: info->prop.tp.outputPatchSize = prop->u[0].Data; break; case TGSI_PROPERTY_TES_PRIM_MODE: info->prop.tp.domain = prop->u[0].Data; break; case TGSI_PROPERTY_TES_SPACING: info->prop.tp.partitioning = prop->u[0].Data; break; case TGSI_PROPERTY_TES_VERTEX_ORDER_CW: info->prop.tp.winding = prop->u[0].Data; break; case TGSI_PROPERTY_TES_POINT_MODE: if (prop->u[0].Data) info->prop.tp.outputPrim = PIPE_PRIM_POINTS; else info->prop.tp.outputPrim = PIPE_PRIM_TRIANGLES; /* anything but points */ break; case TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH: info->prop.cp.numThreads[0] = prop->u[0].Data; break; case TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT: info->prop.cp.numThreads[1] = prop->u[0].Data; break; case TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH: info->prop.cp.numThreads[2] = prop->u[0].Data; break; case TGSI_PROPERTY_NUM_CLIPDIST_ENABLED: info->io.clipDistances = prop->u[0].Data; break; case TGSI_PROPERTY_NUM_CULLDIST_ENABLED: info->io.cullDistances = prop->u[0].Data; break; case TGSI_PROPERTY_NEXT_SHADER: /* Do not need to know the next shader stage. */ break; case TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL: info->prop.fp.earlyFragTests = prop->u[0].Data; break; case TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE: info->prop.fp.postDepthCoverage = prop->u[0].Data; break; case TGSI_PROPERTY_MUL_ZERO_WINS: info->io.mul_zero_wins = prop->u[0].Data; break; default: INFO("unhandled TGSI property %d\n", prop->Property.PropertyName); break; } } void Source::scanImmediate(const struct tgsi_full_immediate *imm) { const unsigned n = info->immd.count++; assert(n < scan.immediate_count); for (int c = 0; c < 4; ++c) info->immd.data[n * 4 + c] = imm->u[c].Uint; info->immd.type[n] = imm->Immediate.DataType; } int Source::inferSysValDirection(unsigned sn) const { switch (sn) { case TGSI_SEMANTIC_INSTANCEID: case TGSI_SEMANTIC_VERTEXID: return 1; case TGSI_SEMANTIC_LAYER: #if 0 case TGSI_SEMANTIC_VIEWPORTINDEX: return 0; #endif case TGSI_SEMANTIC_PRIMID: return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0; default: return 0; } } bool Source::scanDeclaration(const struct tgsi_full_declaration *decl) { unsigned i, c; unsigned sn = TGSI_SEMANTIC_GENERIC; unsigned si = 0; const unsigned first = decl->Range.First, last = decl->Range.Last; const int arrayId = decl->Array.ArrayID; if (decl->Declaration.Semantic) { sn = decl->Semantic.Name; si = decl->Semantic.Index; } if (decl->Declaration.Local || decl->Declaration.File == TGSI_FILE_ADDRESS) { for (i = first; i <= last; ++i) { for (c = 0; c < 4; ++c) { locals.insert( Location(decl->Declaration.File, decl->Dim.Index2D, i, c)); } } } switch (decl->Declaration.File) { case TGSI_FILE_INPUT: if (info->type == PIPE_SHADER_VERTEX) { // all vertex attributes are equal for (i = first; i <= last; ++i) { info->in[i].sn = TGSI_SEMANTIC_GENERIC; info->in[i].si = i; } } else { for (i = first; i <= last; ++i, ++si) { info->in[i].id = i; info->in[i].sn = sn; info->in[i].si = si; if (info->type == PIPE_SHADER_FRAGMENT) { // translate interpolation mode switch (decl->Interp.Interpolate) { case TGSI_INTERPOLATE_CONSTANT: info->in[i].flat = 1; break; case TGSI_INTERPOLATE_COLOR: info->in[i].sc = 1; break; case TGSI_INTERPOLATE_LINEAR: info->in[i].linear = 1; break; default: break; } if (decl->Interp.Location) info->in[i].centroid = 1; } if (sn == TGSI_SEMANTIC_PATCH) info->in[i].patch = 1; if (sn == TGSI_SEMANTIC_PATCH) info->numPatchConstants = MAX2(info->numPatchConstants, si + 1); } } break; case TGSI_FILE_OUTPUT: for (i = first; i <= last; ++i, ++si) { switch (sn) { case TGSI_SEMANTIC_POSITION: if (info->type == PIPE_SHADER_FRAGMENT) info->io.fragDepth = i; else if (clipVertexOutput < 0) clipVertexOutput = i; break; case TGSI_SEMANTIC_COLOR: if (info->type == PIPE_SHADER_FRAGMENT) info->prop.fp.numColourResults++; break; case TGSI_SEMANTIC_EDGEFLAG: info->io.edgeFlagOut = i; break; case TGSI_SEMANTIC_CLIPVERTEX: clipVertexOutput = i; break; case TGSI_SEMANTIC_CLIPDIST: info->io.genUserClip = -1; break; case TGSI_SEMANTIC_SAMPLEMASK: info->io.sampleMask = i; break; case TGSI_SEMANTIC_VIEWPORT_INDEX: info->io.viewportId = i; break; case TGSI_SEMANTIC_PATCH: info->numPatchConstants = MAX2(info->numPatchConstants, si + 1); /* fallthrough */ case TGSI_SEMANTIC_TESSOUTER: case TGSI_SEMANTIC_TESSINNER: info->out[i].patch = 1; break; default: break; } info->out[i].id = i; info->out[i].sn = sn; info->out[i].si = si; } break; case TGSI_FILE_SYSTEM_VALUE: switch (sn) { case TGSI_SEMANTIC_INSTANCEID: info->io.instanceId = first; break; case TGSI_SEMANTIC_VERTEXID: info->io.vertexId = first; break; case TGSI_SEMANTIC_BASEVERTEX: case TGSI_SEMANTIC_BASEINSTANCE: case TGSI_SEMANTIC_DRAWID: info->prop.vp.usesDrawParameters = true; break; case TGSI_SEMANTIC_SAMPLEID: case TGSI_SEMANTIC_SAMPLEPOS: info->prop.fp.persampleInvocation = true; break; case TGSI_SEMANTIC_SAMPLEMASK: info->prop.fp.usesSampleMaskIn = true; break; default: break; } for (i = first; i <= last; ++i, ++si) { info->sv[i].sn = sn; info->sv[i].si = si; info->sv[i].input = inferSysValDirection(sn); switch (sn) { case TGSI_SEMANTIC_TESSOUTER: case TGSI_SEMANTIC_TESSINNER: info->sv[i].patch = 1; break; } } break; /* case TGSI_FILE_RESOURCE: for (i = first; i <= last; ++i) { resources[i].target = decl->Resource.Resource; resources[i].raw = decl->Resource.Raw; resources[i].slot = i; } break; */ case TGSI_FILE_SAMPLER_VIEW: for (i = first; i <= last; ++i) textureViews[i].target = decl->SamplerView.Resource; break; case TGSI_FILE_MEMORY: for (i = first; i <= last; ++i) memoryFiles[i].mem_type = decl->Declaration.MemType; break; case TGSI_FILE_NULL: case TGSI_FILE_TEMPORARY: for (i = first; i <= last; ++i) tempArrayId[i] = arrayId; if (arrayId) tempArrayInfo.insert(std::make_pair(arrayId, std::make_pair( first, last - first + 1))); break; case TGSI_FILE_ADDRESS: case TGSI_FILE_CONSTANT: case TGSI_FILE_IMMEDIATE: case TGSI_FILE_SAMPLER: case TGSI_FILE_BUFFER: case TGSI_FILE_IMAGE: break; default: ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File); return false; } return true; } inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const { return insn.getOpcode() == TGSI_OPCODE_MOV && insn.getDst(0).getIndex(0) == info->io.edgeFlagOut && insn.getSrc(0).getFile() == TGSI_FILE_INPUT; } void Source::scanInstructionSrc(const Instruction& insn, const Instruction::SrcRegister& src, unsigned mask) { if (src.getFile() == TGSI_FILE_TEMPORARY) { if (src.isIndirect(0)) indirectTempArrays.insert(src.getArrayId()); } else if (src.getFile() == TGSI_FILE_OUTPUT) { if (src.isIndirect(0)) { // We don't know which one is accessed, just mark everything for // reading. This is an extremely unlikely occurrence. for (unsigned i = 0; i < info->numOutputs; ++i) info->out[i].oread = 1; } else { info->out[src.getIndex(0)].oread = 1; } } if (src.getFile() != TGSI_FILE_INPUT) return; if (src.isIndirect(0)) { for (unsigned i = 0; i < info->numInputs; ++i) info->in[i].mask = 0xf; } else { const int i = src.getIndex(0); for (unsigned c = 0; c < 4; ++c) { if (!(mask & (1 << c))) continue; int k = src.getSwizzle(c); if (k <= TGSI_SWIZZLE_W) info->in[i].mask |= 1 << k; } switch (info->in[i].sn) { case TGSI_SEMANTIC_PSIZE: case TGSI_SEMANTIC_PRIMID: case TGSI_SEMANTIC_FOG: info->in[i].mask &= 0x1; break; case TGSI_SEMANTIC_PCOORD: info->in[i].mask &= 0x3; break; default: break; } } } bool Source::scanInstruction(const struct tgsi_full_instruction *inst) { Instruction insn(inst); if (insn.getOpcode() == TGSI_OPCODE_BARRIER) info->numBarriers = 1; if (insn.getOpcode() == TGSI_OPCODE_FBFETCH) info->prop.fp.readsFramebuffer = true; if (insn.dstCount()) { Instruction::DstRegister dst = insn.getDst(0); if (dst.getFile() == TGSI_FILE_OUTPUT) { if (dst.isIndirect(0)) for (unsigned i = 0; i < info->numOutputs; ++i) info->out[i].mask = 0xf; else info->out[dst.getIndex(0)].mask |= dst.getMask(); if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE || info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID || info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER || info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX || info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG) info->out[dst.getIndex(0)].mask &= 1; if (isEdgeFlagPassthrough(insn)) info->io.edgeFlagIn = insn.getSrc(0).getIndex(0); } else if (dst.getFile() != TGSI_FILE_MEMORY && insn.getOpcode() == TGSI_OPCODE_STORE) { info->io.globalAccess |= 0x2; } else if (dst.getFile() == TGSI_FILE_TEMPORARY) { if (dst.isIndirect(0)) indirectTempArrays.insert(dst.getArrayId()); } else if (dst.getFile() == TGSI_FILE_BUFFER || dst.getFile() == TGSI_FILE_IMAGE || (dst.getFile() == TGSI_FILE_MEMORY && memoryFiles[dst.getIndex(0)].mem_type == TGSI_MEMORY_TYPE_GLOBAL)) { info->io.globalAccess |= 0x2; } } if (insn.srcCount() && ( insn.getSrc(0).getFile() != TGSI_FILE_MEMORY || memoryFiles[insn.getSrc(0).getIndex(0)].mem_type == TGSI_MEMORY_TYPE_GLOBAL)) { switch (insn.getOpcode()) { case TGSI_OPCODE_ATOMUADD: case TGSI_OPCODE_ATOMXCHG: case TGSI_OPCODE_ATOMCAS: case TGSI_OPCODE_ATOMAND: case TGSI_OPCODE_ATOMOR: case TGSI_OPCODE_ATOMXOR: case TGSI_OPCODE_ATOMUMIN: case TGSI_OPCODE_ATOMIMIN: case TGSI_OPCODE_ATOMUMAX: case TGSI_OPCODE_ATOMIMAX: case TGSI_OPCODE_LOAD: info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ? 0x1 : 0x2; break; } } for (unsigned s = 0; s < insn.srcCount(); ++s) scanInstructionSrc(insn, insn.getSrc(s), insn.srcMask(s)); for (unsigned s = 0; s < insn.getNumTexOffsets(); ++s) scanInstructionSrc(insn, insn.getTexOffset(s), insn.texOffsetMask()); return true; } nv50_ir::TexInstruction::Target Instruction::getTexture(const tgsi::Source *code, int s) const { // XXX: indirect access unsigned int r; switch (getSrc(s).getFile()) { /* case TGSI_FILE_RESOURCE: r = getSrc(s).getIndex(0); return translateTexture(code->resources.at(r).target); */ case TGSI_FILE_SAMPLER_VIEW: r = getSrc(s).getIndex(0); return translateTexture(code->textureViews.at(r).target); default: return translateTexture(insn->Texture.Texture); } } } // namespace tgsi namespace { using namespace nv50_ir; class Converter : public BuildUtil { public: Converter(Program *, const tgsi::Source *); ~Converter(); bool run(); private: struct Subroutine { Subroutine(Function *f) : f(f) { } Function *f; ValueMap values; }; Value *shiftAddress(Value *); Value *getVertexBase(int s); Value *getOutputBase(int s); DataArray *getArrayForFile(unsigned file, int idx); Value *fetchSrc(int s, int c); Value *fetchDst(int d, int c); Value *acquireDst(int d, int c); void storeDst(int d, int c, Value *); Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr); void storeDst(const tgsi::Instruction::DstRegister dst, int c, Value *val, Value *ptr); void adjustTempIndex(int arrayId, int &idx, int &idx2d) const; Value *applySrcMod(Value *, int s, int c); Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr); Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c); Symbol *dstToSym(tgsi::Instruction::DstRegister, int c); bool isSubGroupMask(uint8_t semantic); bool handleInstruction(const struct tgsi_full_instruction *); void exportOutputs(); inline Subroutine *getSubroutine(unsigned ip); inline Subroutine *getSubroutine(Function *); inline bool isEndOfSubroutine(uint ip); void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask); // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto) void setTexRS(TexInstruction *, unsigned int& s, int R, int S); void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy); void handleTXF(Value *dst0[4], int R, int L_M); void handleTXQ(Value *dst0[4], enum TexQuery, int R); void handleFBFETCH(Value *dst0[4]); void handleLIT(Value *dst0[4]); void handleUserClipPlanes(); // Symbol *getResourceBase(int r); void getImageCoords(std::vector&, int s); void handleLOAD(Value *dst0[4]); void handleSTORE(); void handleATOM(Value *dst0[4], DataType, uint16_t subOp); void handleINTERP(Value *dst0[4]); uint8_t translateInterpMode(const struct nv50_ir_varying *var, operation& op); Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr); void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork); Value *buildDot(int dim); class BindArgumentsPass : public Pass { public: BindArgumentsPass(Converter &conv) : conv(conv) { } private: Converter &conv; Subroutine *sub; inline const Location *getValueLocation(Subroutine *, Value *); template inline void updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *), T (Function::*proto)); template inline void updatePrototype(BitSet *set, void (Function::*updateSet)(), T (Function::*proto)); protected: bool visit(Function *); bool visit(BasicBlock *bb) { return false; } }; private: const tgsi::Source *code; const struct nv50_ir_prog_info *info; struct { std::map map; Subroutine *cur; } sub; uint ip; // instruction pointer tgsi::Instruction tgsi; DataType dstTy; DataType srcTy; DataArray tData; // TGSI_FILE_TEMPORARY DataArray lData; // TGSI_FILE_TEMPORARY, for indirect arrays DataArray aData; // TGSI_FILE_ADDRESS DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers) Value *zero; Value *fragCoord[4]; Value *clipVtx[4]; Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP) uint8_t vtxBaseValid; Value *outBase; // base address of vertex out patch (for TCP) Stack condBBs; // fork BB, then else clause BB Stack joinBBs; // fork BB, for inserting join ops on ENDIF Stack loopBBs; // loop headers Stack breakBBs; // end of / after loop Value *viewport; }; Symbol * Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c) { const int swz = src.getSwizzle(c); /* TODO: Use Array ID when it's available for the index */ return makeSym(src.getFile(), src.is2D() ? src.getIndex(1) : 0, src.getIndex(0), swz, src.getIndex(0) * 16 + swz * 4); } Symbol * Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c) { /* TODO: Use Array ID when it's available for the index */ return makeSym(dst.getFile(), dst.is2D() ? dst.getIndex(1) : 0, dst.getIndex(0), c, dst.getIndex(0) * 16 + c * 4); } Symbol * Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address) { Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile)); sym->reg.fileIndex = fileIdx; if (tgsiFile == TGSI_FILE_MEMORY) { switch (code->memoryFiles[fileIdx].mem_type) { case TGSI_MEMORY_TYPE_GLOBAL: /* No-op this is the default for TGSI_FILE_MEMORY */ sym->setFile(FILE_MEMORY_GLOBAL); break; case TGSI_MEMORY_TYPE_SHARED: sym->setFile(FILE_MEMORY_SHARED); break; case TGSI_MEMORY_TYPE_INPUT: assert(prog->getType() == Program::TYPE_COMPUTE); assert(idx == -1); sym->setFile(FILE_SHADER_INPUT); address += info->prop.cp.inputOffset; break; default: assert(0); /* TODO: Add support for global and private memory */ } } if (idx >= 0) { if (sym->reg.file == FILE_SHADER_INPUT) sym->setOffset(info->in[idx].slot[c] * 4); else if (sym->reg.file == FILE_SHADER_OUTPUT) sym->setOffset(info->out[idx].slot[c] * 4); else if (sym->reg.file == FILE_SYSTEM_VALUE) sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c); else sym->setOffset(address); } else { sym->setOffset(address); } return sym; } uint8_t Converter::translateInterpMode(const struct nv50_ir_varying *var, operation& op) { uint8_t mode = NV50_IR_INTERP_PERSPECTIVE; if (var->flat) mode = NV50_IR_INTERP_FLAT; else if (var->linear) mode = NV50_IR_INTERP_LINEAR; else if (var->sc) mode = NV50_IR_INTERP_SC; op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC) ? OP_PINTERP : OP_LINTERP; if (var->centroid) mode |= NV50_IR_INTERP_CENTROID; return mode; } Value * Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr) { operation op; // XXX: no way to know interpolation mode if we don't know what's accessed const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 : src.getIndex(0)], op); Instruction *insn = new_Instruction(func, op, TYPE_F32); insn->setDef(0, getScratch()); insn->setSrc(0, srcToSym(src, c)); if (op == OP_PINTERP) insn->setSrc(1, fragCoord[3]); if (ptr) insn->setIndirect(0, 0, ptr); insn->setInterpolate(mode); bb->insertTail(insn); return insn->getDef(0); } Value * Converter::applySrcMod(Value *val, int s, int c) { Modifier m = tgsi.getSrc(s).getMod(c); DataType ty = tgsi.inferSrcType(); if (m & Modifier(NV50_IR_MOD_ABS)) val = mkOp1v(OP_ABS, ty, getScratch(), val); if (m & Modifier(NV50_IR_MOD_NEG)) val = mkOp1v(OP_NEG, ty, getScratch(), val); return val; } Value * Converter::getVertexBase(int s) { assert(s < 5); if (!(vtxBaseValid & (1 << s))) { const int index = tgsi.getSrc(s).getIndex(1); Value *rel = NULL; if (tgsi.getSrc(s).isIndirect(1)) rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL); vtxBaseValid |= 1 << s; vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS), mkImm(index), rel); } return vtxBase[s]; } Value * Converter::getOutputBase(int s) { assert(s < 5); if (!(vtxBaseValid & (1 << s))) { Value *offset = loadImm(NULL, tgsi.getSrc(s).getIndex(1)); if (tgsi.getSrc(s).isIndirect(1)) offset = mkOp2v(OP_ADD, TYPE_U32, getSSA(), fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL), offset); vtxBaseValid |= 1 << s; vtxBase[s] = mkOp2v(OP_ADD, TYPE_U32, getSSA(), outBase, offset); } return vtxBase[s]; } Value * Converter::fetchSrc(int s, int c) { Value *res; Value *ptr = NULL, *dimRel = NULL; tgsi::Instruction::SrcRegister src = tgsi.getSrc(s); if (src.isIndirect(0)) ptr = fetchSrc(src.getIndirect(0), 0, NULL); if (src.is2D()) { switch (src.getFile()) { case TGSI_FILE_OUTPUT: dimRel = getOutputBase(s); break; case TGSI_FILE_INPUT: dimRel = getVertexBase(s); break; case TGSI_FILE_CONSTANT: // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k] if (src.isIndirect(1)) dimRel = fetchSrc(src.getIndirect(1), 0, 0); break; default: break; } } res = fetchSrc(src, c, ptr); if (dimRel) res->getInsn()->setIndirect(0, 1, dimRel); return applySrcMod(res, s, c); } Value * Converter::fetchDst(int d, int c) { Value *res; Value *ptr = NULL, *dimRel = NULL; tgsi::Instruction::DstRegister dst = tgsi.getDst(d); if (dst.isIndirect(0)) ptr = fetchSrc(dst.getIndirect(0), 0, NULL); if (dst.is2D()) { switch (dst.getFile()) { case TGSI_FILE_OUTPUT: assert(0); // TODO dimRel = NULL; break; case TGSI_FILE_INPUT: assert(0); // TODO dimRel = NULL; break; case TGSI_FILE_CONSTANT: // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k] if (dst.isIndirect(1)) dimRel = fetchSrc(dst.getIndirect(1), 0, 0); break; default: break; } } struct tgsi_full_src_register fsr = dst.asSrc(); tgsi::Instruction::SrcRegister src(&fsr); res = fetchSrc(src, c, ptr); if (dimRel) res->getInsn()->setIndirect(0, 1, dimRel); return res; } Converter::DataArray * Converter::getArrayForFile(unsigned file, int idx) { switch (file) { case TGSI_FILE_TEMPORARY: return idx == 0 ? &tData : &lData; case TGSI_FILE_ADDRESS: return &aData; case TGSI_FILE_OUTPUT: assert(prog->getType() == Program::TYPE_FRAGMENT); return &oData; default: assert(!"invalid/unhandled TGSI source file"); return NULL; } } Value * Converter::shiftAddress(Value *index) { if (!index) return NULL; return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4)); } void Converter::adjustTempIndex(int arrayId, int &idx, int &idx2d) const { std::map::const_iterator it = code->indirectTempOffsets.find(arrayId); if (it == code->indirectTempOffsets.end()) return; idx2d = 1; idx += it->second; } bool Converter::isSubGroupMask(uint8_t semantic) { switch (semantic) { case TGSI_SEMANTIC_SUBGROUP_EQ_MASK: case TGSI_SEMANTIC_SUBGROUP_LT_MASK: case TGSI_SEMANTIC_SUBGROUP_LE_MASK: case TGSI_SEMANTIC_SUBGROUP_GT_MASK: case TGSI_SEMANTIC_SUBGROUP_GE_MASK: return true; default: return false; } } Value * Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr) { int idx2d = src.is2D() ? src.getIndex(1) : 0; int idx = src.getIndex(0); const int swz = src.getSwizzle(c); Instruction *ld; switch (src.getFile()) { case TGSI_FILE_IMMEDIATE: assert(!ptr); return loadImm(NULL, info->immd.data[idx * 4 + swz]); case TGSI_FILE_CONSTANT: return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr)); case TGSI_FILE_INPUT: if (prog->getType() == Program::TYPE_FRAGMENT) { // don't load masked inputs, won't be assigned a slot if (!ptr && !(info->in[idx].mask & (1 << swz))) return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f); return interpolate(src, c, shiftAddress(ptr)); } else if (prog->getType() == Program::TYPE_GEOMETRY) { if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID) return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0)); // XXX: This is going to be a problem with scalar arrays, i.e. when // we cannot assume that the address is given in units of vec4. // // nv50 and nvc0 need different things here, so let the lowering // passes decide what to do with the address if (ptr) return mkLoadv(TYPE_U32, srcToSym(src, c), ptr); } ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr)); ld->perPatch = info->in[idx].patch; return ld->getDef(0); case TGSI_FILE_OUTPUT: assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL); ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr)); ld->perPatch = info->out[idx].patch; return ld->getDef(0); case TGSI_FILE_SYSTEM_VALUE: assert(!ptr); if (info->sv[idx].sn == TGSI_SEMANTIC_THREAD_ID && info->prop.cp.numThreads[swz] == 1) return loadImm(NULL, 0u); if (isSubGroupMask(info->sv[idx].sn) && swz > 0) return loadImm(NULL, 0u); if (info->sv[idx].sn == TGSI_SEMANTIC_SUBGROUP_SIZE) return loadImm(NULL, 32u); ld = mkOp1(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c)); ld->perPatch = info->sv[idx].patch; return ld->getDef(0); case TGSI_FILE_TEMPORARY: { int arrayid = src.getArrayId(); if (!arrayid) arrayid = code->tempArrayId[idx]; adjustTempIndex(arrayid, idx, idx2d); } /* fallthrough */ default: return getArrayForFile(src.getFile(), idx2d)->load( sub.cur->values, idx, swz, shiftAddress(ptr)); } } Value * Converter::acquireDst(int d, int c) { const tgsi::Instruction::DstRegister dst = tgsi.getDst(d); const unsigned f = dst.getFile(); int idx = dst.getIndex(0); int idx2d = dst.is2D() ? dst.getIndex(1) : 0; if (dst.isMasked(c) || f == TGSI_FILE_BUFFER || f == TGSI_FILE_MEMORY || f == TGSI_FILE_IMAGE) return NULL; if (dst.isIndirect(0) || f == TGSI_FILE_SYSTEM_VALUE || (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT)) return getScratch(); if (f == TGSI_FILE_TEMPORARY) { int arrayid = dst.getArrayId(); if (!arrayid) arrayid = code->tempArrayId[idx]; adjustTempIndex(arrayid, idx, idx2d); } return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c); } void Converter::storeDst(int d, int c, Value *val) { const tgsi::Instruction::DstRegister dst = tgsi.getDst(d); if (tgsi.getSaturate()) { mkOp1(OP_SAT, dstTy, val, val); } Value *ptr = NULL; if (dst.isIndirect(0)) ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL)); if (info->io.genUserClip > 0 && dst.getFile() == TGSI_FILE_OUTPUT && !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) { mkMov(clipVtx[c], val); val = clipVtx[c]; } storeDst(dst, c, val, ptr); } void Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c, Value *val, Value *ptr) { const unsigned f = dst.getFile(); int idx = dst.getIndex(0); int idx2d = dst.is2D() ? dst.getIndex(1) : 0; if (f == TGSI_FILE_SYSTEM_VALUE) { assert(!ptr); mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val); } else if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) { if (ptr || (info->out[idx].mask & (1 << c))) { /* Save the viewport index into a scratch register so that it can be exported at EMIT time */ if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX && prog->getType() == Program::TYPE_GEOMETRY && viewport != NULL) mkOp1(OP_MOV, TYPE_U32, viewport, val); else mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val)->perPatch = info->out[idx].patch; } } else if (f == TGSI_FILE_TEMPORARY || f == TGSI_FILE_ADDRESS || f == TGSI_FILE_OUTPUT) { if (f == TGSI_FILE_TEMPORARY) { int arrayid = dst.getArrayId(); if (!arrayid) arrayid = code->tempArrayId[idx]; adjustTempIndex(arrayid, idx, idx2d); } getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val); } else { assert(!"invalid dst file"); } } #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \ for (chan = 0; chan < 4; ++chan) \ if (!inst.getDst(d).isMasked(chan)) Value * Converter::buildDot(int dim) { assert(dim > 0); Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0); Value *dotp = getScratch(); mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1) ->dnz = info->io.mul_zero_wins; for (int c = 1; c < dim; ++c) { src0 = fetchSrc(0, c); src1 = fetchSrc(1, c); mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp) ->dnz = info->io.mul_zero_wins; } return dotp; } void Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork) { FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL); join->fixed = 1; conv->insertHead(join); assert(!fork->joinAt); fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv); fork->insertBefore(fork->getExit(), fork->joinAt); } void Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S) { unsigned rIdx = 0, sIdx = 0; if (R >= 0 && tgsi.getSrc(R).getFile() != TGSI_FILE_SAMPLER) { // This is the bindless case. We have to get the actual value and pass // it in. This will be the complete handle. tex->tex.rIndirectSrc = s; tex->setSrc(s++, fetchSrc(R, 0)); tex->setTexture(tgsi.getTexture(code, R), 0xff, 0x1f); tex->tex.bindless = true; return; } if (R >= 0) rIdx = tgsi.getSrc(R).getIndex(0); if (S >= 0) sIdx = tgsi.getSrc(S).getIndex(0); tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx); if (tgsi.getSrc(R).isIndirect(0)) { tex->tex.rIndirectSrc = s; tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL)); } if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) { tex->tex.sIndirectSrc = s; tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL)); } } void Converter::handleTXQ(Value *dst0[4], enum TexQuery query, int R) { TexInstruction *tex = new_TexInstruction(func, OP_TXQ); tex->tex.query = query; unsigned int c, d; for (d = 0, c = 0; c < 4; ++c) { if (!dst0[c]) continue; tex->tex.mask |= 1 << c; tex->setDef(d++, dst0[c]); } if (query == TXQ_DIMS) tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level else tex->setSrc((c = 0), zero); setTexRS(tex, ++c, R, -1); bb->insertTail(tex); } void Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask) { Value *proj = fetchSrc(0, 3); Instruction *insn = proj->getUniqueInsn(); int c; if (insn->op == OP_PINTERP) { bb->insertTail(insn = cloneForward(func, insn)); insn->op = OP_LINTERP; insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode()); insn->setSrc(1, NULL); proj = insn->getDef(0); } proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj); for (c = 0; c < 4; ++c) { if (!(mask & (1 << c))) continue; if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP) continue; mask &= ~(1 << c); bb->insertTail(insn = cloneForward(func, insn)); insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode()); insn->setSrc(1, proj); dst[c] = insn->getDef(0); } if (!mask) return; proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3)); for (c = 0; c < 4; ++c) if (mask & (1 << c)) dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj); } // order of nv50 ir sources: x y z layer lod/bias shadow // order of TGSI TEX sources: x y z layer shadow lod/bias // lowering will finally set the hw specific order (like array first on nvc0) void Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy) { Value *arg[4], *src[8]; Value *lod = NULL, *shd = NULL; unsigned int s, c, d; TexInstruction *texi = new_TexInstruction(func, tgsi.getOP()); TexInstruction::Target tgt = tgsi.getTexture(code, R); for (s = 0; s < tgt.getArgCount(); ++s) arg[s] = src[s] = fetchSrc(0, s); if (tgsi.getOpcode() == TGSI_OPCODE_TEX_LZ) lod = loadImm(NULL, 0); else if (texi->op == OP_TXL || texi->op == OP_TXB) lod = fetchSrc(L >> 4, L & 3); if (C == 0x0f) C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && tgt == TEX_TARGET_CUBE_ARRAY_SHADOW) shd = fetchSrc(1, 0); else if (tgt.isShadow()) shd = fetchSrc(C >> 4, C & 3); if (texi->op == OP_TXD) { for (c = 0; c < tgt.getDim() + tgt.isCube(); ++c) { texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c)); texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c)); } } // cube textures don't care about projection value, it's divided out if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) { unsigned int n = tgt.getDim(); if (shd) { arg[n] = shd; ++n; assert(tgt.getDim() == tgt.getArgCount()); } loadProjTexCoords(src, arg, (1 << n) - 1); if (shd) shd = src[n - 1]; } for (c = 0, d = 0; c < 4; ++c) { if (dst[c]) { texi->setDef(d++, dst[c]); texi->tex.mask |= 1 << c; } else { // NOTE: maybe hook up def too, for CSE } } for (s = 0; s < tgt.getArgCount(); ++s) texi->setSrc(s, src[s]); if (lod) texi->setSrc(s++, lod); if (shd) texi->setSrc(s++, shd); setTexRS(texi, s, R, S); if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ) texi->tex.levelZero = true; if (prog->getType() != Program::TYPE_FRAGMENT && (tgsi.getOpcode() == TGSI_OPCODE_TEX || tgsi.getOpcode() == TGSI_OPCODE_TEX2 || tgsi.getOpcode() == TGSI_OPCODE_TXP)) texi->tex.levelZero = true; if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow()) texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info); texi->tex.useOffsets = tgsi.getNumTexOffsets(); for (s = 0; s < tgsi.getNumTexOffsets(); ++s) { for (c = 0; c < 3; ++c) { texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL)); texi->offset[s][c].setInsn(texi); } } bb->insertTail(texi); } // 1st source: xyz = coordinates, w = lod/sample // 2nd source: offset void Converter::handleTXF(Value *dst[4], int R, int L_M) { TexInstruction *texi = new_TexInstruction(func, tgsi.getOP()); int ms; unsigned int c, d, s; texi->tex.target = tgsi.getTexture(code, R); ms = texi->tex.target.isMS() ? 1 : 0; texi->tex.levelZero = ms; /* MS textures don't have mip-maps */ for (c = 0, d = 0; c < 4; ++c) { if (dst[c]) { texi->setDef(d++, dst[c]); texi->tex.mask |= 1 << c; } } for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c) texi->setSrc(c, fetchSrc(0, c)); if (!ms && tgsi.getOpcode() == TGSI_OPCODE_TXF_LZ) texi->setSrc(c++, loadImm(NULL, 0)); else texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms setTexRS(texi, c, R, -1); texi->tex.useOffsets = tgsi.getNumTexOffsets(); for (s = 0; s < tgsi.getNumTexOffsets(); ++s) { for (c = 0; c < 3; ++c) { texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL)); texi->offset[s][c].setInsn(texi); } } bb->insertTail(texi); } void Converter::handleFBFETCH(Value *dst[4]) { TexInstruction *texi = new_TexInstruction(func, OP_TXF); unsigned int c, d; texi->tex.target = TEX_TARGET_2D_MS_ARRAY; texi->tex.levelZero = 1; texi->tex.useOffsets = 0; for (c = 0, d = 0; c < 4; ++c) { if (dst[c]) { texi->setDef(d++, dst[c]); texi->tex.mask |= 1 << c; } } Value *x = mkOp1v(OP_RDSV, TYPE_F32, getScratch(), mkSysVal(SV_POSITION, 0)); Value *y = mkOp1v(OP_RDSV, TYPE_F32, getScratch(), mkSysVal(SV_POSITION, 1)); Value *z = mkOp1v(OP_RDSV, TYPE_U32, getScratch(), mkSysVal(SV_LAYER, 0)); Value *ms = mkOp1v(OP_RDSV, TYPE_U32, getScratch(), mkSysVal(SV_SAMPLE_INDEX, 0)); mkCvt(OP_CVT, TYPE_U32, x, TYPE_F32, x)->rnd = ROUND_Z; mkCvt(OP_CVT, TYPE_U32, y, TYPE_F32, y)->rnd = ROUND_Z; texi->setSrc(0, x); texi->setSrc(1, y); texi->setSrc(2, z); texi->setSrc(3, ms); texi->tex.r = texi->tex.s = -1; bb->insertTail(texi); } void Converter::handleLIT(Value *dst0[4]) { Value *val0 = NULL; unsigned int mask = tgsi.getDst(0).getMask(); if (mask & (1 << 0)) loadImm(dst0[0], 1.0f); if (mask & (1 << 3)) loadImm(dst0[3], 1.0f); if (mask & (3 << 1)) { val0 = getScratch(); mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero); if (mask & (1 << 1)) mkMov(dst0[1], val0); } if (mask & (1 << 2)) { Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3); Value *val1 = getScratch(), *val3 = getScratch(); Value *pos128 = loadImm(NULL, +127.999999f); Value *neg128 = loadImm(NULL, -127.999999f); mkOp2(OP_MAX, TYPE_F32, val1, src1, zero); mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128); mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128); mkOp2(OP_POW, TYPE_F32, val3, val1, val3); mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0); } } /* Keep this around for now as reference when adding img support static inline bool isResourceSpecial(const int r) { return (r == TGSI_RESOURCE_GLOBAL || r == TGSI_RESOURCE_LOCAL || r == TGSI_RESOURCE_PRIVATE || r == TGSI_RESOURCE_INPUT); } static inline bool isResourceRaw(const tgsi::Source *code, const int r) { return isResourceSpecial(r) || code->resources[r].raw; } static inline nv50_ir::TexTarget getResourceTarget(const tgsi::Source *code, int r) { if (isResourceSpecial(r)) return nv50_ir::TEX_TARGET_BUFFER; return tgsi::translateTexture(code->resources.at(r).target); } Symbol * Converter::getResourceBase(const int r) { Symbol *sym = NULL; switch (r) { case TGSI_RESOURCE_GLOBAL: sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, info->io.auxCBSlot); break; case TGSI_RESOURCE_LOCAL: assert(prog->getType() == Program::TYPE_COMPUTE); sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32, info->prop.cp.sharedOffset); break; case TGSI_RESOURCE_PRIVATE: sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32, info->bin.tlsSpace); break; case TGSI_RESOURCE_INPUT: assert(prog->getType() == Program::TYPE_COMPUTE); sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32, info->prop.cp.inputOffset); break; default: sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot); break; } return sym; } void Converter::getResourceCoords(std::vector &coords, int r, int s) { const int arg = TexInstruction::Target(getResourceTarget(code, r)).getArgCount(); for (int c = 0; c < arg; ++c) coords.push_back(fetchSrc(s, c)); // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk if (r == TGSI_RESOURCE_LOCAL || r == TGSI_RESOURCE_PRIVATE || r == TGSI_RESOURCE_INPUT) coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS), coords[0]); } */ static inline int partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask) { int n = 0; while (mask) { if (mask & 1) { size[n]++; } else { if (size[n]) comp[n = 1] = size[0] + 1; else comp[n]++; } mask >>= 1; } if (size[0] == 3) { n = 1; size[0] = (comp[0] == 1) ? 1 : 2; size[1] = 3 - size[0]; comp[1] = comp[0] + size[0]; } return n + 1; } void Converter::getImageCoords(std::vector &coords, int s) { TexInstruction::Target t = TexInstruction::Target(tgsi.getImageTarget()); const int arg = t.getDim() + (t.isArray() || t.isCube()); for (int c = 0; c < arg; ++c) coords.push_back(fetchSrc(s, c)); if (t.isMS()) coords.push_back(fetchSrc(s, 3)); } // For raw loads, granularity is 4 byte. // Usage of the texture read mask on OP_SULDP is not allowed. void Converter::handleLOAD(Value *dst0[4]) { const int r = tgsi.getSrc(0).getIndex(0); int c; std::vector off, src, ldv, def; Value *ind = NULL; if (tgsi.getSrc(0).isIndirect(0)) ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0); switch (tgsi.getSrc(0).getFile()) { case TGSI_FILE_BUFFER: case TGSI_FILE_MEMORY: for (c = 0; c < 4; ++c) { if (!dst0[c]) continue; Value *off; Symbol *sym; uint32_t src0_component_offset = tgsi.getSrc(0).getSwizzle(c) * 4; if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE) { off = NULL; sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c, tgsi.getSrc(1).getValueU32(0, info) + src0_component_offset); } else { // yzw are ignored for buffers off = fetchSrc(1, 0); sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c, src0_component_offset); } Instruction *ld = mkLoad(TYPE_U32, dst0[c], sym, off); ld->cache = tgsi.getCacheMode(); if (ind) ld->setIndirect(0, 1, ind); } break; default: { getImageCoords(off, 1); def.resize(4); for (c = 0; c < 4; ++c) { if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c)) def[c] = getScratch(); else def[c] = dst0[c]; } bool bindless = tgsi.getSrc(0).getFile() != TGSI_FILE_IMAGE; if (bindless) ind = fetchSrc(0, 0); TexInstruction *ld = mkTex(OP_SULDP, tgsi.getImageTarget(), 0, 0, def, off); ld->tex.mask = tgsi.getDst(0).getMask(); ld->tex.format = tgsi.getImageFormat(); ld->cache = tgsi.getCacheMode(); ld->tex.bindless = bindless; if (!bindless) ld->tex.r = r; if (ind) ld->setIndirectR(ind); FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) if (dst0[c] != def[c]) mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]); break; } } /* Keep this around for now as reference when adding img support getResourceCoords(off, r, 1); if (isResourceRaw(code, r)) { uint8_t mask = 0; uint8_t comp[2] = { 0, 0 }; uint8_t size[2] = { 0, 0 }; Symbol *base = getResourceBase(r); // determine the base and size of the at most 2 load ops for (c = 0; c < 4; ++c) if (!tgsi.getDst(0).isMasked(c)) mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X); int n = partitionLoadStore(comp, size, mask); src = off; def.resize(4); // index by component, the ones we need will be non-NULL for (c = 0; c < 4; ++c) { if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c)) def[c] = dst0[c]; else if (mask & (1 << c)) def[c] = getScratch(); } const bool useLd = isResourceSpecial(r) || (info->io.nv50styleSurfaces && code->resources[r].target == TGSI_TEXTURE_BUFFER); for (int i = 0; i < n; ++i) { ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]); if (comp[i]) // adjust x component of source address if necessary src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file), off[0], mkImm(comp[i] * 4)); else src[0] = off[0]; if (useLd) { Instruction *ld = mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]); for (size_t c = 1; c < ldv.size(); ++c) ld->setDef(c, ldv[c]); } else { mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot, 0, ldv, src)->dType = typeOfSize(size[i] * 4); } } } else { def.resize(4); for (c = 0; c < 4; ++c) { if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c)) def[c] = getScratch(); else def[c] = dst0[c]; } mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0, def, off); } FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) if (dst0[c] != def[c]) mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]); */ } // For formatted stores, the write mask on OP_SUSTP can be used. // Raw stores have to be split. void Converter::handleSTORE() { const int r = tgsi.getDst(0).getIndex(0); int c; std::vector off, src, dummy; Value *ind = NULL; if (tgsi.getDst(0).isIndirect(0)) ind = fetchSrc(tgsi.getDst(0).getIndirect(0), 0, 0); switch (tgsi.getDst(0).getFile()) { case TGSI_FILE_BUFFER: case TGSI_FILE_MEMORY: for (c = 0; c < 4; ++c) { if (!(tgsi.getDst(0).getMask() & (1 << c))) continue; Symbol *sym; Value *off; if (tgsi.getSrc(0).getFile() == TGSI_FILE_IMMEDIATE) { off = NULL; sym = makeSym(tgsi.getDst(0).getFile(), r, -1, c, tgsi.getSrc(0).getValueU32(0, info) + 4 * c); } else { // yzw are ignored for buffers off = fetchSrc(0, 0); sym = makeSym(tgsi.getDst(0).getFile(), r, -1, c, 4 * c); } Instruction *st = mkStore(OP_STORE, TYPE_U32, sym, off, fetchSrc(1, c)); st->cache = tgsi.getCacheMode(); if (ind) st->setIndirect(0, 1, ind); } break; default: { getImageCoords(off, 0); src = off; FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) src.push_back(fetchSrc(1, c)); bool bindless = tgsi.getDst(0).getFile() != TGSI_FILE_IMAGE; if (bindless) ind = fetchDst(0, 0); TexInstruction *st = mkTex(OP_SUSTP, tgsi.getImageTarget(), 0, 0, dummy, src); st->tex.mask = tgsi.getDst(0).getMask(); st->tex.format = tgsi.getImageFormat(); st->cache = tgsi.getCacheMode(); st->tex.bindless = bindless; if (!bindless) st->tex.r = r; if (ind) st->setIndirectR(ind); break; } } /* Keep this around for now as reference when adding img support getResourceCoords(off, r, 0); src = off; const int s = src.size(); if (isResourceRaw(code, r)) { uint8_t comp[2] = { 0, 0 }; uint8_t size[2] = { 0, 0 }; int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask()); Symbol *base = getResourceBase(r); const bool useSt = isResourceSpecial(r) || (info->io.nv50styleSurfaces && code->resources[r].target == TGSI_TEXTURE_BUFFER); for (int i = 0; i < n; ++i) { if (comp[i]) // adjust x component of source address if necessary src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file), off[0], mkImm(comp[i] * 4)); else src[0] = off[0]; const DataType stTy = typeOfSize(size[i] * 4); if (useSt) { Instruction *st = mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i])); for (c = 1; c < size[i]; ++c) st->setSrc(1 + c, fetchSrc(1, comp[i] + c)); st->setIndirect(0, 0, src[0]); } else { // attach values to be stored src.resize(s + size[i]); for (c = 0; c < size[i]; ++c) src[s + c] = fetchSrc(1, comp[i] + c); mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot, 0, dummy, src)->setType(stTy); } } } else { FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) src.push_back(fetchSrc(1, c)); mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0, dummy, src)->tex.mask = tgsi.getDst(0).getMask(); } */ } // XXX: These only work on resources with the single-component u32/s32 formats. // Therefore the result is replicated. This might not be intended by TGSI, but // operating on more than 1 component would produce undefined results because // they do not exist. void Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp) { const int r = tgsi.getSrc(0).getIndex(0); std::vector srcv; std::vector defv; LValue *dst = getScratch(); Value *ind = NULL; if (tgsi.getSrc(0).isIndirect(0)) ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0); switch (tgsi.getSrc(0).getFile()) { case TGSI_FILE_BUFFER: case TGSI_FILE_MEMORY: for (int c = 0; c < 4; ++c) { if (!dst0[c]) continue; Instruction *insn; Value *off = fetchSrc(1, c); Value *sym; if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE) sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c, tgsi.getSrc(1).getValueU32(c, info)); else sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c, 0); if (subOp == NV50_IR_SUBOP_ATOM_CAS) insn = mkOp3(OP_ATOM, ty, dst, sym, fetchSrc(2, c), fetchSrc(3, c)); else insn = mkOp2(OP_ATOM, ty, dst, sym, fetchSrc(2, c)); if (tgsi.getSrc(1).getFile() != TGSI_FILE_IMMEDIATE) insn->setIndirect(0, 0, off); if (ind) insn->setIndirect(0, 1, ind); insn->subOp = subOp; } for (int c = 0; c < 4; ++c) if (dst0[c]) dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov break; default: { getImageCoords(srcv, 1); defv.push_back(dst); srcv.push_back(fetchSrc(2, 0)); if (subOp == NV50_IR_SUBOP_ATOM_CAS) srcv.push_back(fetchSrc(3, 0)); bool bindless = tgsi.getSrc(0).getFile() != TGSI_FILE_IMAGE; if (bindless) ind = fetchSrc(0, 0); TexInstruction *tex = mkTex(OP_SUREDP, tgsi.getImageTarget(), 0, 0, defv, srcv); tex->subOp = subOp; tex->tex.mask = 1; tex->tex.format = tgsi.getImageFormat(); tex->setType(ty); tex->tex.bindless = bindless; if (!bindless) tex->tex.r = r; if (ind) tex->setIndirectR(ind); for (int c = 0; c < 4; ++c) if (dst0[c]) dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov break; } } /* Keep this around for now as reference when adding img support getResourceCoords(srcv, r, 1); if (isResourceSpecial(r)) { assert(r != TGSI_RESOURCE_INPUT); Instruction *insn; insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0)); insn->subOp = subOp; if (subOp == NV50_IR_SUBOP_ATOM_CAS) insn->setSrc(2, fetchSrc(3, 0)); insn->setIndirect(0, 0, srcv.at(0)); } else { operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP; TexTarget targ = getResourceTarget(code, r); int idx = code->resources[r].slot; defv.push_back(dst); srcv.push_back(fetchSrc(2, 0)); if (subOp == NV50_IR_SUBOP_ATOM_CAS) srcv.push_back(fetchSrc(3, 0)); TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv); tex->subOp = subOp; tex->tex.mask = 1; tex->setType(ty); } for (int c = 0; c < 4; ++c) if (dst0[c]) dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov */ } void Converter::handleINTERP(Value *dst[4]) { // Check whether the input is linear. All other attributes ignored. Instruction *insn; Value *offset = NULL, *ptr = NULL, *w = NULL; Symbol *sym[4] = { NULL }; bool linear; operation op = OP_NOP; int c, mode = 0; tgsi::Instruction::SrcRegister src = tgsi.getSrc(0); // In some odd cases, in large part due to varying packing, the source // might not actually be an input. This is illegal TGSI, but it's easier to // account for it here than it is to fix it where the TGSI is being // generated. In that case, it's going to be a straight up mov (or sequence // of mov's) from the input in question. We follow the mov chain to see // which input we need to use. if (src.getFile() != TGSI_FILE_INPUT) { if (src.isIndirect(0)) { ERROR("Ignoring indirect input interpolation\n"); return; } FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { Value *val = fetchSrc(0, c); assert(val->defs.size() == 1); insn = val->getInsn(); while (insn->op == OP_MOV) { assert(insn->getSrc(0)->defs.size() == 1); insn = insn->getSrc(0)->getInsn(); if (!insn) { ERROR("Miscompiling shader due to unhandled INTERP\n"); return; } } if (insn->op != OP_LINTERP && insn->op != OP_PINTERP) { ERROR("Trying to interpolate non-input, this is not allowed.\n"); return; } sym[c] = insn->getSrc(0)->asSym(); assert(sym[c]); op = insn->op; mode = insn->ipa; } } else { if (src.isIndirect(0)) ptr = fetchSrc(src.getIndirect(0), 0, NULL); // We can assume that the fixed index will point to an input of the same // interpolation type in case of an indirect. // TODO: Make use of ArrayID. linear = info->in[src.getIndex(0)].linear; if (linear) { op = OP_LINTERP; mode = NV50_IR_INTERP_LINEAR; } else { op = OP_PINTERP; mode = NV50_IR_INTERP_PERSPECTIVE; } } switch (tgsi.getOpcode()) { case TGSI_OPCODE_INTERP_CENTROID: mode |= NV50_IR_INTERP_CENTROID; break; case TGSI_OPCODE_INTERP_SAMPLE: insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0)); insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET; mode |= NV50_IR_INTERP_OFFSET; break; case TGSI_OPCODE_INTERP_OFFSET: { // The input in src1.xy is float, but we need a single 32-bit value // where the upper and lower 16 bits are encoded in S0.12 format. We need // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096, // and then convert to s32. Value *offs[2]; for (c = 0; c < 2; c++) { offs[c] = getScratch(); mkOp2(OP_MIN, TYPE_F32, offs[c], fetchSrc(1, c), loadImm(NULL, 0.4375f)); mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f)); mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f)); mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]); } offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(), offs[1], mkImm(0x1010), offs[0]); mode |= NV50_IR_INTERP_OFFSET; break; } } if (op == OP_PINTERP) { if (offset) { w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset); mkOp1(OP_RCP, TYPE_F32, w, w); } else { w = fragCoord[3]; } } FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { insn = mkOp1(op, TYPE_F32, dst[c], sym[c] ? sym[c] : srcToSym(src, c)); if (op == OP_PINTERP) insn->setSrc(1, w); if (ptr) insn->setIndirect(0, 0, ptr); if (offset) insn->setSrc(op == OP_PINTERP ? 2 : 1, offset); insn->setInterpolate(mode); } } Converter::Subroutine * Converter::getSubroutine(unsigned ip) { std::map::iterator it = sub.map.find(ip); if (it == sub.map.end()) it = sub.map.insert(std::make_pair( ip, Subroutine(new Function(prog, "SUB", ip)))).first; return &it->second; } Converter::Subroutine * Converter::getSubroutine(Function *f) { unsigned ip = f->getLabel(); std::map::iterator it = sub.map.find(ip); if (it == sub.map.end()) it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first; return &it->second; } bool Converter::isEndOfSubroutine(uint ip) { assert(ip < code->scan.num_instructions); tgsi::Instruction insn(&code->insns[ip]); return (insn.getOpcode() == TGSI_OPCODE_END || insn.getOpcode() == TGSI_OPCODE_ENDSUB || // does END occur at end of main or the very end ? insn.getOpcode() == TGSI_OPCODE_BGNSUB); } bool Converter::handleInstruction(const struct tgsi_full_instruction *insn) { Instruction *geni; Value *dst0[4], *rDst0[4]; Value *src0, *src1, *src2, *src3; Value *val0, *val1; int c; tgsi = tgsi::Instruction(insn); bool useScratchDst = tgsi.checkDstSrcAliasing(); operation op = tgsi.getOP(); dstTy = tgsi.inferDstType(); srcTy = tgsi.inferSrcType(); unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0; if (tgsi.dstCount() && tgsi.getOpcode() != TGSI_OPCODE_STORE) { for (c = 0; c < 4; ++c) { rDst0[c] = acquireDst(0, c); dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c]; } } switch (tgsi.getOpcode()) { case TGSI_OPCODE_ADD: case TGSI_OPCODE_UADD: case TGSI_OPCODE_AND: case TGSI_OPCODE_DIV: case TGSI_OPCODE_IDIV: case TGSI_OPCODE_UDIV: case TGSI_OPCODE_MAX: case TGSI_OPCODE_MIN: case TGSI_OPCODE_IMAX: case TGSI_OPCODE_IMIN: case TGSI_OPCODE_UMAX: case TGSI_OPCODE_UMIN: case TGSI_OPCODE_MOD: case TGSI_OPCODE_UMOD: case TGSI_OPCODE_MUL: case TGSI_OPCODE_UMUL: case TGSI_OPCODE_IMUL_HI: case TGSI_OPCODE_UMUL_HI: case TGSI_OPCODE_OR: case TGSI_OPCODE_SHL: case TGSI_OPCODE_ISHR: case TGSI_OPCODE_USHR: case TGSI_OPCODE_XOR: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); src1 = fetchSrc(1, c); geni = mkOp2(op, dstTy, dst0[c], src0, src1); geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode()); if (op == OP_MUL && dstTy == TYPE_F32) geni->dnz = info->io.mul_zero_wins; geni->precise = insn->Instruction.Precise; } break; case TGSI_OPCODE_MAD: case TGSI_OPCODE_UMAD: case TGSI_OPCODE_FMA: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); src1 = fetchSrc(1, c); src2 = fetchSrc(2, c); geni = mkOp3(op, dstTy, dst0[c], src0, src1, src2); if (dstTy == TYPE_F32) geni->dnz = info->io.mul_zero_wins; geni->precise = insn->Instruction.Precise; } break; case TGSI_OPCODE_MOV: case TGSI_OPCODE_CEIL: case TGSI_OPCODE_FLR: case TGSI_OPCODE_TRUNC: case TGSI_OPCODE_RCP: case TGSI_OPCODE_SQRT: case TGSI_OPCODE_IABS: case TGSI_OPCODE_INEG: case TGSI_OPCODE_NOT: case TGSI_OPCODE_DDX: case TGSI_OPCODE_DDY: case TGSI_OPCODE_DDX_FINE: case TGSI_OPCODE_DDY_FINE: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkOp1(op, dstTy, dst0[c], fetchSrc(0, c)); break; case TGSI_OPCODE_RSQ: src0 = fetchSrc(0, 0); val0 = getScratch(); mkOp1(OP_ABS, TYPE_F32, val0, src0); mkOp1(OP_RSQ, TYPE_F32, val0, val0); FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkMov(dst0[c], val0); break; case TGSI_OPCODE_ARL: case TGSI_OPCODE_ARR: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { const RoundMode rnd = tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M; src0 = fetchSrc(0, c); mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd; } break; case TGSI_OPCODE_UARL: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c)); break; case TGSI_OPCODE_POW: val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0)); FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkOp1(OP_MOV, TYPE_F32, dst0[c], val0); break; case TGSI_OPCODE_EX2: case TGSI_OPCODE_LG2: val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0); FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkOp1(OP_MOV, TYPE_F32, dst0[c], val0); break; case TGSI_OPCODE_COS: case TGSI_OPCODE_SIN: val0 = getScratch(); if (mask & 7) { mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0)); mkOp1(op, TYPE_F32, val0, val0); for (c = 0; c < 3; ++c) if (dst0[c]) mkMov(dst0[c], val0); } if (dst0[3]) { mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3)); mkOp1(op, TYPE_F32, dst0[3], val0); } break; case TGSI_OPCODE_EXP: src0 = fetchSrc(0, 0); val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0); if (dst0[1]) mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0); if (dst0[0]) mkOp1(OP_EX2, TYPE_F32, dst0[0], val0); if (dst0[2]) mkOp1(OP_EX2, TYPE_F32, dst0[2], src0); if (dst0[3]) loadImm(dst0[3], 1.0f); break; case TGSI_OPCODE_LOG: src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0)); val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0); if (dst0[0] || dst0[1]) val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0); if (dst0[1]) { mkOp1(OP_EX2, TYPE_F32, dst0[1], val1); mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]); mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0) ->dnz = info->io.mul_zero_wins; } if (dst0[3]) loadImm(dst0[3], 1.0f); break; case TGSI_OPCODE_DP2: val0 = buildDot(2); FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkMov(dst0[c], val0); break; case TGSI_OPCODE_DP3: val0 = buildDot(3); FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkMov(dst0[c], val0); break; case TGSI_OPCODE_DP4: val0 = buildDot(4); FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkMov(dst0[c], val0); break; case TGSI_OPCODE_DST: if (dst0[0]) loadImm(dst0[0], 1.0f); if (dst0[1]) { src0 = fetchSrc(0, 1); src1 = fetchSrc(1, 1); mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1) ->dnz = info->io.mul_zero_wins; } if (dst0[2]) mkMov(dst0[2], fetchSrc(0, 2)); if (dst0[3]) mkMov(dst0[3], fetchSrc(1, 3)); break; case TGSI_OPCODE_LRP: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); src1 = fetchSrc(1, c); src2 = fetchSrc(2, c); mkOp3(OP_MAD, TYPE_F32, dst0[c], mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2) ->dnz = info->io.mul_zero_wins; } break; case TGSI_OPCODE_LIT: handleLIT(dst0); break; case TGSI_OPCODE_ISSG: case TGSI_OPCODE_SSG: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); val0 = getScratch(); val1 = getScratch(); mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero); mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero); if (srcTy == TYPE_F32) mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1); else mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0); } break; case TGSI_OPCODE_UCMP: srcTy = TYPE_U32; /* fallthrough */ case TGSI_OPCODE_CMP: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); src1 = fetchSrc(1, c); src2 = fetchSrc(2, c); if (src1 == src2) mkMov(dst0[c], src1); else mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE, srcTy, dst0[c], srcTy, src1, src2, src0); } break; case TGSI_OPCODE_FRC: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); val0 = getScratch(); mkOp1(OP_FLOOR, TYPE_F32, val0, src0); mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0); } break; case TGSI_OPCODE_ROUND: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c)) ->rnd = ROUND_NI; break; case TGSI_OPCODE_SLT: case TGSI_OPCODE_SGE: case TGSI_OPCODE_SEQ: case TGSI_OPCODE_SGT: case TGSI_OPCODE_SLE: case TGSI_OPCODE_SNE: case TGSI_OPCODE_FSEQ: case TGSI_OPCODE_FSGE: case TGSI_OPCODE_FSLT: case TGSI_OPCODE_FSNE: case TGSI_OPCODE_ISGE: case TGSI_OPCODE_ISLT: case TGSI_OPCODE_USEQ: case TGSI_OPCODE_USGE: case TGSI_OPCODE_USLT: case TGSI_OPCODE_USNE: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); src1 = fetchSrc(1, c); mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1); } break; case TGSI_OPCODE_VOTE_ALL: case TGSI_OPCODE_VOTE_ANY: case TGSI_OPCODE_VOTE_EQ: val0 = new_LValue(func, FILE_PREDICATE); FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { mkCmp(OP_SET, CC_NE, TYPE_U32, val0, TYPE_U32, fetchSrc(0, c), zero); mkOp1(op, dstTy, val0, val0) ->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode()); mkCvt(OP_CVT, TYPE_U32, dst0[c], TYPE_U8, val0); } break; case TGSI_OPCODE_BALLOT: if (!tgsi.getDst(0).isMasked(0)) { val0 = new_LValue(func, FILE_PREDICATE); mkCmp(OP_SET, CC_NE, TYPE_U32, val0, TYPE_U32, fetchSrc(0, 0), zero); mkOp1(op, TYPE_U32, dst0[0], val0)->subOp = NV50_IR_SUBOP_VOTE_ANY; } if (!tgsi.getDst(0).isMasked(1)) mkMov(dst0[1], zero, TYPE_U32); break; case TGSI_OPCODE_READ_FIRST: // ReadFirstInvocationARB(src) is implemented as // ReadInvocationARB(src, findLSB(ballot(true))) val0 = getScratch(); mkOp1(OP_VOTE, TYPE_U32, val0, mkImm(1))->subOp = NV50_IR_SUBOP_VOTE_ANY; mkOp2(OP_EXTBF, TYPE_U32, val0, val0, mkImm(0x2000)) ->subOp = NV50_IR_SUBOP_EXTBF_REV; mkOp1(OP_BFIND, TYPE_U32, val0, val0)->subOp = NV50_IR_SUBOP_BFIND_SAMT; src1 = val0; /* fallthrough */ case TGSI_OPCODE_READ_INVOC: if (tgsi.getOpcode() == TGSI_OPCODE_READ_INVOC) src1 = fetchSrc(1, 0); FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { geni = mkOp3(op, dstTy, dst0[c], fetchSrc(0, c), src1, mkImm(0x1f)); geni->subOp = NV50_IR_SUBOP_SHFL_IDX; } break; case TGSI_OPCODE_CLOCK: // Stick the 32-bit clock into the high dword of the logical result. if (!tgsi.getDst(0).isMasked(0)) mkOp1(OP_MOV, TYPE_U32, dst0[0], zero); if (!tgsi.getDst(0).isMasked(1)) mkOp1(OP_RDSV, TYPE_U32, dst0[1], mkSysVal(SV_CLOCK, 0))->fixed = 1; break; case TGSI_OPCODE_KILL_IF: val0 = new_LValue(func, FILE_PREDICATE); mask = 0; for (c = 0; c < 4; ++c) { const int s = tgsi.getSrc(0).getSwizzle(c); if (mask & (1 << s)) continue; mask |= 1 << s; mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero); mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0); } break; case TGSI_OPCODE_KILL: mkOp(OP_DISCARD, TYPE_NONE, NULL); break; case TGSI_OPCODE_TEX: case TGSI_OPCODE_TEX_LZ: case TGSI_OPCODE_TXB: case TGSI_OPCODE_TXL: case TGSI_OPCODE_TXP: case TGSI_OPCODE_LODQ: // R S L C Dx Dy handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00); break; case TGSI_OPCODE_TXD: handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20); break; case TGSI_OPCODE_TG4: handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00); break; case TGSI_OPCODE_TEX2: handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00); break; case TGSI_OPCODE_TXB2: case TGSI_OPCODE_TXL2: handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00); break; case TGSI_OPCODE_SAMPLE: case TGSI_OPCODE_SAMPLE_B: case TGSI_OPCODE_SAMPLE_D: case TGSI_OPCODE_SAMPLE_L: case TGSI_OPCODE_SAMPLE_C: case TGSI_OPCODE_SAMPLE_C_LZ: handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40); break; case TGSI_OPCODE_TXF_LZ: case TGSI_OPCODE_TXF: handleTXF(dst0, 1, 0x03); break; case TGSI_OPCODE_SAMPLE_I: handleTXF(dst0, 1, 0x03); break; case TGSI_OPCODE_SAMPLE_I_MS: handleTXF(dst0, 1, 0x20); break; case TGSI_OPCODE_TXQ: case TGSI_OPCODE_SVIEWINFO: handleTXQ(dst0, TXQ_DIMS, 1); break; case TGSI_OPCODE_TXQS: // The TXQ_TYPE query returns samples in its 3rd arg, but we need it to // be in .x dst0[1] = dst0[2] = dst0[3] = NULL; std::swap(dst0[0], dst0[2]); handleTXQ(dst0, TXQ_TYPE, 0); std::swap(dst0[0], dst0[2]); break; case TGSI_OPCODE_FBFETCH: handleFBFETCH(dst0); break; case TGSI_OPCODE_F2I: case TGSI_OPCODE_F2U: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z; break; case TGSI_OPCODE_I2F: case TGSI_OPCODE_U2F: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c)); break; case TGSI_OPCODE_PK2H: val0 = getScratch(); val1 = getScratch(); mkCvt(OP_CVT, TYPE_F16, val0, TYPE_F32, fetchSrc(0, 0)); mkCvt(OP_CVT, TYPE_F16, val1, TYPE_F32, fetchSrc(0, 1)); FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) mkOp3(OP_INSBF, TYPE_U32, dst0[c], val1, mkImm(0x1010), val0); break; case TGSI_OPCODE_UP2H: src0 = fetchSrc(0, 0); FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { geni = mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F16, src0); geni->subOp = c & 1; } break; case TGSI_OPCODE_EMIT: /* export the saved viewport index */ if (viewport != NULL) { Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32, info->out[info->io.viewportId].slot[0] * 4); mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport); } /* fallthrough */ case TGSI_OPCODE_ENDPRIM: { // get vertex stream (must be immediate) unsigned int stream = tgsi.getSrc(0).getValueU32(0, info); if (stream && op == OP_RESTART) break; if (info->prop.gp.maxVertices == 0) break; src0 = mkImm(stream); mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1; break; } case TGSI_OPCODE_IF: case TGSI_OPCODE_UIF: { BasicBlock *ifBB = new BasicBlock(func); bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE); condBBs.push(bb); joinBBs.push(bb); mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy); setPosition(ifBB, true); } break; case TGSI_OPCODE_ELSE: { BasicBlock *elseBB = new BasicBlock(func); BasicBlock *forkBB = reinterpret_cast(condBBs.pop().u.p); forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE); condBBs.push(bb); forkBB->getExit()->asFlow()->target.bb = elseBB; if (!bb->isTerminated()) mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL); setPosition(elseBB, true); } break; case TGSI_OPCODE_ENDIF: { BasicBlock *convBB = new BasicBlock(func); BasicBlock *prevBB = reinterpret_cast(condBBs.pop().u.p); BasicBlock *forkBB = reinterpret_cast(joinBBs.pop().u.p); if (!bb->isTerminated()) { // we only want join if none of the clauses ended with CONT/BREAK/RET if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6) insertConvergenceOps(convBB, forkBB); mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL); bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD); } if (prevBB->getExit()->op == OP_BRA) { prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD); prevBB->getExit()->asFlow()->target.bb = convBB; } setPosition(convBB, true); } break; case TGSI_OPCODE_BGNLOOP: { BasicBlock *lbgnBB = new BasicBlock(func); BasicBlock *lbrkBB = new BasicBlock(func); loopBBs.push(lbgnBB); breakBBs.push(lbrkBB); if (loopBBs.getSize() > func->loopNestingBound) func->loopNestingBound++; mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL); bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE); setPosition(lbgnBB, true); mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL); } break; case TGSI_OPCODE_ENDLOOP: { BasicBlock *loopBB = reinterpret_cast(loopBBs.pop().u.p); if (!bb->isTerminated()) { mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL); bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK); } setPosition(reinterpret_cast(breakBBs.pop().u.p), true); // If the loop never breaks (e.g. only has RET's inside), then there // will be no way to get to the break bb. However BGNLOOP will have // already made a PREBREAK to it, so it must be in the CFG. if (getBB()->cfg.incidentCount() == 0) loopBB->cfg.attach(&getBB()->cfg, Graph::Edge::TREE); } break; case TGSI_OPCODE_BRK: { if (bb->isTerminated()) break; BasicBlock *brkBB = reinterpret_cast(breakBBs.peek().u.p); mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL); bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS); } break; case TGSI_OPCODE_CONT: { if (bb->isTerminated()) break; BasicBlock *contBB = reinterpret_cast(loopBBs.peek().u.p); mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL); contBB->explicitCont = true; bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK); } break; case TGSI_OPCODE_BGNSUB: { Subroutine *s = getSubroutine(ip); BasicBlock *entry = new BasicBlock(s->f); BasicBlock *leave = new BasicBlock(s->f); // multiple entrypoints possible, keep the graph connected if (prog->getType() == Program::TYPE_COMPUTE) prog->main->call.attach(&s->f->call, Graph::Edge::TREE); sub.cur = s; s->f->setEntry(entry); s->f->setExit(leave); setPosition(entry, true); return true; } case TGSI_OPCODE_ENDSUB: { sub.cur = getSubroutine(prog->main); setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true); return true; } case TGSI_OPCODE_CAL: { Subroutine *s = getSubroutine(tgsi.getLabel()); mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL); func->call.attach(&s->f->call, Graph::Edge::TREE); return true; } case TGSI_OPCODE_RET: { if (bb->isTerminated()) return true; BasicBlock *leave = BasicBlock::get(func->cfgExit); if (!isEndOfSubroutine(ip + 1)) { // insert a PRERET at the entry if this is an early return // (only needed for sharing code in the epilogue) BasicBlock *root = BasicBlock::get(func->cfg.getRoot()); if (root->getEntry() == NULL || root->getEntry()->op != OP_PRERET) { BasicBlock *pos = getBB(); setPosition(root, false); mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1; setPosition(pos, true); } } mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1; bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS); } break; case TGSI_OPCODE_END: { // attach and generate epilogue code BasicBlock *epilogue = BasicBlock::get(func->cfgExit); bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE); setPosition(epilogue, true); if (prog->getType() == Program::TYPE_FRAGMENT) exportOutputs(); if (info->io.genUserClip > 0) handleUserClipPlanes(); mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1; } break; case TGSI_OPCODE_SWITCH: case TGSI_OPCODE_CASE: ERROR("switch/case opcode encountered, should have been lowered\n"); abort(); break; case TGSI_OPCODE_LOAD: handleLOAD(dst0); break; case TGSI_OPCODE_STORE: handleSTORE(); break; case TGSI_OPCODE_BARRIER: geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0)); geni->fixed = 1; geni->subOp = NV50_IR_SUBOP_BAR_SYNC; break; case TGSI_OPCODE_MEMBAR: { uint32_t level = tgsi.getSrc(0).getValueU32(0, info); geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL); geni->fixed = 1; if (!(level & ~(TGSI_MEMBAR_THREAD_GROUP | TGSI_MEMBAR_SHARED))) geni->subOp = NV50_IR_SUBOP_MEMBAR(M, CTA); else geni->subOp = NV50_IR_SUBOP_MEMBAR(M, GL); } break; case TGSI_OPCODE_ATOMUADD: case TGSI_OPCODE_ATOMXCHG: case TGSI_OPCODE_ATOMCAS: case TGSI_OPCODE_ATOMAND: case TGSI_OPCODE_ATOMOR: case TGSI_OPCODE_ATOMXOR: case TGSI_OPCODE_ATOMUMIN: case TGSI_OPCODE_ATOMIMIN: case TGSI_OPCODE_ATOMUMAX: case TGSI_OPCODE_ATOMIMAX: handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode())); break; case TGSI_OPCODE_RESQ: if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER) { Value *ind = NULL; if (tgsi.getSrc(0).isIndirect(0)) ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0); geni = mkOp1(OP_BUFQ, TYPE_U32, dst0[0], makeSym(tgsi.getSrc(0).getFile(), tgsi.getSrc(0).getIndex(0), -1, 0, 0)); if (ind) geni->setIndirect(0, 1, ind); } else { TexInstruction *texi = new_TexInstruction(func, OP_SUQ); for (int c = 0, d = 0; c < 4; ++c) { if (dst0[c]) { texi->setDef(d++, dst0[c]); texi->tex.mask |= 1 << c; } } if (tgsi.getSrc(0).getFile() == TGSI_FILE_IMAGE) { texi->tex.r = tgsi.getSrc(0).getIndex(0); if (tgsi.getSrc(0).isIndirect(0)) texi->setIndirectR(fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, NULL)); } else { texi->tex.bindless = true; texi->setIndirectR(fetchSrc(0, 0)); } texi->tex.target = tgsi.getImageTarget(); bb->insertTail(texi); } break; case TGSI_OPCODE_IBFE: case TGSI_OPCODE_UBFE: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); val0 = getScratch(); if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE && tgsi.getSrc(2).getFile() == TGSI_FILE_IMMEDIATE) { loadImm(val0, (tgsi.getSrc(2).getValueU32(c, info) << 8) | tgsi.getSrc(1).getValueU32(c, info)); } else { src1 = fetchSrc(1, c); src2 = fetchSrc(2, c); mkOp3(OP_INSBF, TYPE_U32, val0, src2, mkImm(0x808), src1); } mkOp2(OP_EXTBF, dstTy, dst0[c], src0, val0); } break; case TGSI_OPCODE_BFI: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); src1 = fetchSrc(1, c); src2 = fetchSrc(2, c); src3 = fetchSrc(3, c); val0 = getScratch(); mkOp3(OP_INSBF, TYPE_U32, val0, src3, mkImm(0x808), src2); mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, val0, src0); } break; case TGSI_OPCODE_LSB: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); val0 = getScratch(); geni = mkOp2(OP_EXTBF, TYPE_U32, val0, src0, mkImm(0x2000)); geni->subOp = NV50_IR_SUBOP_EXTBF_REV; geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], val0); geni->subOp = NV50_IR_SUBOP_BFIND_SAMT; } break; case TGSI_OPCODE_IMSB: case TGSI_OPCODE_UMSB: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); mkOp1(OP_BFIND, srcTy, dst0[c], src0); } break; case TGSI_OPCODE_BREV: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000)); geni->subOp = NV50_IR_SUBOP_EXTBF_REV; } break; case TGSI_OPCODE_POPC: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = fetchSrc(0, c); mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0); } break; case TGSI_OPCODE_INTERP_CENTROID: case TGSI_OPCODE_INTERP_SAMPLE: case TGSI_OPCODE_INTERP_OFFSET: handleINTERP(dst0); break; case TGSI_OPCODE_I642F: case TGSI_OPCODE_U642F: case TGSI_OPCODE_D2I: case TGSI_OPCODE_D2U: case TGSI_OPCODE_D2F: { int pos = 0; FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { Value *dreg = getSSA(8); src0 = fetchSrc(0, pos); src1 = fetchSrc(0, pos + 1); mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1); Instruction *cvt = mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg); if (!isFloatType(dstTy)) cvt->rnd = ROUND_Z; pos += 2; } break; } case TGSI_OPCODE_I2I64: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { dst0[c] = fetchSrc(0, c / 2); mkOp2(OP_SHR, TYPE_S32, dst0[c + 1], dst0[c], loadImm(NULL, 31)); c++; } break; case TGSI_OPCODE_U2I64: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { dst0[c] = fetchSrc(0, c / 2); dst0[c + 1] = zero; c++; } break; case TGSI_OPCODE_F2I64: case TGSI_OPCODE_F2U64: case TGSI_OPCODE_I2D: case TGSI_OPCODE_U2D: case TGSI_OPCODE_F2D: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { Value *dreg = getSSA(8); Instruction *cvt = mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2)); if (!isFloatType(dstTy)) cvt->rnd = ROUND_Z; mkSplit(&dst0[c], 4, dreg); c++; } break; case TGSI_OPCODE_D2I64: case TGSI_OPCODE_D2U64: case TGSI_OPCODE_I642D: case TGSI_OPCODE_U642D: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = getSSA(8); Value *dst = getSSA(8), *tmp[2]; tmp[0] = fetchSrc(0, c); tmp[1] = fetchSrc(0, c + 1); mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]); Instruction *cvt = mkCvt(OP_CVT, dstTy, dst, srcTy, src0); if (!isFloatType(dstTy)) cvt->rnd = ROUND_Z; mkSplit(&dst0[c], 4, dst); c++; } break; case TGSI_OPCODE_I64NEG: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = getSSA(8); Value *dst = getSSA(8), *tmp[2]; tmp[0] = fetchSrc(0, c); tmp[1] = fetchSrc(0, c + 1); mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]); mkOp2(OP_SUB, dstTy, dst, zero, src0); mkSplit(&dst0[c], 4, dst); c++; } break; case TGSI_OPCODE_I64ABS: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = getSSA(8); Value *neg = getSSA(8), *srcComp[2], *negComp[2]; srcComp[0] = fetchSrc(0, c); srcComp[1] = fetchSrc(0, c + 1); mkOp2(OP_MERGE, TYPE_U64, src0, srcComp[0], srcComp[1]); mkOp2(OP_SUB, dstTy, neg, zero, src0); mkSplit(negComp, 4, neg); mkCmp(OP_SLCT, CC_LT, TYPE_S32, dst0[c], TYPE_S32, negComp[0], srcComp[0], srcComp[1]); mkCmp(OP_SLCT, CC_LT, TYPE_S32, dst0[c + 1], TYPE_S32, negComp[1], srcComp[1], srcComp[1]); c++; } break; case TGSI_OPCODE_DABS: case TGSI_OPCODE_DNEG: case TGSI_OPCODE_DRCP: case TGSI_OPCODE_DSQRT: case TGSI_OPCODE_DRSQ: case TGSI_OPCODE_DTRUNC: case TGSI_OPCODE_DCEIL: case TGSI_OPCODE_DFLR: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = getSSA(8); Value *dst = getSSA(8), *tmp[2]; tmp[0] = fetchSrc(0, c); tmp[1] = fetchSrc(0, c + 1); mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]); mkOp1(op, dstTy, dst, src0); mkSplit(&dst0[c], 4, dst); c++; } break; case TGSI_OPCODE_DFRAC: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = getSSA(8); Value *dst = getSSA(8), *tmp[2]; tmp[0] = fetchSrc(0, c); tmp[1] = fetchSrc(0, c + 1); mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]); mkOp1(OP_FLOOR, TYPE_F64, dst, src0); mkOp2(OP_SUB, TYPE_F64, dst, src0, dst); mkSplit(&dst0[c], 4, dst); c++; } break; case TGSI_OPCODE_U64SEQ: case TGSI_OPCODE_U64SNE: case TGSI_OPCODE_U64SLT: case TGSI_OPCODE_U64SGE: case TGSI_OPCODE_I64SLT: case TGSI_OPCODE_I64SGE: case TGSI_OPCODE_DSLT: case TGSI_OPCODE_DSGE: case TGSI_OPCODE_DSEQ: case TGSI_OPCODE_DSNE: { int pos = 0; FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { Value *tmp[2]; src0 = getSSA(8); src1 = getSSA(8); tmp[0] = fetchSrc(0, pos); tmp[1] = fetchSrc(0, pos + 1); mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]); tmp[0] = fetchSrc(1, pos); tmp[1] = fetchSrc(1, pos + 1); mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]); mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1); pos += 2; } break; } case TGSI_OPCODE_U64MIN: case TGSI_OPCODE_U64MAX: case TGSI_OPCODE_I64MIN: case TGSI_OPCODE_I64MAX: { dstTy = isSignedIntType(dstTy) ? TYPE_S32 : TYPE_U32; FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { Value *flag = getSSA(1, FILE_FLAGS); src0 = fetchSrc(0, c + 1); src1 = fetchSrc(1, c + 1); geni = mkOp2(op, dstTy, dst0[c + 1], src0, src1); geni->subOp = NV50_IR_SUBOP_MINMAX_HIGH; geni->setFlagsDef(1, flag); src0 = fetchSrc(0, c); src1 = fetchSrc(1, c); geni = mkOp2(op, TYPE_U32, dst0[c], src0, src1); geni->subOp = NV50_IR_SUBOP_MINMAX_LOW; geni->setFlagsSrc(2, flag); c++; } break; } case TGSI_OPCODE_U64SHL: case TGSI_OPCODE_I64SHR: case TGSI_OPCODE_U64SHR: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = getSSA(8); Value *dst = getSSA(8), *tmp[2]; tmp[0] = fetchSrc(0, c); tmp[1] = fetchSrc(0, c + 1); mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]); // Theoretically src1 is a 64-bit value but in practice only the low // bits matter. The IR expects this to be a 32-bit value. src1 = fetchSrc(1, c); mkOp2(op, dstTy, dst, src0, src1); mkSplit(&dst0[c], 4, dst); c++; } break; case TGSI_OPCODE_U64ADD: case TGSI_OPCODE_U64MUL: case TGSI_OPCODE_DADD: case TGSI_OPCODE_DMUL: case TGSI_OPCODE_DDIV: case TGSI_OPCODE_DMAX: case TGSI_OPCODE_DMIN: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = getSSA(8); src1 = getSSA(8); Value *dst = getSSA(8), *tmp[2]; tmp[0] = fetchSrc(0, c); tmp[1] = fetchSrc(0, c + 1); mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]); tmp[0] = fetchSrc(1, c); tmp[1] = fetchSrc(1, c + 1); mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]); mkOp2(op, dstTy, dst, src0, src1); mkSplit(&dst0[c], 4, dst); c++; } break; case TGSI_OPCODE_DMAD: case TGSI_OPCODE_DFMA: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = getSSA(8); src1 = getSSA(8); src2 = getSSA(8); Value *dst = getSSA(8), *tmp[2]; tmp[0] = fetchSrc(0, c); tmp[1] = fetchSrc(0, c + 1); mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]); tmp[0] = fetchSrc(1, c); tmp[1] = fetchSrc(1, c + 1); mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]); tmp[0] = fetchSrc(2, c); tmp[1] = fetchSrc(2, c + 1); mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]); mkOp3(op, dstTy, dst, src0, src1, src2); mkSplit(&dst0[c], 4, dst); c++; } break; case TGSI_OPCODE_DROUND: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = getSSA(8); Value *dst = getSSA(8), *tmp[2]; tmp[0] = fetchSrc(0, c); tmp[1] = fetchSrc(0, c + 1); mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]); mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0) ->rnd = ROUND_NI; mkSplit(&dst0[c], 4, dst); c++; } break; case TGSI_OPCODE_DSSG: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = getSSA(8); Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2]; tmp[0] = fetchSrc(0, c); tmp[1] = fetchSrc(0, c + 1); mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]); val0 = getScratch(); val1 = getScratch(); // The zero is wrong here since it's only 32-bit, but it works out in // the end since it gets replaced with $r63. mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero); mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero); mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1); mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32); mkSplit(&dst0[c], 4, dst); c++; } break; case TGSI_OPCODE_I64SSG: FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) { src0 = getSSA(8); Value *tmp[2]; tmp[0] = fetchSrc(0, c); tmp[1] = fetchSrc(0, c + 1); mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]); val0 = getScratch(); val1 = getScratch(); mkCmp(OP_SET, CC_GT, TYPE_U32, val0, TYPE_S64, src0, zero); mkCmp(OP_SET, CC_LT, TYPE_U32, val1, TYPE_S64, src0, zero); mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0); mkOp2(OP_SHR, TYPE_S32, dst0[c + 1], dst0[c], loadImm(0, 31)); c++; } break; default: ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode()); assert(0); break; } if (tgsi.dstCount() && tgsi.getOpcode() != TGSI_OPCODE_STORE) { for (c = 0; c < 4; ++c) { if (!dst0[c]) continue; if (dst0[c] != rDst0[c]) mkMov(rDst0[c], dst0[c]); storeDst(0, c, rDst0[c]); } } vtxBaseValid = 0; return true; } void Converter::handleUserClipPlanes() { Value *res[8]; int n, i, c; for (c = 0; c < 4; ++c) { for (i = 0; i < info->io.genUserClip; ++i) { Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.auxCBSlot, TYPE_F32, info->io.ucpBase + i * 16 + c * 4); Value *ucp = mkLoadv(TYPE_F32, sym, NULL); if (c == 0) res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp); else mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]); } } const int first = info->numOutputs - (info->io.genUserClip + 3) / 4; for (i = 0; i < info->io.genUserClip; ++i) { n = i / 4 + first; c = i % 4; Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4); mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]); } } void Converter::exportOutputs() { if (info->io.alphaRefBase) { for (unsigned int i = 0; i < info->numOutputs; ++i) { if (info->out[i].sn != TGSI_SEMANTIC_COLOR || info->out[i].si != 0) continue; const unsigned int c = 3; if (!oData.exists(sub.cur->values, i, c)) continue; Value *val = oData.load(sub.cur->values, i, c, NULL); if (!val) continue; Symbol *ref = mkSymbol(FILE_MEMORY_CONST, info->io.auxCBSlot, TYPE_U32, info->io.alphaRefBase); Value *pred = new_LValue(func, FILE_PREDICATE); mkCmp(OP_SET, CC_TR, TYPE_U32, pred, TYPE_F32, val, mkLoadv(TYPE_U32, ref, NULL)) ->subOp = 1; mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_NOT_P, pred); } } for (unsigned int i = 0; i < info->numOutputs; ++i) { for (unsigned int c = 0; c < 4; ++c) { if (!oData.exists(sub.cur->values, i, c)) continue; Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[i].slot[c] * 4); Value *val = oData.load(sub.cur->values, i, c, NULL); if (val) { if (info->out[i].sn == TGSI_SEMANTIC_POSITION) mkOp1(OP_SAT, TYPE_F32, val, val); mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val); } } } } Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir), code(code), tgsi(NULL), tData(this), lData(this), aData(this), oData(this) { info = code->info; const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY); const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS); const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT); tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, FILE_GPR, 0); lData.setup(TGSI_FILE_TEMPORARY, 1, 0, tSize, 4, 4, FILE_MEMORY_LOCAL, 0); aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0); oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0); zero = mkImm((uint32_t)0); vtxBaseValid = 0; } Converter::~Converter() { } inline const Converter::Location * Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v) { ValueMap::l_iterator it = s->values.l.find(v); return it == s->values.l.end() ? NULL : &it->second; } template inline void Converter::BindArgumentsPass::updateCallArgs( Instruction *i, void (Instruction::*setArg)(int, Value *), T (Function::*proto)) { Function *g = i->asFlow()->target.fn; Subroutine *subg = conv.getSubroutine(g); for (unsigned a = 0; a < (g->*proto).size(); ++a) { Value *v = (g->*proto)[a].get(); const Converter::Location &l = *getValueLocation(subg, v); Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx); (i->*setArg)(a, array->acquire(sub->values, l.i, l.c)); } } template inline void Converter::BindArgumentsPass::updatePrototype( BitSet *set, void (Function::*updateSet)(), T (Function::*proto)) { (func->*updateSet)(); for (unsigned i = 0; i < set->getSize(); ++i) { Value *v = func->getLValue(i); const Converter::Location *l = getValueLocation(sub, v); // only include values with a matching TGSI register if (set->test(i) && l && !conv.code->locals.count(*l)) (func->*proto).push_back(v); } } bool Converter::BindArgumentsPass::visit(Function *f) { sub = conv.getSubroutine(f); for (ArrayList::Iterator bi = f->allBBlocks.iterator(); !bi.end(); bi.next()) { for (Instruction *i = BasicBlock::get(bi)->getFirst(); i; i = i->next) { if (i->op == OP_CALL && !i->asFlow()->builtin) { updateCallArgs(i, &Instruction::setSrc, &Function::ins); updateCallArgs(i, &Instruction::setDef, &Function::outs); } } } if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE) return true; updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet, &Function::buildLiveSets, &Function::ins); updatePrototype(&BasicBlock::get(f->cfgExit)->defSet, &Function::buildDefSets, &Function::outs); return true; } bool Converter::run() { BasicBlock *entry = new BasicBlock(prog->main); BasicBlock *leave = new BasicBlock(prog->main); prog->main->setEntry(entry); prog->main->setExit(leave); setPosition(entry, true); sub.cur = getSubroutine(prog->main); if (info->io.genUserClip > 0) { for (int c = 0; c < 4; ++c) clipVtx[c] = getScratch(); } switch (prog->getType()) { case Program::TYPE_TESSELLATION_CONTROL: outBase = mkOp2v( OP_SUB, TYPE_U32, getSSA(), mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LANEID, 0)), mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_INVOCATION_ID, 0))); break; case Program::TYPE_FRAGMENT: { Symbol *sv = mkSysVal(SV_POSITION, 3); fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv); mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]); break; } default: break; } if (info->io.viewportId >= 0) viewport = getScratch(); else viewport = NULL; for (ip = 0; ip < code->scan.num_instructions; ++ip) { if (!handleInstruction(&code->insns[ip])) return false; } if (!BindArgumentsPass(*this).run(prog)) return false; return true; } } // unnamed namespace namespace nv50_ir { bool Program::makeFromTGSI(struct nv50_ir_prog_info *info) { tgsi::Source src(info); if (!src.scanSource()) return false; tlsSize = info->bin.tlsSpace; Converter builder(this, &src); return builder.run(); } } // namespace nv50_ir