/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "si_shader.h" #include "si_shader_internal.h" #include "ac_nir_to_llvm.h" #include "tgsi/tgsi_from_mesa.h" #include "compiler/nir/nir.h" #include "compiler/nir_types.h" static int type_size(const struct glsl_type *type) { return glsl_count_attribute_slots(type, false); } static void scan_instruction(struct tgsi_shader_info *info, nir_instr *instr) { if (instr->type == nir_instr_type_alu) { nir_alu_instr *alu = nir_instr_as_alu(instr); switch (alu->op) { case nir_op_fddx: case nir_op_fddy: case nir_op_fddx_fine: case nir_op_fddy_fine: case nir_op_fddx_coarse: case nir_op_fddy_coarse: info->uses_derivatives = true; break; default: break; } } else if (instr->type == nir_instr_type_tex) { nir_tex_instr *tex = nir_instr_as_tex(instr); if (!tex->texture) { info->samplers_declared |= u_bit_consecutive(tex->sampler_index, 1); } switch (tex->op) { case nir_texop_tex: case nir_texop_txb: case nir_texop_lod: info->uses_derivatives = true; break; default: break; } } else if (instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); switch (intr->intrinsic) { case nir_intrinsic_load_front_face: info->uses_frontface = 1; break; case nir_intrinsic_load_instance_id: info->uses_instanceid = 1; break; case nir_intrinsic_load_invocation_id: info->uses_invocationid = true; break; case nir_intrinsic_load_vertex_id: info->uses_vertexid = 1; break; case nir_intrinsic_load_vertex_id_zero_base: info->uses_vertexid_nobase = 1; break; case nir_intrinsic_load_base_vertex: info->uses_basevertex = 1; break; case nir_intrinsic_load_primitive_id: info->uses_primid = 1; break; case nir_intrinsic_load_sample_mask_in: info->reads_samplemask = true; break; case nir_intrinsic_load_tess_level_inner: case nir_intrinsic_load_tess_level_outer: info->reads_tess_factors = true; break; case nir_intrinsic_image_store: case nir_intrinsic_image_atomic_add: case nir_intrinsic_image_atomic_min: case nir_intrinsic_image_atomic_max: case nir_intrinsic_image_atomic_and: case nir_intrinsic_image_atomic_or: case nir_intrinsic_image_atomic_xor: case nir_intrinsic_image_atomic_exchange: case nir_intrinsic_image_atomic_comp_swap: case nir_intrinsic_store_ssbo: case nir_intrinsic_ssbo_atomic_add: case nir_intrinsic_ssbo_atomic_imin: case nir_intrinsic_ssbo_atomic_umin: case nir_intrinsic_ssbo_atomic_imax: case nir_intrinsic_ssbo_atomic_umax: case nir_intrinsic_ssbo_atomic_and: case nir_intrinsic_ssbo_atomic_or: case nir_intrinsic_ssbo_atomic_xor: case nir_intrinsic_ssbo_atomic_exchange: case nir_intrinsic_ssbo_atomic_comp_swap: info->writes_memory = true; break; default: break; } } } void si_nir_scan_tess_ctrl(const struct nir_shader *nir, const struct tgsi_shader_info *info, struct tgsi_tessctrl_info *out) { memset(out, 0, sizeof(*out)); if (nir->info.stage != MESA_SHADER_TESS_CTRL) return; /* Initial value = true. Here the pass will accumulate results from * multiple segments surrounded by barriers. If tess factors aren't * written at all, it's a shader bug and we don't care if this will be * true. */ out->tessfactors_are_def_in_all_invocs = true; /* TODO: Implement scanning of tess factors, see tgsi backend. */ } void si_nir_scan_shader(const struct nir_shader *nir, struct tgsi_shader_info *info) { nir_function *func; unsigned i; assert(nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_GEOMETRY || nir->info.stage == MESA_SHADER_TESS_CTRL || nir->info.stage == MESA_SHADER_TESS_EVAL || nir->info.stage == MESA_SHADER_FRAGMENT); info->processor = pipe_shader_type_from_mesa(nir->info.stage); info->num_tokens = 2; /* indicate that the shader is non-empty */ info->num_instructions = 2; if (nir->info.stage == MESA_SHADER_TESS_CTRL) { info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT] = nir->info.tess.tcs_vertices_out; } if (nir->info.stage == MESA_SHADER_TESS_EVAL) { if (nir->info.tess.primitive_mode == GL_ISOLINES) info->properties[TGSI_PROPERTY_TES_PRIM_MODE] = PIPE_PRIM_LINES; else info->properties[TGSI_PROPERTY_TES_PRIM_MODE] = nir->info.tess.primitive_mode; STATIC_ASSERT((TESS_SPACING_EQUAL + 1) % 3 == PIPE_TESS_SPACING_EQUAL); STATIC_ASSERT((TESS_SPACING_FRACTIONAL_ODD + 1) % 3 == PIPE_TESS_SPACING_FRACTIONAL_ODD); STATIC_ASSERT((TESS_SPACING_FRACTIONAL_EVEN + 1) % 3 == PIPE_TESS_SPACING_FRACTIONAL_EVEN); info->properties[TGSI_PROPERTY_TES_SPACING] = (nir->info.tess.spacing + 1) % 3; info->properties[TGSI_PROPERTY_TES_VERTEX_ORDER_CW] = !nir->info.tess.ccw; info->properties[TGSI_PROPERTY_TES_POINT_MODE] = nir->info.tess.point_mode; } if (nir->info.stage == MESA_SHADER_GEOMETRY) { info->properties[TGSI_PROPERTY_GS_INPUT_PRIM] = nir->info.gs.input_primitive; info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM] = nir->info.gs.output_primitive; info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES] = nir->info.gs.vertices_out; info->properties[TGSI_PROPERTY_GS_INVOCATIONS] = nir->info.gs.invocations; } i = 0; uint64_t processed_inputs = 0; unsigned num_inputs = 0; nir_foreach_variable(variable, &nir->inputs) { unsigned semantic_name, semantic_index; unsigned attrib_count = glsl_count_attribute_slots(variable->type, nir->info.stage == MESA_SHADER_VERTEX); /* Vertex shader inputs don't have semantics. The state * tracker has already mapped them to attributes via * variable->data.driver_location. */ if (nir->info.stage == MESA_SHADER_VERTEX) continue; assert(nir->info.stage != MESA_SHADER_FRAGMENT || (attrib_count == 1 && "not implemented")); /* Fragment shader position is a system value. */ if (nir->info.stage == MESA_SHADER_FRAGMENT && variable->data.location == VARYING_SLOT_POS) { if (variable->data.pixel_center_integer) info->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] = TGSI_FS_COORD_PIXEL_CENTER_INTEGER; num_inputs++; continue; } i = variable->data.driver_location; if (processed_inputs & ((uint64_t)1 << i)) continue; processed_inputs |= ((uint64_t)1 << i); num_inputs++; tgsi_get_gl_varying_semantic(variable->data.location, true, &semantic_name, &semantic_index); info->input_semantic_name[i] = semantic_name; info->input_semantic_index[i] = semantic_index; if (semantic_name == TGSI_SEMANTIC_PRIMID) info->uses_primid = true; if (variable->data.sample) info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_SAMPLE; else if (variable->data.centroid) info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_CENTROID; else info->input_interpolate_loc[i] = TGSI_INTERPOLATE_LOC_CENTER; enum glsl_base_type base_type = glsl_get_base_type(glsl_without_array(variable->type)); switch (variable->data.interpolation) { case INTERP_MODE_NONE: if (glsl_base_type_is_integer(base_type)) { info->input_interpolate[i] = TGSI_INTERPOLATE_CONSTANT; break; } if (semantic_name == TGSI_SEMANTIC_COLOR) { info->input_interpolate[i] = TGSI_INTERPOLATE_COLOR; goto persp_locations; } /* fall-through */ case INTERP_MODE_SMOOTH: assert(!glsl_base_type_is_integer(base_type)); info->input_interpolate[i] = TGSI_INTERPOLATE_PERSPECTIVE; persp_locations: if (variable->data.sample) info->uses_persp_sample = true; else if (variable->data.centroid) info->uses_persp_centroid = true; else info->uses_persp_center = true; break; case INTERP_MODE_NOPERSPECTIVE: assert(!glsl_base_type_is_integer(base_type)); info->input_interpolate[i] = TGSI_INTERPOLATE_LINEAR; if (variable->data.sample) info->uses_linear_sample = true; else if (variable->data.centroid) info->uses_linear_centroid = true; else info->uses_linear_center = true; break; case INTERP_MODE_FLAT: info->input_interpolate[i] = TGSI_INTERPOLATE_CONSTANT; break; } /* TODO make this more precise */ if (variable->data.location == VARYING_SLOT_COL0) info->colors_read |= 0x0f; else if (variable->data.location == VARYING_SLOT_COL1) info->colors_read |= 0xf0; } if (nir->info.stage != MESA_SHADER_VERTEX) info->num_inputs = num_inputs; else info->num_inputs = nir->num_inputs; i = 0; uint64_t processed_outputs = 0; unsigned num_outputs = 0; nir_foreach_variable(variable, &nir->outputs) { unsigned semantic_name, semantic_index; if (nir->info.stage == MESA_SHADER_FRAGMENT) { tgsi_get_gl_frag_result_semantic(variable->data.location, &semantic_name, &semantic_index); /* Adjust for dual source blending */ if (variable->data.index > 0) { semantic_index++; } } else { tgsi_get_gl_varying_semantic(variable->data.location, true, &semantic_name, &semantic_index); } i = variable->data.driver_location; if (processed_outputs & ((uint64_t)1 << i)) continue; processed_outputs |= ((uint64_t)1 << i); num_outputs++; info->output_semantic_name[i] = semantic_name; info->output_semantic_index[i] = semantic_index; info->output_usagemask[i] = TGSI_WRITEMASK_XYZW; unsigned num_components = 4; unsigned vector_elements = glsl_get_vector_elements(glsl_without_array(variable->type)); if (vector_elements) num_components = vector_elements; unsigned gs_out_streams; if (variable->data.stream & (1u << 31)) { gs_out_streams = variable->data.stream & ~(1u << 31); } else { assert(variable->data.stream < 4); gs_out_streams = 0; for (unsigned j = 0; j < num_components; ++j) gs_out_streams |= variable->data.stream << (2 * (variable->data.location_frac + j)); } unsigned streamx = gs_out_streams & 3; unsigned streamy = (gs_out_streams >> 2) & 3; unsigned streamz = (gs_out_streams >> 4) & 3; unsigned streamw = (gs_out_streams >> 6) & 3; if (info->output_usagemask[i] & TGSI_WRITEMASK_X) { info->output_streams[i] |= streamx; info->num_stream_output_components[streamx]++; } if (info->output_usagemask[i] & TGSI_WRITEMASK_Y) { info->output_streams[i] |= streamy << 2; info->num_stream_output_components[streamy]++; } if (info->output_usagemask[i] & TGSI_WRITEMASK_Z) { info->output_streams[i] |= streamz << 4; info->num_stream_output_components[streamz]++; } if (info->output_usagemask[i] & TGSI_WRITEMASK_W) { info->output_streams[i] |= streamw << 6; info->num_stream_output_components[streamw]++; } switch (semantic_name) { case TGSI_SEMANTIC_PRIMID: info->writes_primid = true; break; case TGSI_SEMANTIC_VIEWPORT_INDEX: info->writes_viewport_index = true; break; case TGSI_SEMANTIC_LAYER: info->writes_layer = true; break; case TGSI_SEMANTIC_PSIZE: info->writes_psize = true; break; case TGSI_SEMANTIC_CLIPVERTEX: info->writes_clipvertex = true; break; case TGSI_SEMANTIC_COLOR: info->colors_written |= 1 << semantic_index; break; case TGSI_SEMANTIC_STENCIL: info->writes_stencil = true; break; case TGSI_SEMANTIC_SAMPLEMASK: info->writes_samplemask = true; break; case TGSI_SEMANTIC_EDGEFLAG: info->writes_edgeflag = true; break; case TGSI_SEMANTIC_POSITION: if (info->processor == PIPE_SHADER_FRAGMENT) info->writes_z = true; else info->writes_position = true; break; } if (nir->info.stage == MESA_SHADER_TESS_CTRL) { switch (semantic_name) { case TGSI_SEMANTIC_PATCH: info->reads_perpatch_outputs = true; break; case TGSI_SEMANTIC_TESSINNER: case TGSI_SEMANTIC_TESSOUTER: info->reads_tessfactor_outputs = true; break; default: info->reads_pervertex_outputs = true; } } } info->num_outputs = num_outputs; nir_foreach_variable(variable, &nir->uniforms) { const struct glsl_type *type = variable->type; enum glsl_base_type base_type = glsl_get_base_type(glsl_without_array(type)); unsigned aoa_size = MAX2(1, glsl_get_aoa_size(type)); /* We rely on the fact that nir_lower_samplers_as_deref has * eliminated struct dereferences. */ if (base_type == GLSL_TYPE_SAMPLER) info->samplers_declared |= u_bit_consecutive(variable->data.binding, aoa_size); else if (base_type == GLSL_TYPE_IMAGE) info->images_declared |= u_bit_consecutive(variable->data.binding, aoa_size); } info->num_written_clipdistance = nir->info.clip_distance_array_size; info->num_written_culldistance = nir->info.cull_distance_array_size; info->clipdist_writemask = u_bit_consecutive(0, info->num_written_clipdistance); info->culldist_writemask = u_bit_consecutive(0, info->num_written_culldistance); if (info->processor == PIPE_SHADER_FRAGMENT) info->uses_kill = nir->info.fs.uses_discard; /* TODO make this more accurate */ info->const_buffers_declared = u_bit_consecutive(0, SI_NUM_CONST_BUFFERS); info->shader_buffers_declared = u_bit_consecutive(0, SI_NUM_SHADER_BUFFERS); func = (struct nir_function *)exec_list_get_head_const(&nir->functions); nir_foreach_block(block, func->impl) { nir_foreach_instr(instr, block) scan_instruction(info, instr); } } /** * Perform "lowering" operations on the NIR that are run once when the shader * selector is created. */ void si_lower_nir(struct si_shader_selector* sel) { /* Adjust the driver location of inputs and outputs. The state tracker * interprets them as slots, while the ac/nir backend interprets them * as individual components. */ nir_foreach_variable(variable, &sel->nir->inputs) variable->data.driver_location *= 4; nir_foreach_variable(variable, &sel->nir->outputs) { variable->data.driver_location *= 4; if (sel->nir->info.stage == MESA_SHADER_FRAGMENT) { if (variable->data.location == FRAG_RESULT_DEPTH) variable->data.driver_location += 2; else if (variable->data.location == FRAG_RESULT_STENCIL) variable->data.driver_location += 1; } } /* Perform lowerings (and optimizations) of code. * * Performance considerations aside, we must: * - lower certain ALU operations * - ensure constant offsets for texture instructions are folded * and copy-propagated */ NIR_PASS_V(sel->nir, nir_lower_io, nir_var_uniform, type_size, (nir_lower_io_options)0); NIR_PASS_V(sel->nir, nir_lower_uniforms_to_ubo); NIR_PASS_V(sel->nir, nir_lower_returns); NIR_PASS_V(sel->nir, nir_lower_vars_to_ssa); NIR_PASS_V(sel->nir, nir_lower_alu_to_scalar); NIR_PASS_V(sel->nir, nir_lower_phis_to_scalar); static const struct nir_lower_tex_options lower_tex_options = { .lower_txp = ~0u, }; NIR_PASS_V(sel->nir, nir_lower_tex, &lower_tex_options); const nir_lower_subgroups_options subgroups_options = { .subgroup_size = 64, .ballot_bit_size = 32, .lower_to_scalar = true, .lower_subgroup_masks = true, .lower_vote_trivial = false, }; NIR_PASS_V(sel->nir, nir_lower_subgroups, &subgroups_options); bool progress; do { progress = false; /* (Constant) copy propagation is needed for txf with offsets. */ NIR_PASS(progress, sel->nir, nir_copy_prop); NIR_PASS(progress, sel->nir, nir_opt_remove_phis); NIR_PASS(progress, sel->nir, nir_opt_dce); if (nir_opt_trivial_continues(sel->nir)) { progress = true; NIR_PASS(progress, sel->nir, nir_copy_prop); NIR_PASS(progress, sel->nir, nir_opt_dce); } NIR_PASS(progress, sel->nir, nir_opt_if); NIR_PASS(progress, sel->nir, nir_opt_dead_cf); NIR_PASS(progress, sel->nir, nir_opt_cse); NIR_PASS(progress, sel->nir, nir_opt_peephole_select, 8); /* Needed for algebraic lowering */ NIR_PASS(progress, sel->nir, nir_opt_algebraic); NIR_PASS(progress, sel->nir, nir_opt_constant_folding); NIR_PASS(progress, sel->nir, nir_opt_undef); NIR_PASS(progress, sel->nir, nir_opt_conditional_discard); if (sel->nir->options->max_unroll_iterations) { NIR_PASS(progress, sel->nir, nir_opt_loop_unroll, 0); } } while (progress); } static void declare_nir_input_vs(struct si_shader_context *ctx, struct nir_variable *variable, LLVMValueRef out[4]) { si_llvm_load_input_vs(ctx, variable->data.driver_location / 4, out); } static void declare_nir_input_fs(struct si_shader_context *ctx, struct nir_variable *variable, unsigned input_index, LLVMValueRef out[4]) { unsigned slot = variable->data.location; if (slot == VARYING_SLOT_POS) { out[0] = LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT); out[1] = LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT); out[2] = LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT); out[3] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1, LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT)); return; } si_llvm_load_input_fs(ctx, input_index, out); } LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi, unsigned location, unsigned driver_location, unsigned component, unsigned num_components, unsigned vertex_index, unsigned const_index, LLVMTypeRef type) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); LLVMValueRef value[4]; for (unsigned i = component; i < num_components + component; i++) { value[i] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4, vertex_index, type, i); } return ac_build_varying_gather_values(&ctx->ac, value, num_components, component); } static LLVMValueRef si_nir_load_sampler_desc(struct ac_shader_abi *abi, unsigned descriptor_set, unsigned base_index, unsigned constant_index, LLVMValueRef dynamic_index, enum ac_descriptor_type desc_type, bool image, bool write) { struct si_shader_context *ctx = si_shader_context_from_abi(abi); LLVMBuilderRef builder = ctx->ac.builder; LLVMValueRef list = LLVMGetParam(ctx->main_fn, ctx->param_samplers_and_images); LLVMValueRef index = dynamic_index; assert(!descriptor_set); if (!index) index = ctx->ac.i32_0; index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->ac.i32, base_index + constant_index, false), ""); if (image) { assert(desc_type == AC_DESC_IMAGE || desc_type == AC_DESC_BUFFER); assert(base_index + constant_index < ctx->num_images); if (dynamic_index) index = si_llvm_bound_index(ctx, index, ctx->num_images); index = LLVMBuildSub(ctx->gallivm.builder, LLVMConstInt(ctx->i32, SI_NUM_IMAGES - 1, 0), index, ""); /* TODO: be smarter about when we use dcc_off */ return si_load_image_desc(ctx, list, index, desc_type, write); } assert(base_index + constant_index < ctx->num_samplers); if (dynamic_index) index = si_llvm_bound_index(ctx, index, ctx->num_samplers); index = LLVMBuildAdd(ctx->gallivm.builder, index, LLVMConstInt(ctx->i32, SI_NUM_IMAGES / 2, 0), ""); return si_load_sampler_desc(ctx, list, index, desc_type); } bool si_nir_build_llvm(struct si_shader_context *ctx, struct nir_shader *nir) { struct tgsi_shader_info *info = &ctx->shader->selector->info; if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_FRAGMENT) { uint64_t processed_inputs = 0; nir_foreach_variable(variable, &nir->inputs) { unsigned attrib_count = glsl_count_attribute_slots(variable->type, nir->info.stage == MESA_SHADER_VERTEX); unsigned input_idx = variable->data.driver_location; assert(attrib_count == 1); LLVMValueRef data[4]; unsigned loc = variable->data.location; /* Packed components share the same location so skip * them if we have already processed the location. */ if (processed_inputs & ((uint64_t)1 << loc)) continue; if (nir->info.stage == MESA_SHADER_VERTEX) declare_nir_input_vs(ctx, variable, data); else if (nir->info.stage == MESA_SHADER_FRAGMENT) declare_nir_input_fs(ctx, variable, input_idx / 4, data); for (unsigned chan = 0; chan < 4; chan++) { ctx->inputs[input_idx + chan] = LLVMBuildBitCast(ctx->ac.builder, data[chan], ctx->ac.i32, ""); } processed_inputs |= ((uint64_t)1 << loc); } } ctx->abi.inputs = &ctx->inputs[0]; ctx->abi.load_sampler_desc = si_nir_load_sampler_desc; ctx->abi.clamp_shadow_reference = true; ctx->num_samplers = util_last_bit(info->samplers_declared); ctx->num_images = util_last_bit(info->images_declared); ac_nir_translate(&ctx->ac, &ctx->abi, nir, NULL); return true; }