/********************************************************** * Copyright 2008-2009 VMware, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, * modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * **********************************************************/ #include "os/os_thread.h" #include "pipe/p_state.h" #include "pipe/p_defines.h" #include "util/u_inlines.h" #include "util/u_math.h" #include "util/u_memory.h" #include "svga_cmd.h" #include "svga_context.h" #include "svga_debug.h" #include "svga_resource_buffer.h" #include "svga_resource_buffer_upload.h" #include "svga_screen.h" #include "svga_winsys.h" /** * Describes a complete SVGA_3D_CMD_UPDATE_GB_IMAGE command * */ struct svga_3d_update_gb_image { SVGA3dCmdHeader header; SVGA3dCmdUpdateGBImage body; }; struct svga_3d_invalidate_gb_image { SVGA3dCmdHeader header; SVGA3dCmdInvalidateGBImage body; }; /** * Allocate a winsys_buffer (ie. DMA, aka GMR memory). * * It will flush and retry in case the first attempt to create a DMA buffer * fails, so it should not be called from any function involved in flushing * to avoid recursion. */ struct svga_winsys_buffer * svga_winsys_buffer_create( struct svga_context *svga, unsigned alignment, unsigned usage, unsigned size ) { struct svga_screen *svgascreen = svga_screen(svga->pipe.screen); struct svga_winsys_screen *sws = svgascreen->sws; struct svga_winsys_buffer *buf; /* Just try */ buf = sws->buffer_create(sws, alignment, usage, size); if (!buf) { SVGA_DBG(DEBUG_DMA|DEBUG_PERF, "flushing context to find %d bytes GMR\n", size); /* Try flushing all pending DMAs */ svga_context_flush(svga, NULL); buf = sws->buffer_create(sws, alignment, usage, size); } return buf; } /** * Destroy HW storage if separate from the host surface. * In the GB case, the HW storage is associated with the host surface * and is therefore a No-op. */ void svga_buffer_destroy_hw_storage(struct svga_screen *ss, struct svga_buffer *sbuf) { struct svga_winsys_screen *sws = ss->sws; assert(sbuf->map.count == 0); assert(sbuf->hwbuf); if (sbuf->hwbuf) { sws->buffer_destroy(sws, sbuf->hwbuf); sbuf->hwbuf = NULL; } } /** * Allocate DMA'ble or Updatable storage for the buffer. * * Called before mapping a buffer. */ enum pipe_error svga_buffer_create_hw_storage(struct svga_screen *ss, struct svga_buffer *sbuf, unsigned bind_flags) { assert(!sbuf->user); if (ss->sws->have_gb_objects) { assert(sbuf->handle || !sbuf->dma.pending); return svga_buffer_create_host_surface(ss, sbuf, bind_flags); } if (!sbuf->hwbuf) { struct svga_winsys_screen *sws = ss->sws; unsigned alignment = 16; unsigned usage = 0; unsigned size = sbuf->b.b.width0; sbuf->hwbuf = sws->buffer_create(sws, alignment, usage, size); if (!sbuf->hwbuf) return PIPE_ERROR_OUT_OF_MEMORY; assert(!sbuf->dma.pending); } return PIPE_OK; } /** * Allocate graphics memory for vertex/index/constant/etc buffer (not * textures). */ enum pipe_error svga_buffer_create_host_surface(struct svga_screen *ss, struct svga_buffer *sbuf, unsigned bind_flags) { enum pipe_error ret = PIPE_OK; assert(!sbuf->user); if (!sbuf->handle) { boolean validated; sbuf->key.flags = 0; sbuf->key.format = SVGA3D_BUFFER; if (bind_flags & PIPE_BIND_VERTEX_BUFFER) { sbuf->key.flags |= SVGA3D_SURFACE_HINT_VERTEXBUFFER; sbuf->key.flags |= SVGA3D_SURFACE_BIND_VERTEX_BUFFER; } if (bind_flags & PIPE_BIND_INDEX_BUFFER) { sbuf->key.flags |= SVGA3D_SURFACE_HINT_INDEXBUFFER; sbuf->key.flags |= SVGA3D_SURFACE_BIND_INDEX_BUFFER; } if (bind_flags & PIPE_BIND_CONSTANT_BUFFER) sbuf->key.flags |= SVGA3D_SURFACE_BIND_CONSTANT_BUFFER; if (bind_flags & PIPE_BIND_STREAM_OUTPUT) sbuf->key.flags |= SVGA3D_SURFACE_BIND_STREAM_OUTPUT; if (bind_flags & PIPE_BIND_SAMPLER_VIEW) sbuf->key.flags |= SVGA3D_SURFACE_BIND_SHADER_RESOURCE; if (!bind_flags && sbuf->b.b.usage == PIPE_USAGE_STAGING) { /* This surface is to be used with the * SVGA3D_CMD_DX_TRANSFER_FROM_BUFFER command, and no other * bind flags are allowed to be set for this surface. */ sbuf->key.flags = SVGA3D_SURFACE_TRANSFER_FROM_BUFFER; } sbuf->key.size.width = sbuf->b.b.width0; sbuf->key.size.height = 1; sbuf->key.size.depth = 1; sbuf->key.numFaces = 1; sbuf->key.numMipLevels = 1; sbuf->key.cachable = 1; sbuf->key.arraySize = 1; SVGA_DBG(DEBUG_DMA, "surface_create for buffer sz %d\n", sbuf->b.b.width0); sbuf->handle = svga_screen_surface_create(ss, bind_flags, sbuf->b.b.usage, &validated, &sbuf->key); if (!sbuf->handle) return PIPE_ERROR_OUT_OF_MEMORY; /* Always set the discard flag on the first time the buffer is written * as svga_screen_surface_create might have passed a recycled host * buffer. */ sbuf->dma.flags.discard = TRUE; SVGA_DBG(DEBUG_DMA, " --> got sid %p sz %d (buffer)\n", sbuf->handle, sbuf->b.b.width0); /* Add the new surface to the buffer surface list */ ret = svga_buffer_add_host_surface(sbuf, sbuf->handle, &sbuf->key, bind_flags); } return ret; } /** * Recreates a host surface with the new bind flags. */ enum pipe_error svga_buffer_recreate_host_surface(struct svga_context *svga, struct svga_buffer *sbuf, unsigned bind_flags) { enum pipe_error ret = PIPE_OK; struct svga_winsys_surface *old_handle = sbuf->handle; assert(sbuf->bind_flags != bind_flags); assert(old_handle); sbuf->handle = NULL; /* Create a new resource with the requested bind_flags */ ret = svga_buffer_create_host_surface(svga_screen(svga->pipe.screen), sbuf, bind_flags); if (ret == PIPE_OK) { /* Copy the surface data */ assert(sbuf->handle); ret = SVGA3D_vgpu10_BufferCopy(svga->swc, old_handle, sbuf->handle, 0, 0, sbuf->b.b.width0); if (ret != PIPE_OK) { svga_context_flush(svga, NULL); ret = SVGA3D_vgpu10_BufferCopy(svga->swc, old_handle, sbuf->handle, 0, 0, sbuf->b.b.width0); assert(ret == PIPE_OK); } } /* Set the new bind flags for this buffer resource */ sbuf->bind_flags = bind_flags; return ret; } /** * Returns TRUE if the surface bind flags is compatible with the new bind flags. */ static boolean compatible_bind_flags(unsigned bind_flags, unsigned tobind_flags) { if ((bind_flags & tobind_flags) == tobind_flags) return TRUE; else if ((bind_flags|tobind_flags) & PIPE_BIND_CONSTANT_BUFFER) return FALSE; else return TRUE; } /** * Returns a buffer surface from the surface list * that has the requested bind flags or its existing bind flags * can be promoted to include the new bind flags. */ static struct svga_buffer_surface * svga_buffer_get_host_surface(struct svga_buffer *sbuf, unsigned bind_flags) { struct svga_buffer_surface *bufsurf; LIST_FOR_EACH_ENTRY(bufsurf, &sbuf->surfaces, list) { if (compatible_bind_flags(bufsurf->bind_flags, bind_flags)) return bufsurf; } return NULL; } /** * Adds the host surface to the buffer surface list. */ enum pipe_error svga_buffer_add_host_surface(struct svga_buffer *sbuf, struct svga_winsys_surface *handle, struct svga_host_surface_cache_key *key, unsigned bind_flags) { struct svga_buffer_surface *bufsurf; bufsurf = CALLOC_STRUCT(svga_buffer_surface); if (!bufsurf) return PIPE_ERROR_OUT_OF_MEMORY; bufsurf->bind_flags = bind_flags; bufsurf->handle = handle; bufsurf->key = *key; /* add the surface to the surface list */ LIST_ADD(&bufsurf->list, &sbuf->surfaces); return PIPE_OK; } /** * Start using the specified surface for this buffer resource. */ void svga_buffer_bind_host_surface(struct svga_context *svga, struct svga_buffer *sbuf, struct svga_buffer_surface *bufsurf) { enum pipe_error ret; /* Update the to-bind surface */ assert(bufsurf->handle); assert(sbuf->handle); /* If we are switching from stream output to other buffer, * make sure to copy the buffer content. */ if (sbuf->bind_flags & PIPE_BIND_STREAM_OUTPUT) { ret = SVGA3D_vgpu10_BufferCopy(svga->swc, sbuf->handle, bufsurf->handle, 0, 0, sbuf->b.b.width0); if (ret != PIPE_OK) { svga_context_flush(svga, NULL); ret = SVGA3D_vgpu10_BufferCopy(svga->swc, sbuf->handle, bufsurf->handle, 0, 0, sbuf->b.b.width0); assert(ret == PIPE_OK); } } /* Set this surface as the current one */ sbuf->handle = bufsurf->handle; sbuf->key = bufsurf->key; sbuf->bind_flags = bufsurf->bind_flags; } /** * Prepare a host surface that can be used as indicated in the * tobind_flags. If the existing host surface is not created * with the necessary binding flags and if the new bind flags can be * combined with the existing bind flags, then we will recreate a * new surface with the combined bind flags. Otherwise, we will create * a surface for that incompatible bind flags. * For example, if a stream output buffer is reused as a constant buffer, * since constant buffer surface cannot be bound as a stream output surface, * two surfaces will be created, one for stream output, * and another one for constant buffer. */ enum pipe_error svga_buffer_validate_host_surface(struct svga_context *svga, struct svga_buffer *sbuf, unsigned tobind_flags) { struct svga_buffer_surface *bufsurf; enum pipe_error ret = PIPE_OK; /* Flush any pending upload first */ svga_buffer_upload_flush(svga, sbuf); /* First check from the cached buffer surface list to see if there is * already a buffer surface that has the requested bind flags, or * surface with compatible bind flags that can be promoted. */ bufsurf = svga_buffer_get_host_surface(sbuf, tobind_flags); if (bufsurf) { if ((bufsurf->bind_flags & tobind_flags) == tobind_flags) { /* there is a surface with the requested bind flags */ svga_buffer_bind_host_surface(svga, sbuf, bufsurf); } else { /* Recreate a host surface with the combined bind flags */ ret = svga_buffer_recreate_host_surface(svga, sbuf, bufsurf->bind_flags | tobind_flags); /* Destroy the old surface */ svga_screen_surface_destroy(svga_screen(sbuf->b.b.screen), &bufsurf->key, &bufsurf->handle); LIST_DEL(&bufsurf->list); FREE(bufsurf); } } else { /* Need to create a new surface if the bind flags are incompatible, * such as constant buffer surface & stream output surface. */ ret = svga_buffer_recreate_host_surface(svga, sbuf, tobind_flags); } return ret; } void svga_buffer_destroy_host_surface(struct svga_screen *ss, struct svga_buffer *sbuf) { struct svga_buffer_surface *bufsurf, *next; LIST_FOR_EACH_ENTRY_SAFE(bufsurf, next, &sbuf->surfaces, list) { SVGA_DBG(DEBUG_DMA, " ungrab sid %p sz %d\n", bufsurf->handle, sbuf->b.b.width0); svga_screen_surface_destroy(ss, &bufsurf->key, &bufsurf->handle); FREE(bufsurf); } } /** * Insert a number of preliminary UPDATE_GB_IMAGE commands in the * command buffer, equal to the current number of mapped ranges. * The UPDATE_GB_IMAGE commands will be patched with the * actual ranges just before flush. */ static enum pipe_error svga_buffer_upload_gb_command(struct svga_context *svga, struct svga_buffer *sbuf) { struct svga_winsys_context *swc = svga->swc; SVGA3dCmdUpdateGBImage *update_cmd; struct svga_3d_update_gb_image *whole_update_cmd = NULL; const uint32 numBoxes = sbuf->map.num_ranges; struct pipe_resource *dummy; unsigned i; assert(svga_have_gb_objects(svga)); assert(numBoxes); assert(sbuf->dma.updates == NULL); if (sbuf->dma.flags.discard) { struct svga_3d_invalidate_gb_image *cicmd = NULL; SVGA3dCmdInvalidateGBImage *invalidate_cmd; const unsigned total_commands_size = sizeof(*invalidate_cmd) + numBoxes * sizeof(*whole_update_cmd); /* Allocate FIFO space for one INVALIDATE_GB_IMAGE command followed by * 'numBoxes' UPDATE_GB_IMAGE commands. Allocate all at once rather * than with separate commands because we need to properly deal with * filling the command buffer. */ invalidate_cmd = SVGA3D_FIFOReserve(swc, SVGA_3D_CMD_INVALIDATE_GB_IMAGE, total_commands_size, 1 + numBoxes); if (!invalidate_cmd) return PIPE_ERROR_OUT_OF_MEMORY; cicmd = container_of(invalidate_cmd, cicmd, body); cicmd->header.size = sizeof(*invalidate_cmd); swc->surface_relocation(swc, &invalidate_cmd->image.sid, NULL, sbuf->handle, (SVGA_RELOC_WRITE | SVGA_RELOC_INTERNAL | SVGA_RELOC_DMA)); invalidate_cmd->image.face = 0; invalidate_cmd->image.mipmap = 0; /* The whole_update_command is a SVGA3dCmdHeader plus the * SVGA3dCmdUpdateGBImage command. */ whole_update_cmd = (struct svga_3d_update_gb_image *) &invalidate_cmd[1]; /* initialize the first UPDATE_GB_IMAGE command */ whole_update_cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; update_cmd = &whole_update_cmd->body; } else { /* Allocate FIFO space for 'numBoxes' UPDATE_GB_IMAGE commands */ const unsigned total_commands_size = sizeof(*update_cmd) + (numBoxes - 1) * sizeof(*whole_update_cmd); update_cmd = SVGA3D_FIFOReserve(swc, SVGA_3D_CMD_UPDATE_GB_IMAGE, total_commands_size, numBoxes); if (!update_cmd) return PIPE_ERROR_OUT_OF_MEMORY; /* The whole_update_command is a SVGA3dCmdHeader plus the * SVGA3dCmdUpdateGBImage command. */ whole_update_cmd = container_of(update_cmd, whole_update_cmd, body); } /* Init the first UPDATE_GB_IMAGE command */ whole_update_cmd->header.size = sizeof(*update_cmd); swc->surface_relocation(swc, &update_cmd->image.sid, NULL, sbuf->handle, SVGA_RELOC_WRITE | SVGA_RELOC_INTERNAL); update_cmd->image.face = 0; update_cmd->image.mipmap = 0; /* Save pointer to the first UPDATE_GB_IMAGE command so that we can * fill in the box info below. */ sbuf->dma.updates = whole_update_cmd; /* * Copy the face, mipmap, etc. info to all subsequent commands. * Also do the surface relocation for each subsequent command. */ for (i = 1; i < numBoxes; ++i) { whole_update_cmd++; memcpy(whole_update_cmd, sbuf->dma.updates, sizeof(*whole_update_cmd)); swc->surface_relocation(swc, &whole_update_cmd->body.image.sid, NULL, sbuf->handle, SVGA_RELOC_WRITE | SVGA_RELOC_INTERNAL); } /* Increment reference count */ sbuf->dma.svga = svga; dummy = NULL; pipe_resource_reference(&dummy, &sbuf->b.b); SVGA_FIFOCommitAll(swc); swc->hints |= SVGA_HINT_FLAG_CAN_PRE_FLUSH; sbuf->dma.flags.discard = FALSE; svga->hud.num_resource_updates++; return PIPE_OK; } /** * Issue DMA commands to transfer guest memory to the host. * Note that the memory segments (offset, size) will be patched in * later in the svga_buffer_upload_flush() function. */ static enum pipe_error svga_buffer_upload_hb_command(struct svga_context *svga, struct svga_buffer *sbuf) { struct svga_winsys_context *swc = svga->swc; struct svga_winsys_buffer *guest = sbuf->hwbuf; struct svga_winsys_surface *host = sbuf->handle; const SVGA3dTransferType transfer = SVGA3D_WRITE_HOST_VRAM; SVGA3dCmdSurfaceDMA *cmd; const uint32 numBoxes = sbuf->map.num_ranges; SVGA3dCopyBox *boxes; SVGA3dCmdSurfaceDMASuffix *pSuffix; unsigned region_flags; unsigned surface_flags; struct pipe_resource *dummy; assert(!svga_have_gb_objects(svga)); if (transfer == SVGA3D_WRITE_HOST_VRAM) { region_flags = SVGA_RELOC_READ; surface_flags = SVGA_RELOC_WRITE; } else if (transfer == SVGA3D_READ_HOST_VRAM) { region_flags = SVGA_RELOC_WRITE; surface_flags = SVGA_RELOC_READ; } else { assert(0); return PIPE_ERROR_BAD_INPUT; } assert(numBoxes); cmd = SVGA3D_FIFOReserve(swc, SVGA_3D_CMD_SURFACE_DMA, sizeof *cmd + numBoxes * sizeof *boxes + sizeof *pSuffix, 2); if (!cmd) return PIPE_ERROR_OUT_OF_MEMORY; swc->region_relocation(swc, &cmd->guest.ptr, guest, 0, region_flags); cmd->guest.pitch = 0; swc->surface_relocation(swc, &cmd->host.sid, NULL, host, surface_flags); cmd->host.face = 0; cmd->host.mipmap = 0; cmd->transfer = transfer; sbuf->dma.boxes = (SVGA3dCopyBox *)&cmd[1]; sbuf->dma.svga = svga; /* Increment reference count */ dummy = NULL; pipe_resource_reference(&dummy, &sbuf->b.b); pSuffix = (SVGA3dCmdSurfaceDMASuffix *)((uint8_t*)cmd + sizeof *cmd + numBoxes * sizeof *boxes); pSuffix->suffixSize = sizeof *pSuffix; pSuffix->maximumOffset = sbuf->b.b.width0; pSuffix->flags = sbuf->dma.flags; SVGA_FIFOCommitAll(swc); swc->hints |= SVGA_HINT_FLAG_CAN_PRE_FLUSH; sbuf->dma.flags.discard = FALSE; svga->hud.num_buffer_uploads++; return PIPE_OK; } /** * Issue commands to transfer guest memory to the host. */ static enum pipe_error svga_buffer_upload_command(struct svga_context *svga, struct svga_buffer *sbuf) { if (svga_have_gb_objects(svga)) { return svga_buffer_upload_gb_command(svga, sbuf); } else { return svga_buffer_upload_hb_command(svga, sbuf); } } /** * Patch up the upload DMA command reserved by svga_buffer_upload_command * with the final ranges. */ void svga_buffer_upload_flush(struct svga_context *svga, struct svga_buffer *sbuf) { unsigned i; struct pipe_resource *dummy; if (!sbuf->dma.pending) { //debug_printf("no dma pending on buffer\n"); return; } assert(sbuf->handle); assert(sbuf->map.num_ranges); assert(sbuf->dma.svga == svga); /* * Patch the DMA/update command with the final copy box. */ if (svga_have_gb_objects(svga)) { struct svga_3d_update_gb_image *update = sbuf->dma.updates; assert(update); for (i = 0; i < sbuf->map.num_ranges; ++i, ++update) { SVGA3dBox *box = &update->body.box; SVGA_DBG(DEBUG_DMA, " bytes %u - %u\n", sbuf->map.ranges[i].start, sbuf->map.ranges[i].end); box->x = sbuf->map.ranges[i].start; box->y = 0; box->z = 0; box->w = sbuf->map.ranges[i].end - sbuf->map.ranges[i].start; box->h = 1; box->d = 1; assert(box->x <= sbuf->b.b.width0); assert(box->x + box->w <= sbuf->b.b.width0); svga->hud.num_bytes_uploaded += box->w; svga->hud.num_buffer_uploads++; } } else { assert(sbuf->hwbuf); assert(sbuf->dma.boxes); SVGA_DBG(DEBUG_DMA, "dma to sid %p\n", sbuf->handle); for (i = 0; i < sbuf->map.num_ranges; ++i) { SVGA3dCopyBox *box = sbuf->dma.boxes + i; SVGA_DBG(DEBUG_DMA, " bytes %u - %u\n", sbuf->map.ranges[i].start, sbuf->map.ranges[i].end); box->x = sbuf->map.ranges[i].start; box->y = 0; box->z = 0; box->w = sbuf->map.ranges[i].end - sbuf->map.ranges[i].start; box->h = 1; box->d = 1; box->srcx = sbuf->map.ranges[i].start; box->srcy = 0; box->srcz = 0; assert(box->x <= sbuf->b.b.width0); assert(box->x + box->w <= sbuf->b.b.width0); svga->hud.num_bytes_uploaded += box->w; svga->hud.num_buffer_uploads++; } } /* Reset sbuf for next use/upload */ sbuf->map.num_ranges = 0; assert(sbuf->head.prev && sbuf->head.next); LIST_DEL(&sbuf->head); /* remove from svga->dirty_buffers list */ #ifdef DEBUG sbuf->head.next = sbuf->head.prev = NULL; #endif sbuf->dma.pending = FALSE; sbuf->dma.flags.discard = FALSE; sbuf->dma.flags.unsynchronized = FALSE; sbuf->dma.svga = NULL; sbuf->dma.boxes = NULL; sbuf->dma.updates = NULL; /* Decrement reference count (and potentially destroy) */ dummy = &sbuf->b.b; pipe_resource_reference(&dummy, NULL); } /** * Note a dirty range. * * This function only notes the range down. It doesn't actually emit a DMA * upload command. That only happens when a context tries to refer to this * buffer, and the DMA upload command is added to that context's command * buffer. * * We try to lump as many contiguous DMA transfers together as possible. */ void svga_buffer_add_range(struct svga_buffer *sbuf, unsigned start, unsigned end) { unsigned i; unsigned nearest_range; unsigned nearest_dist; assert(end > start); if (sbuf->map.num_ranges < SVGA_BUFFER_MAX_RANGES) { nearest_range = sbuf->map.num_ranges; nearest_dist = ~0; } else { nearest_range = SVGA_BUFFER_MAX_RANGES - 1; nearest_dist = 0; } /* * Try to grow one of the ranges. */ for (i = 0; i < sbuf->map.num_ranges; ++i) { const int left_dist = start - sbuf->map.ranges[i].end; const int right_dist = sbuf->map.ranges[i].start - end; const int dist = MAX2(left_dist, right_dist); if (dist <= 0) { /* * Ranges are contiguous or overlapping -- extend this one and return. * * Note that it is not this function's task to prevent overlapping * ranges, as the GMR was already given so it is too late to do * anything. If the ranges overlap here it must surely be because * PIPE_TRANSFER_UNSYNCHRONIZED was set. */ sbuf->map.ranges[i].start = MIN2(sbuf->map.ranges[i].start, start); sbuf->map.ranges[i].end = MAX2(sbuf->map.ranges[i].end, end); return; } else { /* * Discontiguous ranges -- keep track of the nearest range. */ if (dist < nearest_dist) { nearest_range = i; nearest_dist = dist; } } } /* * We cannot add a new range to an existing DMA command, so patch-up the * pending DMA upload and start clean. */ svga_buffer_upload_flush(sbuf->dma.svga, sbuf); assert(!sbuf->dma.pending); assert(!sbuf->dma.svga); assert(!sbuf->dma.boxes); if (sbuf->map.num_ranges < SVGA_BUFFER_MAX_RANGES) { /* * Add a new range. */ sbuf->map.ranges[sbuf->map.num_ranges].start = start; sbuf->map.ranges[sbuf->map.num_ranges].end = end; ++sbuf->map.num_ranges; } else { /* * Everything else failed, so just extend the nearest range. * * It is OK to do this because we always keep a local copy of the * host buffer data, for SW TNL, and the host never modifies the buffer. */ assert(nearest_range < SVGA_BUFFER_MAX_RANGES); assert(nearest_range < sbuf->map.num_ranges); sbuf->map.ranges[nearest_range].start = MIN2(sbuf->map.ranges[nearest_range].start, start); sbuf->map.ranges[nearest_range].end = MAX2(sbuf->map.ranges[nearest_range].end, end); } } /** * Copy the contents of the malloc buffer to a hardware buffer. */ static enum pipe_error svga_buffer_update_hw(struct svga_context *svga, struct svga_buffer *sbuf, unsigned bind_flags) { assert(!sbuf->user); if (!svga_buffer_has_hw_storage(sbuf)) { struct svga_screen *ss = svga_screen(sbuf->b.b.screen); enum pipe_error ret; boolean retry; void *map; unsigned i; assert(sbuf->swbuf); if (!sbuf->swbuf) return PIPE_ERROR; ret = svga_buffer_create_hw_storage(svga_screen(sbuf->b.b.screen), sbuf, bind_flags); if (ret != PIPE_OK) return ret; mtx_lock(&ss->swc_mutex); map = svga_buffer_hw_storage_map(svga, sbuf, PIPE_TRANSFER_WRITE, &retry); assert(map); assert(!retry); if (!map) { mtx_unlock(&ss->swc_mutex); svga_buffer_destroy_hw_storage(ss, sbuf); return PIPE_ERROR; } /* Copy data from malloc'd swbuf to the new hardware buffer */ for (i = 0; i < sbuf->map.num_ranges; i++) { unsigned start = sbuf->map.ranges[i].start; unsigned len = sbuf->map.ranges[i].end - start; memcpy((uint8_t *) map + start, (uint8_t *) sbuf->swbuf + start, len); } svga_buffer_hw_storage_unmap(svga, sbuf); /* This user/malloc buffer is now indistinguishable from a gpu buffer */ assert(sbuf->map.count == 0); if (sbuf->map.count == 0) { if (sbuf->user) sbuf->user = FALSE; else align_free(sbuf->swbuf); sbuf->swbuf = NULL; } mtx_unlock(&ss->swc_mutex); } return PIPE_OK; } /** * Upload the buffer to the host in a piecewise fashion. * * Used when the buffer is too big to fit in the GMR aperture. * This function should never get called in the guest-backed case * since we always have a full-sized hardware storage backing the * host surface. */ static enum pipe_error svga_buffer_upload_piecewise(struct svga_screen *ss, struct svga_context *svga, struct svga_buffer *sbuf) { struct svga_winsys_screen *sws = ss->sws; const unsigned alignment = sizeof(void *); const unsigned usage = 0; unsigned i; assert(sbuf->map.num_ranges); assert(!sbuf->dma.pending); assert(!svga_have_gb_objects(svga)); SVGA_DBG(DEBUG_DMA, "dma to sid %p\n", sbuf->handle); for (i = 0; i < sbuf->map.num_ranges; ++i) { const struct svga_buffer_range *range = &sbuf->map.ranges[i]; unsigned offset = range->start; unsigned size = range->end - range->start; while (offset < range->end) { struct svga_winsys_buffer *hwbuf; uint8_t *map; enum pipe_error ret; if (offset + size > range->end) size = range->end - offset; hwbuf = sws->buffer_create(sws, alignment, usage, size); while (!hwbuf) { size /= 2; if (!size) return PIPE_ERROR_OUT_OF_MEMORY; hwbuf = sws->buffer_create(sws, alignment, usage, size); } SVGA_DBG(DEBUG_DMA, " bytes %u - %u\n", offset, offset + size); map = sws->buffer_map(sws, hwbuf, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_DISCARD_RANGE); assert(map); if (map) { memcpy(map, (const char *) sbuf->swbuf + offset, size); sws->buffer_unmap(sws, hwbuf); } ret = SVGA3D_BufferDMA(svga->swc, hwbuf, sbuf->handle, SVGA3D_WRITE_HOST_VRAM, size, 0, offset, sbuf->dma.flags); if (ret != PIPE_OK) { svga_context_flush(svga, NULL); ret = SVGA3D_BufferDMA(svga->swc, hwbuf, sbuf->handle, SVGA3D_WRITE_HOST_VRAM, size, 0, offset, sbuf->dma.flags); assert(ret == PIPE_OK); } sbuf->dma.flags.discard = FALSE; sws->buffer_destroy(sws, hwbuf); offset += size; } } sbuf->map.num_ranges = 0; return PIPE_OK; } /** * Get (or create/upload) the winsys surface handle so that we can * refer to this buffer in fifo commands. * This function will create the host surface, and in the GB case also the * hardware storage. In the non-GB case, the hardware storage will be created * if there are mapped ranges and the data is currently in a malloc'ed buffer. */ struct svga_winsys_surface * svga_buffer_handle(struct svga_context *svga, struct pipe_resource *buf, unsigned tobind_flags) { struct pipe_screen *screen = svga->pipe.screen; struct svga_screen *ss = svga_screen(screen); struct svga_buffer *sbuf; enum pipe_error ret; if (!buf) return NULL; sbuf = svga_buffer(buf); assert(!sbuf->user); if (sbuf->handle) { if ((sbuf->bind_flags & tobind_flags) != tobind_flags) { /* If the allocated resource's bind flags do not include the * requested bind flags, validate the host surface. */ ret = svga_buffer_validate_host_surface(svga, sbuf, tobind_flags); if (ret != PIPE_OK) return NULL; } } else { if (!sbuf->bind_flags) { sbuf->bind_flags = tobind_flags; } assert((sbuf->bind_flags & tobind_flags) == tobind_flags); /* This call will set sbuf->handle */ if (svga_have_gb_objects(svga)) { ret = svga_buffer_update_hw(svga, sbuf, sbuf->bind_flags); } else { ret = svga_buffer_create_host_surface(ss, sbuf, sbuf->bind_flags); } if (ret != PIPE_OK) return NULL; } assert(sbuf->handle); if (sbuf->map.num_ranges) { if (!sbuf->dma.pending) { /* No pending DMA/update commands yet. */ /* Migrate the data from swbuf -> hwbuf if necessary */ ret = svga_buffer_update_hw(svga, sbuf, sbuf->bind_flags); if (ret == PIPE_OK) { /* Emit DMA or UpdateGBImage commands */ ret = svga_buffer_upload_command(svga, sbuf); if (ret == PIPE_ERROR_OUT_OF_MEMORY) { svga_context_flush(svga, NULL); ret = svga_buffer_upload_command(svga, sbuf); assert(ret == PIPE_OK); } if (ret == PIPE_OK) { sbuf->dma.pending = TRUE; assert(!sbuf->head.prev && !sbuf->head.next); LIST_ADDTAIL(&sbuf->head, &svga->dirty_buffers); } } else if (ret == PIPE_ERROR_OUT_OF_MEMORY) { /* * The buffer is too big to fit in the GMR aperture, so break it in * smaller pieces. */ ret = svga_buffer_upload_piecewise(ss, svga, sbuf); } if (ret != PIPE_OK) { /* * Something unexpected happened above. There is very little that * we can do other than proceeding while ignoring the dirty ranges. */ assert(0); sbuf->map.num_ranges = 0; } } else { /* * There a pending dma already. Make sure it is from this context. */ assert(sbuf->dma.svga == svga); } } assert(sbuf->map.num_ranges == 0 || sbuf->dma.pending); return sbuf->handle; } void svga_context_flush_buffers(struct svga_context *svga) { struct list_head *curr, *next; SVGA_STATS_TIME_PUSH(svga_sws(svga), SVGA_STATS_TIME_BUFFERSFLUSH); curr = svga->dirty_buffers.next; next = curr->next; while (curr != &svga->dirty_buffers) { struct svga_buffer *sbuf = LIST_ENTRY(struct svga_buffer, curr, head); assert(p_atomic_read(&sbuf->b.b.reference.count) != 0); assert(sbuf->dma.pending); svga_buffer_upload_flush(svga, sbuf); curr = next; next = curr->next; } SVGA_STATS_TIME_POP(svga_sws(svga)); }