/* * Copyright (c) 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "common/gen_l3_config.h" #include "brw_context.h" #include "brw_defines.h" #include "brw_state.h" #include "intel_batchbuffer.h" /** * Calculate the desired L3 partitioning based on the current state of the * pipeline. For now this simply returns the conservative defaults calculated * by get_default_l3_weights(), but we could probably do better by gathering * more statistics from the pipeline state (e.g. guess of expected URB usage * and bound surfaces), or by using feed-back from performance counters. */ static struct gen_l3_weights get_pipeline_state_l3_weights(const struct brw_context *brw) { const struct brw_stage_state *stage_states[] = { [MESA_SHADER_VERTEX] = &brw->vs.base, [MESA_SHADER_TESS_CTRL] = &brw->tcs.base, [MESA_SHADER_TESS_EVAL] = &brw->tes.base, [MESA_SHADER_GEOMETRY] = &brw->gs.base, [MESA_SHADER_FRAGMENT] = &brw->wm.base, [MESA_SHADER_COMPUTE] = &brw->cs.base }; bool needs_dc = false, needs_slm = false; for (unsigned i = 0; i < ARRAY_SIZE(stage_states); i++) { const struct gl_program *prog = brw->ctx._Shader->CurrentProgram[stage_states[i]->stage]; const struct brw_stage_prog_data *prog_data = stage_states[i]->prog_data; needs_dc |= (prog && (prog->sh.data->NumAtomicBuffers || prog->sh.data->NumShaderStorageBlocks || prog->info.num_images)) || (prog_data && prog_data->total_scratch); needs_slm |= prog_data && prog_data->total_shared; } return gen_get_default_l3_weights(&brw->screen->devinfo, needs_dc, needs_slm); } /** * Program the hardware to use the specified L3 configuration. */ static void setup_l3_config(struct brw_context *brw, const struct gen_l3_config *cfg) { const struct gen_device_info *devinfo = &brw->screen->devinfo; const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL]; const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] || cfg->n[GEN_L3P_ALL]; const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] || cfg->n[GEN_L3P_ALL]; const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] || cfg->n[GEN_L3P_ALL]; const bool has_slm = cfg->n[GEN_L3P_SLM]; /* According to the hardware docs, the L3 partitioning can only be changed * while the pipeline is completely drained and the caches are flushed, * which involves a first PIPE_CONTROL flush which stalls the pipeline... */ brw_emit_pipe_control_flush(brw, PIPE_CONTROL_DATA_CACHE_FLUSH | PIPE_CONTROL_NO_WRITE | PIPE_CONTROL_CS_STALL); /* ...followed by a second pipelined PIPE_CONTROL that initiates * invalidation of the relevant caches. Note that because RO invalidation * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL * command is processed by the CS) we cannot combine it with the previous * stalling flush as the hardware documentation suggests, because that * would cause the CS to stall on previous rendering *after* RO * invalidation and wouldn't prevent the RO caches from being polluted by * concurrent rendering before the stall completes. This intentionally * doesn't implement the SKL+ hardware workaround suggesting to enable CS * stall on PIPE_CONTROLs with the texture cache invalidation bit set for * GPGPU workloads because the previous and subsequent PIPE_CONTROLs * already guarantee that there is no concurrent GPGPU kernel execution * (see SKL HSD 2132585). */ brw_emit_pipe_control_flush(brw, PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE | PIPE_CONTROL_CONST_CACHE_INVALIDATE | PIPE_CONTROL_INSTRUCTION_INVALIDATE | PIPE_CONTROL_STATE_CACHE_INVALIDATE | PIPE_CONTROL_NO_WRITE); /* Now send a third stalling flush to make sure that invalidation is * complete when the L3 configuration registers are modified. */ brw_emit_pipe_control_flush(brw, PIPE_CONTROL_DATA_CACHE_FLUSH | PIPE_CONTROL_NO_WRITE | PIPE_CONTROL_CS_STALL); if (devinfo->gen >= 8) { assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]); const unsigned imm_data = ((has_slm ? GEN8_L3CNTLREG_SLM_ENABLE : 0) | SET_FIELD(cfg->n[GEN_L3P_URB], GEN8_L3CNTLREG_URB_ALLOC) | SET_FIELD(cfg->n[GEN_L3P_RO], GEN8_L3CNTLREG_RO_ALLOC) | SET_FIELD(cfg->n[GEN_L3P_DC], GEN8_L3CNTLREG_DC_ALLOC) | SET_FIELD(cfg->n[GEN_L3P_ALL], GEN8_L3CNTLREG_ALL_ALLOC)); /* Set up the L3 partitioning. */ brw_load_register_imm32(brw, GEN8_L3CNTLREG, imm_data); } else { assert(!cfg->n[GEN_L3P_ALL]); /* When enabled SLM only uses a portion of the L3 on half of the banks, * the matching space on the remaining banks has to be allocated to a * client (URB for all validated configurations) set to the * lower-bandwidth 2-bank address hashing mode. */ const bool urb_low_bw = has_slm && !devinfo->is_baytrail; assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]); /* Minimum number of ways that can be allocated to the URB. */ const unsigned n0_urb = (devinfo->is_baytrail ? 32 : 0); assert(cfg->n[GEN_L3P_URB] >= n0_urb); BEGIN_BATCH(7); OUT_BATCH(MI_LOAD_REGISTER_IMM | (7 - 2)); /* Demote any clients with no ways assigned to LLC. */ OUT_BATCH(GEN7_L3SQCREG1); OUT_BATCH((devinfo->is_haswell ? HSW_L3SQCREG1_SQGHPCI_DEFAULT : devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT : IVB_L3SQCREG1_SQGHPCI_DEFAULT) | (has_dc ? 0 : GEN7_L3SQCREG1_CONV_DC_UC) | (has_is ? 0 : GEN7_L3SQCREG1_CONV_IS_UC) | (has_c ? 0 : GEN7_L3SQCREG1_CONV_C_UC) | (has_t ? 0 : GEN7_L3SQCREG1_CONV_T_UC)); /* Set up the L3 partitioning. */ OUT_BATCH(GEN7_L3CNTLREG2); OUT_BATCH((has_slm ? GEN7_L3CNTLREG2_SLM_ENABLE : 0) | SET_FIELD(cfg->n[GEN_L3P_URB] - n0_urb, GEN7_L3CNTLREG2_URB_ALLOC) | (urb_low_bw ? GEN7_L3CNTLREG2_URB_LOW_BW : 0) | SET_FIELD(cfg->n[GEN_L3P_ALL], GEN7_L3CNTLREG2_ALL_ALLOC) | SET_FIELD(cfg->n[GEN_L3P_RO], GEN7_L3CNTLREG2_RO_ALLOC) | SET_FIELD(cfg->n[GEN_L3P_DC], GEN7_L3CNTLREG2_DC_ALLOC)); OUT_BATCH(GEN7_L3CNTLREG3); OUT_BATCH(SET_FIELD(cfg->n[GEN_L3P_IS], GEN7_L3CNTLREG3_IS_ALLOC) | SET_FIELD(cfg->n[GEN_L3P_C], GEN7_L3CNTLREG3_C_ALLOC) | SET_FIELD(cfg->n[GEN_L3P_T], GEN7_L3CNTLREG3_T_ALLOC)); ADVANCE_BATCH(); if (can_do_hsw_l3_atomics(brw->screen)) { /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep * them disabled to avoid crashing the system hard. */ BEGIN_BATCH(5); OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2)); OUT_BATCH(HSW_SCRATCH1); OUT_BATCH(has_dc ? 0 : HSW_SCRATCH1_L3_ATOMIC_DISABLE); OUT_BATCH(HSW_ROW_CHICKEN3); OUT_BATCH(REG_MASK(HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE) | (has_dc ? 0 : HSW_ROW_CHICKEN3_L3_ATOMIC_DISABLE)); ADVANCE_BATCH(); } } } /** * Update the URB size in the context state for the specified L3 * configuration. */ static void update_urb_size(struct brw_context *brw, const struct gen_l3_config *cfg) { const struct gen_device_info *devinfo = &brw->screen->devinfo; const unsigned sz = gen_get_l3_config_urb_size(devinfo, cfg); if (brw->urb.size != sz) { brw->urb.size = sz; brw->ctx.NewDriverState |= BRW_NEW_URB_SIZE; /* If we change the total URB size, reset the individual stage sizes to * zero so that, even if there is no URB size change, gen7_upload_urb * still re-emits 3DSTATE_URB_*. */ brw->urb.vsize = 0; brw->urb.gsize = 0; brw->urb.hsize = 0; brw->urb.dsize = 0; } } static void emit_l3_state(struct brw_context *brw) { const struct gen_l3_weights w = get_pipeline_state_l3_weights(brw); const float dw = gen_diff_l3_weights(w, gen_get_l3_config_weights(brw->l3.config)); /* The distance between any two compatible weight vectors cannot exceed two * due to the triangle inequality. */ const float large_dw_threshold = 2.0; /* Somewhat arbitrary, simply makes sure that there will be no repeated * transitions to the same L3 configuration, could probably do better here. */ const float small_dw_threshold = 0.5; /* If we're emitting a new batch the caches should already be clean and the * transition should be relatively cheap, so it shouldn't hurt much to use * the smaller threshold. Otherwise use the larger threshold so that we * only reprogram the L3 mid-batch if the most recently programmed * configuration is incompatible with the current pipeline state. */ const float dw_threshold = (brw->ctx.NewDriverState & BRW_NEW_BATCH ? small_dw_threshold : large_dw_threshold); if (dw > dw_threshold && can_do_pipelined_register_writes(brw->screen)) { const struct gen_l3_config *const cfg = gen_get_l3_config(&brw->screen->devinfo, w); setup_l3_config(brw, cfg); update_urb_size(brw, cfg); brw->l3.config = cfg; if (unlikely(INTEL_DEBUG & DEBUG_L3)) { fprintf(stderr, "L3 config transition (%f > %f): ", dw, dw_threshold); gen_dump_l3_config(cfg, stderr); } } } const struct brw_tracked_state gen7_l3_state = { .dirty = { .mesa = 0, .brw = BRW_NEW_BATCH | BRW_NEW_BLORP | BRW_NEW_CS_PROG_DATA | BRW_NEW_FS_PROG_DATA | BRW_NEW_GS_PROG_DATA | BRW_NEW_TCS_PROG_DATA | BRW_NEW_TES_PROG_DATA | BRW_NEW_VS_PROG_DATA, }, .emit = emit_l3_state }; /** * Hack to restore the default L3 configuration. * * This will be called at the end of every batch in order to reset the L3 * configuration to the default values for the time being until the kernel is * fixed. Until kernel commit 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b * (included in v4.1) we would set the MI_RESTORE_INHIBIT bit when submitting * batch buffers for the default context used by the DDX, which meant that any * context state changed by the GL would leak into the DDX, the assumption * being that the DDX would initialize any state it cares about manually. The * DDX is however not careful enough to program an L3 configuration * explicitly, and it makes assumptions about it (URB size) which won't hold * and cause it to misrender if we let our L3 set-up to leak into the DDX. * * Since v4.1 of the Linux kernel the default context is saved and restored * normally, so it's far less likely for our L3 programming to interfere with * other contexts -- In fact restoring the default L3 configuration at the end * of the batch will be redundant most of the time. A kind of state leak is * still possible though if the context making assumptions about L3 state is * created immediately after our context was active (e.g. without the DDX * default context being scheduled in between) because at present the DRM * doesn't fully initialize the contents of newly created contexts and instead * sets the MI_RESTORE_INHIBIT flag causing it to inherit the state from the * last active context. * * It's possible to realize such a scenario if, say, an X server (or a GL * application using an outdated non-L3-aware Mesa version) is started while * another GL application is running and happens to have modified the L3 * configuration, or if no X server is running at all and a GL application * using a non-L3-aware Mesa version is started after another GL application * ran and modified the L3 configuration -- The latter situation can actually * be reproduced easily on IVB in our CI system. */ void gen7_restore_default_l3_config(struct brw_context *brw) { const struct gen_device_info *devinfo = &brw->screen->devinfo; const struct gen_l3_config *const cfg = gen_get_default_l3_config(devinfo); if (cfg != brw->l3.config && can_do_pipelined_register_writes(brw->screen)) { setup_l3_config(brw, cfg); update_urb_size(brw, cfg); brw->l3.config = cfg; } }