// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package com.google.protobuf.nano; import com.google.protobuf.nano.MapFactories.MapFactory; import java.io.IOException; import java.nio.charset.Charset; import java.util.Arrays; import java.util.Map; import java.util.Map.Entry; /** * The classes contained within are used internally by the Protocol Buffer * library and generated message implementations. They are public only because * those generated messages do not reside in the {@code protobuf} package. * Others should not use this class directly. * * @author kenton@google.com (Kenton Varda) */ public final class InternalNano { public static final int TYPE_DOUBLE = 1; public static final int TYPE_FLOAT = 2; public static final int TYPE_INT64 = 3; public static final int TYPE_UINT64 = 4; public static final int TYPE_INT32 = 5; public static final int TYPE_FIXED64 = 6; public static final int TYPE_FIXED32 = 7; public static final int TYPE_BOOL = 8; public static final int TYPE_STRING = 9; public static final int TYPE_GROUP = 10; public static final int TYPE_MESSAGE = 11; public static final int TYPE_BYTES = 12; public static final int TYPE_UINT32 = 13; public static final int TYPE_ENUM = 14; public static final int TYPE_SFIXED32 = 15; public static final int TYPE_SFIXED64 = 16; public static final int TYPE_SINT32 = 17; public static final int TYPE_SINT64 = 18; protected static final Charset UTF_8 = Charset.forName("UTF-8"); protected static final Charset ISO_8859_1 = Charset.forName("ISO-8859-1"); private InternalNano() {} /** * An object to provide synchronization when lazily initializing static fields * of {@link MessageNano} subclasses. *
* To enable earlier versions of ProGuard to inline short methods from a * generated MessageNano subclass to the call sites, that class must not have * a class initializer, which will be created if there is any static variable * initializers. To lazily initialize the static variables in a thread-safe * manner, the initialization code will synchronize on this object. */ public static final Object LAZY_INIT_LOCK = new Object(); /** * Helper called by generated code to construct default values for string * fields. *
* The protocol compiler does not actually contain a UTF-8 decoder -- it * just pushes UTF-8-encoded text around without touching it. The one place * where this presents a problem is when generating Java string literals. * Unicode characters in the string literal would normally need to be encoded * using a Unicode escape sequence, which would require decoding them. * To get around this, protoc instead embeds the UTF-8 bytes into the * generated code and leaves it to the runtime library to decode them. *
* It gets worse, though. If protoc just generated a byte array, like: * new byte[] {0x12, 0x34, 0x56, 0x78} * Java actually generates *code* which allocates an array and then fills * in each value. This is much less efficient than just embedding the bytes * directly into the bytecode. To get around this, we need another * work-around. String literals are embedded directly, so protoc actually * generates a string literal corresponding to the bytes. The easiest way * to do this is to use the ISO-8859-1 character set, which corresponds to * the first 256 characters of the Unicode range. Protoc can then use * good old CEscape to generate the string. *
* So we have a string literal which represents a set of bytes which * represents another string. This function -- stringDefaultValue -- * converts from the generated string to the string we actually want. The * generated code calls this automatically. */ public static String stringDefaultValue(String bytes) { return new String(bytes.getBytes(ISO_8859_1), InternalNano.UTF_8); } /** * Helper called by generated code to construct default values for bytes * fields. *
* This is a lot like {@link #stringDefaultValue}, but for bytes fields.
* In this case we only need the second of the two hacks -- allowing us to
* embed raw bytes as a string literal with ISO-8859-1 encoding.
*/
public static byte[] bytesDefaultValue(String bytes) {
return bytes.getBytes(ISO_8859_1);
}
/**
* Helper function to convert a string into UTF-8 while turning the
* UnsupportedEncodingException to a RuntimeException.
*/
public static byte[] copyFromUtf8(final String text) {
return text.getBytes(InternalNano.UTF_8);
}
/**
* Checks repeated int field equality; null-value and 0-length fields are
* considered equal.
*/
public static boolean equals(int[] field1, int[] field2) {
if (field1 == null || field1.length == 0) {
return field2 == null || field2.length == 0;
} else {
return Arrays.equals(field1, field2);
}
}
/**
* Checks repeated long field equality; null-value and 0-length fields are
* considered equal.
*/
public static boolean equals(long[] field1, long[] field2) {
if (field1 == null || field1.length == 0) {
return field2 == null || field2.length == 0;
} else {
return Arrays.equals(field1, field2);
}
}
/**
* Checks repeated float field equality; null-value and 0-length fields are
* considered equal.
*/
public static boolean equals(float[] field1, float[] field2) {
if (field1 == null || field1.length == 0) {
return field2 == null || field2.length == 0;
} else {
return Arrays.equals(field1, field2);
}
}
/**
* Checks repeated double field equality; null-value and 0-length fields are
* considered equal.
*/
public static boolean equals(double[] field1, double[] field2) {
if (field1 == null || field1.length == 0) {
return field2 == null || field2.length == 0;
} else {
return Arrays.equals(field1, field2);
}
}
/**
* Checks repeated boolean field equality; null-value and 0-length fields are
* considered equal.
*/
public static boolean equals(boolean[] field1, boolean[] field2) {
if (field1 == null || field1.length == 0) {
return field2 == null || field2.length == 0;
} else {
return Arrays.equals(field1, field2);
}
}
/**
* Checks repeated bytes field equality. Only non-null elements are tested.
* Returns true if the two fields have the same sequence of non-null
* elements. Null-value fields and fields of any length with only null
* elements are considered equal.
*/
public static boolean equals(byte[][] field1, byte[][] field2) {
int index1 = 0;
int length1 = field1 == null ? 0 : field1.length;
int index2 = 0;
int length2 = field2 == null ? 0 : field2.length;
while (true) {
while (index1 < length1 && field1[index1] == null) {
index1++;
}
while (index2 < length2 && field2[index2] == null) {
index2++;
}
boolean atEndOf1 = index1 >= length1;
boolean atEndOf2 = index2 >= length2;
if (atEndOf1 && atEndOf2) {
// no more non-null elements to test in both arrays
return true;
} else if (atEndOf1 != atEndOf2) {
// one of the arrays have extra non-null elements
return false;
} else if (!Arrays.equals(field1[index1], field2[index2])) {
// element mismatch
return false;
}
index1++;
index2++;
}
}
/**
* Checks repeated string/message field equality. Only non-null elements are
* tested. Returns true if the two fields have the same sequence of non-null
* elements. Null-value fields and fields of any length with only null
* elements are considered equal.
*/
public static boolean equals(Object[] field1, Object[] field2) {
int index1 = 0;
int length1 = field1 == null ? 0 : field1.length;
int index2 = 0;
int length2 = field2 == null ? 0 : field2.length;
while (true) {
while (index1 < length1 && field1[index1] == null) {
index1++;
}
while (index2 < length2 && field2[index2] == null) {
index2++;
}
boolean atEndOf1 = index1 >= length1;
boolean atEndOf2 = index2 >= length2;
if (atEndOf1 && atEndOf2) {
// no more non-null elements to test in both arrays
return true;
} else if (atEndOf1 != atEndOf2) {
// one of the arrays have extra non-null elements
return false;
} else if (!field1[index1].equals(field2[index2])) {
// element mismatch
return false;
}
index1++;
index2++;
}
}
/**
* Computes the hash code of a repeated int field. Null-value and 0-length
* fields have the same hash code.
*/
public static int hashCode(int[] field) {
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
}
/**
* Computes the hash code of a repeated long field. Null-value and 0-length
* fields have the same hash code.
*/
public static int hashCode(long[] field) {
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
}
/**
* Computes the hash code of a repeated float field. Null-value and 0-length
* fields have the same hash code.
*/
public static int hashCode(float[] field) {
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
}
/**
* Computes the hash code of a repeated double field. Null-value and 0-length
* fields have the same hash code.
*/
public static int hashCode(double[] field) {
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
}
/**
* Computes the hash code of a repeated boolean field. Null-value and 0-length
* fields have the same hash code.
*/
public static int hashCode(boolean[] field) {
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
}
/**
* Computes the hash code of a repeated bytes field. Only the sequence of all
* non-null elements are used in the computation. Null-value fields and fields
* of any length with only null elements have the same hash code.
*/
public static int hashCode(byte[][] field) {
int result = 0;
for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) {
byte[] element = field[i];
if (element != null) {
result = 31 * result + Arrays.hashCode(element);
}
}
return result;
}
/**
* Computes the hash code of a repeated string/message field. Only the
* sequence of all non-null elements are used in the computation. Null-value
* fields and fields of any length with only null elements have the same hash
* code.
*/
public static int hashCode(Object[] field) {
int result = 0;
for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) {
Object element = field[i];
if (element != null) {
result = 31 * result + element.hashCode();
}
}
return result;
}
private static Object primitiveDefaultValue(int type) {
switch (type) {
case TYPE_BOOL:
return Boolean.FALSE;
case TYPE_BYTES:
return WireFormatNano.EMPTY_BYTES;
case TYPE_STRING:
return "";
case TYPE_FLOAT:
return Float.valueOf(0);
case TYPE_DOUBLE:
return Double.valueOf(0);
case TYPE_ENUM:
case TYPE_FIXED32:
case TYPE_INT32:
case TYPE_UINT32:
case TYPE_SINT32:
case TYPE_SFIXED32:
return Integer.valueOf(0);
case TYPE_INT64:
case TYPE_UINT64:
case TYPE_SINT64:
case TYPE_FIXED64:
case TYPE_SFIXED64:
return Long.valueOf(0L);
case TYPE_MESSAGE:
case TYPE_GROUP:
default:
throw new IllegalArgumentException(
"Type: " + type + " is not a primitive type.");
}
}
/**
* Merges the map entry into the map field. Note this is only supposed to
* be called by generated messages.
*
* @param map the map field; may be null, in which case a map will be
* instantiated using the {@link MapFactories.MapFactory}
* @param input the input byte buffer
* @param keyType key type, as defined in InternalNano.TYPE_*
* @param valueType value type, as defined in InternalNano.TYPE_*
* @param value an new instance of the value, if the value is a TYPE_MESSAGE;
* otherwise this parameter can be null and will be ignored.
* @param keyTag wire tag for the key
* @param valueTag wire tag for the value
* @return the map field
* @throws IOException
*/
@SuppressWarnings("unchecked")
public static final