/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef Sk4px_DEFINED #define Sk4px_DEFINED #include "SkNx.h" #include "SkColor.h" #include "SkColorData.h" // This file may be included multiple times by .cpp files with different flags, leading // to different definitions. Usually that doesn't matter because it's all inlined, but // in Debug modes the compilers may not inline everything. So wrap everything in an // anonymous namespace to give each includer their own silo of this code (or the linker // will probably pick one randomly for us, which is rarely correct). namespace { // NOLINT(google-build-namespaces) // 1, 2 or 4 SkPMColors, generally vectorized. class Sk4px : public Sk16b { public: Sk4px(const Sk16b& v) : INHERITED(v) {} static Sk4px DupPMColor(SkPMColor c) { Sk4u splat(c); Sk4px v; memcpy(&v, &splat, 16); return v; } Sk4px alphas() const; // ARGB argb XYZW xyzw -> AAAA aaaa XXXX xxxx Sk4px inv() const { return Sk16b(255) - *this; } // When loading or storing fewer than 4 SkPMColors, we use the low lanes. static Sk4px Load4(const SkPMColor px[4]) { Sk4px v; memcpy(&v, px, 16); return v; } static Sk4px Load2(const SkPMColor px[2]) { Sk4px v; memcpy(&v, px, 8); return v; } static Sk4px Load1(const SkPMColor px[1]) { Sk4px v; memcpy(&v, px, 4); return v; } // Ditto for Alphas... Load2Alphas fills the low two lanes of Sk4px. static Sk4px Load4Alphas(const SkAlpha[4]); // AaXx -> AAAA aaaa XXXX xxxx static Sk4px Load2Alphas(const SkAlpha[2]); // Aa -> AAAA aaaa ???? ???? void store4(SkPMColor px[4]) const { memcpy(px, this, 16); } void store2(SkPMColor px[2]) const { memcpy(px, this, 8); } void store1(SkPMColor px[1]) const { memcpy(px, this, 4); } // 1, 2, or 4 SkPMColors with 16-bit components. // This is most useful as the result of a multiply, e.g. from mulWiden(). class Wide : public Sk16h { public: Wide(const Sk16h& v) : Sk16h(v) {} // Add, then pack the top byte of each component back down into 4 SkPMColors. Sk4px addNarrowHi(const Sk16h&) const; // Rounds, i.e. (x+127) / 255. Sk4px div255() const; // These just keep the types as Wide so the user doesn't have to keep casting. Wide operator * (const Wide& o) const { return INHERITED::operator*(o); } Wide operator + (const Wide& o) const { return INHERITED::operator+(o); } Wide operator - (const Wide& o) const { return INHERITED::operator-(o); } Wide operator >> (int bits) const { return INHERITED::operator>>(bits); } Wide operator << (int bits) const { return INHERITED::operator<<(bits); } private: typedef Sk16h INHERITED; }; Wide widen() const; // Widen 8-bit values to low 8-bits of 16-bit lanes. Wide mulWiden(const Sk16b&) const; // 8-bit x 8-bit -> 16-bit components. // The only 8-bit multiply we use is 8-bit x 8-bit -> 16-bit. Might as well make it pithy. Wide operator * (const Sk4px& o) const { return this->mulWiden(o); } // These just keep the types as Sk4px so the user doesn't have to keep casting. Sk4px operator + (const Sk4px& o) const { return INHERITED::operator+(o); } Sk4px operator - (const Sk4px& o) const { return INHERITED::operator-(o); } Sk4px operator < (const Sk4px& o) const { return INHERITED::operator<(o); } Sk4px thenElse(const Sk4px& t, const Sk4px& e) const { return INHERITED::thenElse(t,e); } // Generally faster than (*this * o).div255(). // May be incorrect by +-1, but is always exactly correct when *this or o is 0 or 255. Sk4px approxMulDiv255(const Sk16b& o) const { // (x*y + x) / 256 meets these criteria. (As of course does (x*y + y) / 256 by symmetry.) // FYI: (x*y + 255) / 256 also meets these criteria. In my brief testing, it was slower. return this->widen().addNarrowHi(*this * o); } // A generic driver that maps fn over a src array into a dst array. // fn should take an Sk4px (4 src pixels) and return an Sk4px (4 dst pixels). template static void MapSrc(int n, SkPMColor* dst, const SkPMColor* src, const Fn& fn) { SkASSERT(dst); SkASSERT(src); // This looks a bit odd, but it helps loop-invariant hoisting across different calls to fn. // Basically, we need to make sure we keep things inside a single loop. while (n > 0) { if (n >= 8) { Sk4px dst0 = fn(Load4(src+0)), dst4 = fn(Load4(src+4)); dst0.store4(dst+0); dst4.store4(dst+4); dst += 8; src += 8; n -= 8; continue; // Keep our stride at 8 pixels as long as possible. } SkASSERT(n <= 7); if (n >= 4) { fn(Load4(src)).store4(dst); dst += 4; src += 4; n -= 4; } if (n >= 2) { fn(Load2(src)).store2(dst); dst += 2; src += 2; n -= 2; } if (n >= 1) { fn(Load1(src)).store1(dst); } break; } } // As above, but with dst4' = fn(dst4, src4). template static void MapDstSrc(int n, SkPMColor* dst, const SkPMColor* src, const Fn& fn) { SkASSERT(dst); SkASSERT(src); while (n > 0) { if (n >= 8) { Sk4px dst0 = fn(Load4(dst+0), Load4(src+0)), dst4 = fn(Load4(dst+4), Load4(src+4)); dst0.store4(dst+0); dst4.store4(dst+4); dst += 8; src += 8; n -= 8; continue; // Keep our stride at 8 pixels as long as possible. } SkASSERT(n <= 7); if (n >= 4) { fn(Load4(dst), Load4(src)).store4(dst); dst += 4; src += 4; n -= 4; } if (n >= 2) { fn(Load2(dst), Load2(src)).store2(dst); dst += 2; src += 2; n -= 2; } if (n >= 1) { fn(Load1(dst), Load1(src)).store1(dst); } break; } } // As above, but with dst4' = fn(dst4, alpha4). template static void MapDstAlpha(int n, SkPMColor* dst, const SkAlpha* a, const Fn& fn) { SkASSERT(dst); SkASSERT(a); while (n > 0) { if (n >= 8) { Sk4px dst0 = fn(Load4(dst+0), Load4Alphas(a+0)), dst4 = fn(Load4(dst+4), Load4Alphas(a+4)); dst0.store4(dst+0); dst4.store4(dst+4); dst += 8; a += 8; n -= 8; continue; // Keep our stride at 8 pixels as long as possible. } SkASSERT(n <= 7); if (n >= 4) { fn(Load4(dst), Load4Alphas(a)).store4(dst); dst += 4; a += 4; n -= 4; } if (n >= 2) { fn(Load2(dst), Load2Alphas(a)).store2(dst); dst += 2; a += 2; n -= 2; } if (n >= 1) { fn(Load1(dst), Sk16b(*a)).store1(dst); } break; } } // As above, but with dst4' = fn(dst4, src4, alpha4). template static void MapDstSrcAlpha(int n, SkPMColor* dst, const SkPMColor* src, const SkAlpha* a, const Fn& fn) { SkASSERT(dst); SkASSERT(src); SkASSERT(a); while (n > 0) { if (n >= 8) { Sk4px dst0 = fn(Load4(dst+0), Load4(src+0), Load4Alphas(a+0)), dst4 = fn(Load4(dst+4), Load4(src+4), Load4Alphas(a+4)); dst0.store4(dst+0); dst4.store4(dst+4); dst += 8; src += 8; a += 8; n -= 8; continue; // Keep our stride at 8 pixels as long as possible. } SkASSERT(n <= 7); if (n >= 4) { fn(Load4(dst), Load4(src), Load4Alphas(a)).store4(dst); dst += 4; src += 4; a += 4; n -= 4; } if (n >= 2) { fn(Load2(dst), Load2(src), Load2Alphas(a)).store2(dst); dst += 2; src += 2; a += 2; n -= 2; } if (n >= 1) { fn(Load1(dst), Load1(src), Sk16b(*a)).store1(dst); } break; } } private: Sk4px() = default; typedef Sk16b INHERITED; }; } // namespace #ifdef SKNX_NO_SIMD #include "../opts/Sk4px_none.h" #else #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 #include "../opts/Sk4px_SSE2.h" #elif defined(SK_ARM_HAS_NEON) #include "../opts/Sk4px_NEON.h" #else #include "../opts/Sk4px_none.h" #endif #endif #endif//Sk4px_DEFINED