/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkStrike.h" #include "SkGraphics.h" #include "SkMakeUnique.h" #include "SkMutex.h" #include "SkOnce.h" #include "SkPath.h" #include "SkTemplates.h" #include "SkTypeface.h" #include namespace { size_t compute_path_size(const SkPath& path) { return sizeof(SkPath) + path.countPoints() * sizeof(SkPoint); } } // namespace SkStrike::SkStrike( const SkDescriptor& desc, std::unique_ptr scaler, const SkFontMetrics& fontMetrics) : fDesc{desc} , fScalerContext{std::move(scaler)} , fFontMetrics{fontMetrics} , fIsSubpixel{fScalerContext->isSubpixel()} , fAxisAlignment{fScalerContext->computeAxisAlignmentForHText()} { SkASSERT(fScalerContext != nullptr); fMemoryUsed = sizeof(*this); } const SkDescriptor& SkStrike::getDescriptor() const { return *fDesc.getDesc(); } #ifdef SK_DEBUG #define VALIDATE() AutoValidate av(this) #else #define VALIDATE() #endif unsigned SkStrike::getGlyphCount() const { return fScalerContext->getGlyphCount(); } int SkStrike::countCachedGlyphs() const { return fGlyphMap.count(); } bool SkStrike::isGlyphCached(SkGlyphID glyphID, SkFixed x, SkFixed y) const { SkPackedGlyphID packedGlyphID{glyphID, x, y}; return fGlyphMap.find(packedGlyphID) != nullptr; } SkGlyph* SkStrike::getRawGlyphByID(SkPackedGlyphID id) { return lookupByPackedGlyphID(id, kNothing_MetricsType); } const SkGlyph& SkStrike::getGlyphIDAdvance(uint16_t glyphID) { VALIDATE(); SkPackedGlyphID packedGlyphID(glyphID); return *this->lookupByPackedGlyphID(packedGlyphID, kJustAdvance_MetricsType); } const SkGlyph& SkStrike::getGlyphIDMetrics(uint16_t glyphID) { VALIDATE(); SkPackedGlyphID packedGlyphID(glyphID); return *this->lookupByPackedGlyphID(packedGlyphID, kFull_MetricsType); } const SkGlyph& SkStrike::getGlyphIDMetrics(uint16_t glyphID, SkFixed x, SkFixed y) { VALIDATE(); SkPackedGlyphID packedGlyphID(glyphID, x, y); return *this->lookupByPackedGlyphID(packedGlyphID, kFull_MetricsType); } void SkStrike::getAdvances(SkSpan glyphIDs, SkPoint advances[]) { for (auto glyphID : glyphIDs) { auto glyph = this->getGlyphIDAdvance(glyphID); *advances++ = SkPoint::Make(glyph.fAdvanceX, glyph.fAdvanceY); } } SkGlyph* SkStrike::lookupByPackedGlyphID(SkPackedGlyphID packedGlyphID, MetricsType type) { SkGlyph* glyphPtr = fGlyphMap.findOrNull(packedGlyphID); if (glyphPtr == nullptr) { // Glyph is not present in the stirke. Make a new glyph and fill it in. fMemoryUsed += sizeof(SkGlyph); glyphPtr = fAlloc.make(packedGlyphID); fGlyphMap.set(glyphPtr); switch (type) { // * Nothing - is only used for raw glyphs. It is assumed that the advances, etc. are // filled in by external code. This is used by the remote glyph cache to fill in glyphs. case kNothing_MetricsType: break; case kJustAdvance_MetricsType: fScalerContext->getAdvance(glyphPtr); break; case kFull_MetricsType: fScalerContext->getMetrics(glyphPtr); break; } } else { // Glyph is present in strike. Make sure the glyph has the right data. if (type == kFull_MetricsType && glyphPtr->isJustAdvance()) { fScalerContext->getMetrics(glyphPtr); } } return glyphPtr; } const void* SkStrike::findImage(const SkGlyph& glyph) { if (glyph.fWidth > 0 && glyph.fWidth < kMaxGlyphWidth) { if (nullptr == glyph.fImage) { SkDEBUGCODE(SkMask::Format oldFormat = (SkMask::Format)glyph.fMaskFormat); size_t size = const_cast(glyph).allocImage(&fAlloc); // check that alloc() actually succeeded if (glyph.fImage) { fScalerContext->getImage(glyph); // TODO: the scaler may have changed the maskformat during // getImage (e.g. from AA or LCD to BW) which means we may have // overallocated the buffer. Check if the new computedImageSize // is smaller, and if so, strink the alloc size in fImageAlloc. fMemoryUsed += size; } SkASSERT(oldFormat == glyph.fMaskFormat); } } return glyph.fImage; } void SkStrike::initializeImage(const volatile void* data, size_t size, SkGlyph* glyph) { // Don't overwrite the image if we already have one. We could have used a fallback if the // glyph was missing earlier. if (glyph->fImage) return; if (glyph->fWidth > 0 && glyph->fWidth < kMaxGlyphWidth) { size_t allocSize = glyph->allocImage(&fAlloc); // check that alloc() actually succeeded if (glyph->fImage) { SkASSERT(size == allocSize); memcpy(glyph->fImage, const_cast(data), allocSize); fMemoryUsed += size; } } } const SkPath* SkStrike::findPath(const SkGlyph& glyph) { if (!glyph.isEmpty()) { // If the path already exists, return it. if (glyph.fPathData != nullptr) { if (glyph.fPathData->fHasPath) { return &glyph.fPathData->fPath; } return nullptr; } const_cast(glyph).addPath(fScalerContext.get(), &fAlloc); if (glyph.fPathData != nullptr) { fMemoryUsed += compute_path_size(glyph.fPathData->fPath); } return glyph.path(); } return nullptr; } bool SkStrike::initializePath(SkGlyph* glyph, const volatile void* data, size_t size) { // Don't overwrite the path if we already have one. We could have used a fallback if the // glyph was missing earlier. if (glyph->fPathData) return true; if (glyph->fWidth) { SkGlyph::PathData* pathData = fAlloc.make(); glyph->fPathData = pathData; auto path = skstd::make_unique(); if (!pathData->fPath.readFromMemory(const_cast(data), size)) { return false; } fMemoryUsed += compute_path_size(glyph->fPathData->fPath); pathData->fHasPath = true; } return true; } bool SkStrike::belongsToCache(const SkGlyph* glyph) const { return glyph && fGlyphMap.findOrNull(glyph->getPackedID()) == glyph; } const SkGlyph* SkStrike::getCachedGlyphAnySubPix(SkGlyphID glyphID, SkPackedGlyphID vetoID) const { for (SkFixed subY = 0; subY < SK_Fixed1; subY += SK_FixedQuarter) { for (SkFixed subX = 0; subX < SK_Fixed1; subX += SK_FixedQuarter) { SkPackedGlyphID packedGlyphID{glyphID, subX, subY}; if (packedGlyphID == vetoID) continue; if (SkGlyph* glyphPtr = fGlyphMap.findOrNull(packedGlyphID)) { return glyphPtr; } } } return nullptr; } void SkStrike::initializeGlyphFromFallback(SkGlyph* glyph, const SkGlyph& fallback) { fMemoryUsed += glyph->copyImageData(fallback, &fAlloc); } SkVector SkStrike::rounding() const { return SkStrikeCommon::PixelRounding(fIsSubpixel, fAxisAlignment); } const SkGlyph& SkStrike::getGlyphMetrics(SkGlyphID glyphID, SkPoint position) { if (!fIsSubpixel) { return this->getGlyphIDMetrics(glyphID); } else { SkIPoint lookupPosition = SkStrikeCommon::SubpixelLookup(fAxisAlignment, position); return this->getGlyphIDMetrics(glyphID, lookupPosition.x(), lookupPosition.y()); } } // N.B. This glyphMetrics call culls all the glyphs which will not display based on a non-finite // position or that there are no mask pixels. int SkStrike::glyphMetrics(const SkGlyphID glyphIDs[], const SkPoint positions[], int n, SkGlyphPos result[]) { int drawableGlyphCount = 0; const SkPoint* posCursor = positions; for (int i = 0; i < n; i++) { SkPoint glyphPos = *posCursor++; if (SkScalarsAreFinite(glyphPos.x(), glyphPos.y())) { const SkGlyph& glyph = this->getGlyphMetrics(glyphIDs[i], glyphPos); if (!glyph.isEmpty()) { result[drawableGlyphCount++] = {&glyph, glyphPos}; } } } return drawableGlyphCount; } #include "../pathops/SkPathOpsCubic.h" #include "../pathops/SkPathOpsQuad.h" static bool quad_in_bounds(const SkScalar* pts, const SkScalar bounds[2]) { SkScalar min = SkTMin(SkTMin(pts[0], pts[2]), pts[4]); if (bounds[1] < min) { return false; } SkScalar max = SkTMax(SkTMax(pts[0], pts[2]), pts[4]); return bounds[0] < max; } static bool cubic_in_bounds(const SkScalar* pts, const SkScalar bounds[2]) { SkScalar min = SkTMin(SkTMin(SkTMin(pts[0], pts[2]), pts[4]), pts[6]); if (bounds[1] < min) { return false; } SkScalar max = SkTMax(SkTMax(SkTMax(pts[0], pts[2]), pts[4]), pts[6]); return bounds[0] < max; } void SkStrike::OffsetResults(const SkGlyph::Intercept* intercept, SkScalar scale, SkScalar xPos, SkScalar* array, int* count) { if (array) { array += *count; for (int index = 0; index < 2; index++) { *array++ = intercept->fInterval[index] * scale + xPos; } } *count += 2; } void SkStrike::AddInterval(SkScalar val, SkGlyph::Intercept* intercept) { intercept->fInterval[0] = SkTMin(intercept->fInterval[0], val); intercept->fInterval[1] = SkTMax(intercept->fInterval[1], val); } void SkStrike::AddPoints(const SkPoint* pts, int ptCount, const SkScalar bounds[2], bool yAxis, SkGlyph::Intercept* intercept) { for (int i = 0; i < ptCount; ++i) { SkScalar val = *(&pts[i].fY - yAxis); if (bounds[0] < val && val < bounds[1]) { AddInterval(*(&pts[i].fX + yAxis), intercept); } } } void SkStrike::AddLine(const SkPoint pts[2], SkScalar axis, bool yAxis, SkGlyph::Intercept* intercept) { SkScalar t = yAxis ? sk_ieee_float_divide(axis - pts[0].fX, pts[1].fX - pts[0].fX) : sk_ieee_float_divide(axis - pts[0].fY, pts[1].fY - pts[0].fY); if (0 <= t && t < 1) { // this handles divide by zero above AddInterval(yAxis ? pts[0].fY + t * (pts[1].fY - pts[0].fY) : pts[0].fX + t * (pts[1].fX - pts[0].fX), intercept); } } void SkStrike::AddQuad(const SkPoint pts[3], SkScalar axis, bool yAxis, SkGlyph::Intercept* intercept) { SkDQuad quad; quad.set(pts); double roots[2]; int count = yAxis ? quad.verticalIntersect(axis, roots) : quad.horizontalIntersect(axis, roots); while (--count >= 0) { SkPoint pt = quad.ptAtT(roots[count]).asSkPoint(); AddInterval(*(&pt.fX + yAxis), intercept); } } void SkStrike::AddCubic(const SkPoint pts[4], SkScalar axis, bool yAxis, SkGlyph::Intercept* intercept) { SkDCubic cubic; cubic.set(pts); double roots[3]; int count = yAxis ? cubic.verticalIntersect(axis, roots) : cubic.horizontalIntersect(axis, roots); while (--count >= 0) { SkPoint pt = cubic.ptAtT(roots[count]).asSkPoint(); AddInterval(*(&pt.fX + yAxis), intercept); } } const SkGlyph::Intercept* SkStrike::MatchBounds(const SkGlyph* glyph, const SkScalar bounds[2]) { if (!glyph->fPathData) { return nullptr; } const SkGlyph::Intercept* intercept = glyph->fPathData->fIntercept; while (intercept) { if (bounds[0] == intercept->fBounds[0] && bounds[1] == intercept->fBounds[1]) { return intercept; } intercept = intercept->fNext; } return nullptr; } void SkStrike::findIntercepts(const SkScalar bounds[2], SkScalar scale, SkScalar xPos, bool yAxis, SkGlyph* glyph, SkScalar* array, int* count) { const SkGlyph::Intercept* match = MatchBounds(glyph, bounds); if (match) { if (match->fInterval[0] < match->fInterval[1]) { OffsetResults(match, scale, xPos, array, count); } return; } SkGlyph::Intercept* intercept = fAlloc.make(); intercept->fNext = glyph->fPathData->fIntercept; intercept->fBounds[0] = bounds[0]; intercept->fBounds[1] = bounds[1]; intercept->fInterval[0] = SK_ScalarMax; intercept->fInterval[1] = SK_ScalarMin; glyph->fPathData->fIntercept = intercept; const SkPath* path = &(glyph->fPathData->fPath); const SkRect& pathBounds = path->getBounds(); if (*(&pathBounds.fBottom - yAxis) < bounds[0] || bounds[1] < *(&pathBounds.fTop - yAxis)) { return; } SkPath::Iter iter(*path, false); SkPoint pts[4]; SkPath::Verb verb; while (SkPath::kDone_Verb != (verb = iter.next(pts))) { switch (verb) { case SkPath::kMove_Verb: break; case SkPath::kLine_Verb: AddLine(pts, bounds[0], yAxis, intercept); AddLine(pts, bounds[1], yAxis, intercept); AddPoints(pts, 2, bounds, yAxis, intercept); break; case SkPath::kQuad_Verb: if (!quad_in_bounds(&pts[0].fY - yAxis, bounds)) { break; } AddQuad(pts, bounds[0], yAxis, intercept); AddQuad(pts, bounds[1], yAxis, intercept); AddPoints(pts, 3, bounds, yAxis, intercept); break; case SkPath::kConic_Verb: SkASSERT(0); // no support for text composed of conics break; case SkPath::kCubic_Verb: if (!cubic_in_bounds(&pts[0].fY - yAxis, bounds)) { break; } AddCubic(pts, bounds[0], yAxis, intercept); AddCubic(pts, bounds[1], yAxis, intercept); AddPoints(pts, 4, bounds, yAxis, intercept); break; case SkPath::kClose_Verb: break; default: SkASSERT(0); break; } } if (intercept->fInterval[0] >= intercept->fInterval[1]) { intercept->fInterval[0] = SK_ScalarMax; intercept->fInterval[1] = SK_ScalarMin; return; } OffsetResults(intercept, scale, xPos, array, count); } void SkStrike::dump() const { const SkTypeface* face = fScalerContext->getTypeface(); const SkScalerContextRec& rec = fScalerContext->getRec(); SkMatrix matrix; rec.getSingleMatrix(&matrix); matrix.preScale(SkScalarInvert(rec.fTextSize), SkScalarInvert(rec.fTextSize)); SkString name; face->getFamilyName(&name); SkString msg; SkFontStyle style = face->fontStyle(); msg.printf("cache typeface:%x %25s:(%d,%d,%d)\n %s glyphs:%3d", face->uniqueID(), name.c_str(), style.weight(), style.width(), style.slant(), rec.dump().c_str(), fGlyphMap.count()); SkDebugf("%s\n", msg.c_str()); } bool SkStrike::decideCouldDrawFromPath(const SkGlyph& glyph) { return !glyph.isEmpty() && this->findPath(glyph) != nullptr; } void SkStrike::onAboutToExitScope() { } #ifdef SK_DEBUG void SkStrike::forceValidate() const { size_t memoryUsed = sizeof(*this); fGlyphMap.foreach ([&memoryUsed](const SkGlyph* glyphPtr) { memoryUsed += sizeof(SkGlyph); if (glyphPtr->fImage) { memoryUsed += glyphPtr->computeImageSize(); } if (glyphPtr->fPathData) { memoryUsed += compute_path_size(glyphPtr->fPathData->fPath); } }); SkASSERT(fMemoryUsed == memoryUsed); } void SkStrike::validate() const { #ifdef SK_DEBUG_GLYPH_CACHE forceValidate(); #endif } #endif // SK_DEBUG