/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrTextureDomain.h" #include "GrProxyProvider.h" #include "GrShaderCaps.h" #include "GrSimpleTextureEffect.h" #include "GrSurfaceProxyPriv.h" #include "GrTexture.h" #include "SkFloatingPoint.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLShaderBuilder.h" #include "glsl/GrGLSLUniformHandler.h" #include GrTextureDomain::GrTextureDomain(GrTextureProxy* proxy, const SkRect& domain, Mode modeX, Mode modeY, int index) : fModeX(modeX) , fModeY(modeY) , fIndex(index) { if (!proxy) { SkASSERT(modeX == kIgnore_Mode && modeY == kIgnore_Mode); return; } const SkRect kFullRect = SkRect::MakeIWH(proxy->width(), proxy->height()); // We don't currently handle domains that are empty or don't intersect the texture. // It is OK if the domain rect is a line or point, but it should not be inverted. We do not // handle rects that do not intersect the [0..1]x[0..1] rect. SkASSERT(domain.fLeft <= domain.fRight); SkASSERT(domain.fTop <= domain.fBottom); fDomain.fLeft = SkScalarPin(domain.fLeft, 0.0f, kFullRect.fRight); fDomain.fRight = SkScalarPin(domain.fRight, fDomain.fLeft, kFullRect.fRight); fDomain.fTop = SkScalarPin(domain.fTop, 0.0f, kFullRect.fBottom); fDomain.fBottom = SkScalarPin(domain.fBottom, fDomain.fTop, kFullRect.fBottom); SkASSERT(fDomain.fLeft <= fDomain.fRight); SkASSERT(fDomain.fTop <= fDomain.fBottom); } ////////////////////////////////////////////////////////////////////////////// static SkString clamp_expression(GrTextureDomain::Mode mode, const char* inCoord, const char* coordSwizzle, const char* domain, const char* minSwizzle, const char* maxSwizzle) { SkString clampedExpr; switch(mode) { case GrTextureDomain::kIgnore_Mode: clampedExpr.printf("%s.%s\n", inCoord, coordSwizzle); break; case GrTextureDomain::kDecal_Mode: // The lookup coordinate to use for decal will be clamped just like kClamp_Mode, // it's just that the post-processing will be different, so fall through case GrTextureDomain::kClamp_Mode: clampedExpr.printf("clamp(%s.%s, %s.%s, %s.%s)", inCoord, coordSwizzle, domain, minSwizzle, domain, maxSwizzle); break; case GrTextureDomain::kRepeat_Mode: clampedExpr.printf("mod(%s.%s - %s.%s, %s.%s - %s.%s) + %s.%s", inCoord, coordSwizzle, domain, minSwizzle, domain, maxSwizzle, domain, minSwizzle, domain, minSwizzle); break; default: SkASSERTF(false, "Unknown texture domain mode: %u\n", (uint32_t) mode); break; } return clampedExpr; } void GrTextureDomain::GLDomain::sampleTexture(GrGLSLShaderBuilder* builder, GrGLSLUniformHandler* uniformHandler, const GrShaderCaps* shaderCaps, const GrTextureDomain& textureDomain, const char* outColor, const SkString& inCoords, GrGLSLFragmentProcessor::SamplerHandle sampler, const char* inModulateColor) { SkASSERT(!fHasMode || (textureDomain.modeX() == fModeX && textureDomain.modeY() == fModeY)); SkDEBUGCODE(fModeX = textureDomain.modeX();) SkDEBUGCODE(fModeY = textureDomain.modeY();) SkDEBUGCODE(fHasMode = true;) if ((textureDomain.modeX() != kIgnore_Mode || textureDomain.modeY() != kIgnore_Mode) && !fDomainUni.isValid()) { // Must include the domain uniform since at least one axis uses it const char* name; SkString uniName("TexDom"); if (textureDomain.fIndex >= 0) { uniName.appendS32(textureDomain.fIndex); } fDomainUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType, uniName.c_str(), &name); fDomainName = name; } bool decalX = textureDomain.modeX() == kDecal_Mode; bool decalY = textureDomain.modeY() == kDecal_Mode; if ((decalX || decalY) && !fDecalUni.isValid()) { const char* name; SkString uniName("DecalParams"); if (textureDomain.fIndex >= 0) { uniName.appendS32(textureDomain.fIndex); } // Half3 since this will hold texture width, height, and then a step function control param fDecalUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf3_GrSLType, uniName.c_str(), &name); fDecalName = name; } // Add a block so that we can declare variables GrGLSLShaderBuilder::ShaderBlock block(builder); // Always use a local variable for the input coordinates; often callers pass in an expression // and we want to cache it across all of its references in the code below builder->codeAppendf("float2 origCoord = %s;", inCoords.c_str()); builder->codeAppend("float2 clampedCoord = "); if (textureDomain.modeX() != textureDomain.modeY()) { // The wrap modes differ on the two axes, so build up a coordinate that respects each axis' // domain rule independently before sampling the texture. SkString tcX = clamp_expression(textureDomain.modeX(), "origCoord", "x", fDomainName.c_str(), "x", "z"); SkString tcY = clamp_expression(textureDomain.modeY(), "origCoord", "y", fDomainName.c_str(), "y", "w"); builder->codeAppendf("float2(%s, %s)", tcX.c_str(), tcY.c_str()); } else { // Since the x and y axis wrap modes are the same, they can be calculated together using // more efficient vector operations SkString tc = clamp_expression(textureDomain.modeX(), "origCoord", "xy", fDomainName.c_str(), "xy", "zw"); builder->codeAppend(tc.c_str()); } builder->codeAppend(";"); // Look up the texture sample at the clamped coordinate location builder->codeAppend("half4 inside = "); builder->appendTextureLookupAndModulate(inModulateColor, sampler, "clampedCoord", kFloat2_GrSLType); builder->codeAppend(";"); // Apply decal mode's transparency interpolation if needed if (decalX || decalY) { // The decal err is the max absoluate value between the clamped coordinate and the original // pixel coordinate. This will then be clamped to 1.f if it's greater than the control // parameter, which simulates kNearest and kBilerp behavior depending on if it's 0 or 1. if (decalX && decalY) { builder->codeAppendf("half err = max(half(abs(clampedCoord.x - origCoord.x) * %s.x), " "half(abs(clampedCoord.y - origCoord.y) * %s.y));", fDecalName.c_str(), fDecalName.c_str()); } else if (decalX) { builder->codeAppendf("half err = half(abs(clampedCoord.x - origCoord.x) * %s.x);", fDecalName.c_str()); } else { SkASSERT(decalY); builder->codeAppendf("half err = half(abs(clampedCoord.y - origCoord.y) * %s.y);", fDecalName.c_str()); } // Apply a transform to the error rate, which let's us simulate nearest or bilerp filtering // in the same shader. When the texture is nearest filtered, fSizeName.z is set to 1/2 so // this becomes a step function centered at .5 away from the clamped coordinate (but the // domain for decal is inset by .5 so the edge lines up properly). When bilerp, fSizeName.z // is set to 1 and it becomes a simple linear blend between texture and transparent. builder->codeAppendf("if (err > %s.z) { err = 1.0; } else if (%s.z < 1) { err = 0.0; }", fDecalName.c_str(), fDecalName.c_str()); builder->codeAppendf("%s = mix(inside, half4(0, 0, 0, 0), err);", outColor); } else { // A simple look up builder->codeAppendf("%s = inside;", outColor); } } void GrTextureDomain::GLDomain::setData(const GrGLSLProgramDataManager& pdman, const GrTextureDomain& textureDomain, GrTextureProxy* proxy, const GrSamplerState& sampler) { GrTexture* tex = proxy->peekTexture(); SkASSERT(fHasMode && textureDomain.modeX() == fModeX && textureDomain.modeY() == fModeY); if (kIgnore_Mode != textureDomain.modeX() || kIgnore_Mode != textureDomain.modeY()) { bool sendDecalData = textureDomain.modeX() == kDecal_Mode || textureDomain.modeY() == kDecal_Mode; // If the texture is using nearest filtering, then the decal filter weight should step from // 0 (texture) to 1 (transparent) one half pixel away from the domain. When doing any other // form of filtering, the weight should be 1.0 so that it smoothly interpolates between the // texture and transparent. SkScalar decalFilterWeight = sampler.filter() == GrSamplerState::Filter::kNearest ? SK_ScalarHalf : 1.0f; SkScalar wInv, hInv, h; if (proxy->textureType() == GrTextureType::kRectangle) { wInv = hInv = 1.f; h = tex->height(); // Don't do any scaling by texture size for decal filter rate, it's already in pixels if (sendDecalData) { pdman.set3f(fDecalUni, 1.f, 1.f, decalFilterWeight); } } else { wInv = SK_Scalar1 / tex->width(); hInv = SK_Scalar1 / tex->height(); h = 1.f; if (sendDecalData) { pdman.set3f(fDecalUni, tex->width(), tex->height(), decalFilterWeight); } } float values[kPrevDomainCount] = { SkScalarToFloat(textureDomain.domain().fLeft * wInv), SkScalarToFloat(textureDomain.domain().fTop * hInv), SkScalarToFloat(textureDomain.domain().fRight * wInv), SkScalarToFloat(textureDomain.domain().fBottom * hInv) }; if (proxy->textureType() == GrTextureType::kRectangle) { SkASSERT(values[0] >= 0.0f && values[0] <= proxy->height()); SkASSERT(values[1] >= 0.0f && values[1] <= proxy->height()); SkASSERT(values[2] >= 0.0f && values[2] <= proxy->height()); SkASSERT(values[3] >= 0.0f && values[3] <= proxy->height()); } else { SkASSERT(values[0] >= 0.0f && values[0] <= 1.0f); SkASSERT(values[1] >= 0.0f && values[1] <= 1.0f); SkASSERT(values[2] >= 0.0f && values[2] <= 1.0f); SkASSERT(values[3] >= 0.0f && values[3] <= 1.0f); } // vertical flip if necessary if (kBottomLeft_GrSurfaceOrigin == proxy->origin()) { values[1] = h - values[1]; values[3] = h - values[3]; // The top and bottom were just flipped, so correct the ordering // of elements so that values = (l, t, r, b). using std::swap; swap(values[1], values[3]); } if (0 != memcmp(values, fPrevDomain, kPrevDomainCount * sizeof(float))) { pdman.set4fv(fDomainUni, 1, values); memcpy(fPrevDomain, values, kPrevDomainCount * sizeof(float)); } } } /////////////////////////////////////////////////////////////////////////////// std::unique_ptr GrTextureDomainEffect::Make( sk_sp proxy, const SkMatrix& matrix, const SkRect& domain, GrTextureDomain::Mode mode, GrSamplerState::Filter filterMode) { return Make(std::move(proxy), matrix, domain, mode, mode, GrSamplerState(GrSamplerState::WrapMode::kClamp, filterMode)); } std::unique_ptr GrTextureDomainEffect::Make( sk_sp proxy, const SkMatrix& matrix, const SkRect& domain, GrTextureDomain::Mode modeX, GrTextureDomain::Mode modeY, const GrSamplerState& sampler) { // If both domain modes happen to be ignore, it would be faster to just drop the domain logic // entirely Technically, we could also use the simple texture effect if the domain modes agree // with the sampler modes and the proxy is the same size as the domain. It's a lot easier for // calling code to detect these cases and handle it themselves. return std::unique_ptr(new GrTextureDomainEffect( std::move(proxy), matrix, domain, modeX, modeY, sampler)); } GrTextureDomainEffect::GrTextureDomainEffect(sk_sp proxy, const SkMatrix& matrix, const SkRect& domain, GrTextureDomain::Mode modeX, GrTextureDomain::Mode modeY, const GrSamplerState& sampler) : INHERITED(kGrTextureDomainEffect_ClassID, ModulateForSamplerOptFlags(proxy->config(), GrTextureDomain::IsDecalSampled(sampler, modeX, modeY))) , fCoordTransform(matrix, proxy.get()) , fTextureDomain(proxy.get(), domain, modeX, modeY) , fTextureSampler(std::move(proxy), sampler) { SkASSERT((modeX != GrTextureDomain::kRepeat_Mode && modeY != GrTextureDomain::kRepeat_Mode) || sampler.filter() == GrSamplerState::Filter::kNearest); this->addCoordTransform(&fCoordTransform); this->setTextureSamplerCnt(1); } GrTextureDomainEffect::GrTextureDomainEffect(const GrTextureDomainEffect& that) : INHERITED(kGrTextureDomainEffect_ClassID, that.optimizationFlags()) , fCoordTransform(that.fCoordTransform) , fTextureDomain(that.fTextureDomain) , fTextureSampler(that.fTextureSampler) { this->addCoordTransform(&fCoordTransform); this->setTextureSamplerCnt(1); } void GrTextureDomainEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { b->add32(GrTextureDomain::GLDomain::DomainKey(fTextureDomain)); } GrGLSLFragmentProcessor* GrTextureDomainEffect::onCreateGLSLInstance() const { class GLSLProcessor : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs& args) override { const GrTextureDomainEffect& tde = args.fFp.cast(); const GrTextureDomain& domain = tde.fTextureDomain; GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); fGLDomain.sampleTexture(fragBuilder, args.fUniformHandler, args.fShaderCaps, domain, args.fOutputColor, coords2D, args.fTexSamplers[0], args.fInputColor); } protected: void onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& fp) override { const GrTextureDomainEffect& tde = fp.cast(); const GrTextureDomain& domain = tde.fTextureDomain; GrTextureProxy* proxy = tde.textureSampler(0).proxy(); fGLDomain.setData(pdman, domain, proxy, tde.textureSampler(0).samplerState()); } private: GrTextureDomain::GLDomain fGLDomain; }; return new GLSLProcessor; } bool GrTextureDomainEffect::onIsEqual(const GrFragmentProcessor& sBase) const { const GrTextureDomainEffect& s = sBase.cast(); return this->fTextureDomain == s.fTextureDomain; } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrTextureDomainEffect); #if GR_TEST_UTILS std::unique_ptr GrTextureDomainEffect::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; sk_sp proxy = d->textureProxy(texIdx); SkRect domain; domain.fLeft = d->fRandom->nextRangeScalar(0, proxy->width()); domain.fRight = d->fRandom->nextRangeScalar(domain.fLeft, proxy->width()); domain.fTop = d->fRandom->nextRangeScalar(0, proxy->height()); domain.fBottom = d->fRandom->nextRangeScalar(domain.fTop, proxy->height()); GrTextureDomain::Mode modeX = (GrTextureDomain::Mode) d->fRandom->nextULessThan(GrTextureDomain::kModeCount); GrTextureDomain::Mode modeY = (GrTextureDomain::Mode) d->fRandom->nextULessThan(GrTextureDomain::kModeCount); const SkMatrix& matrix = GrTest::TestMatrix(d->fRandom); bool bilerp = modeX != GrTextureDomain::kRepeat_Mode && modeY != GrTextureDomain::kRepeat_Mode ? d->fRandom->nextBool() : false; return GrTextureDomainEffect::Make( std::move(proxy), matrix, domain, modeX, modeY, GrSamplerState(GrSamplerState::WrapMode::kClamp, bilerp ? GrSamplerState::Filter::kBilerp : GrSamplerState::Filter::kNearest)); } #endif /////////////////////////////////////////////////////////////////////////////// std::unique_ptr GrDeviceSpaceTextureDecalFragmentProcessor::Make( sk_sp proxy, const SkIRect& subset, const SkIPoint& deviceSpaceOffset) { return std::unique_ptr(new GrDeviceSpaceTextureDecalFragmentProcessor( std::move(proxy), subset, deviceSpaceOffset)); } GrDeviceSpaceTextureDecalFragmentProcessor::GrDeviceSpaceTextureDecalFragmentProcessor( sk_sp proxy, const SkIRect& subset, const SkIPoint& deviceSpaceOffset) : INHERITED(kGrDeviceSpaceTextureDecalFragmentProcessor_ClassID, kCompatibleWithCoverageAsAlpha_OptimizationFlag) , fTextureSampler(proxy, GrSamplerState::ClampNearest()) , fTextureDomain(proxy.get(), GrTextureDomain::MakeTexelDomain(subset, GrTextureDomain::kDecal_Mode), GrTextureDomain::kDecal_Mode, GrTextureDomain::kDecal_Mode) { this->setTextureSamplerCnt(1); fDeviceSpaceOffset.fX = deviceSpaceOffset.fX - subset.fLeft; fDeviceSpaceOffset.fY = deviceSpaceOffset.fY - subset.fTop; } GrDeviceSpaceTextureDecalFragmentProcessor::GrDeviceSpaceTextureDecalFragmentProcessor( const GrDeviceSpaceTextureDecalFragmentProcessor& that) : INHERITED(kGrDeviceSpaceTextureDecalFragmentProcessor_ClassID, kCompatibleWithCoverageAsAlpha_OptimizationFlag) , fTextureSampler(that.fTextureSampler) , fTextureDomain(that.fTextureDomain) , fDeviceSpaceOffset(that.fDeviceSpaceOffset) { this->setTextureSamplerCnt(1); } std::unique_ptr GrDeviceSpaceTextureDecalFragmentProcessor::clone() const { return std::unique_ptr( new GrDeviceSpaceTextureDecalFragmentProcessor(*this)); } GrGLSLFragmentProcessor* GrDeviceSpaceTextureDecalFragmentProcessor::onCreateGLSLInstance() const { class GLSLProcessor : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs& args) override { const GrDeviceSpaceTextureDecalFragmentProcessor& dstdfp = args.fFp.cast(); const char* scaleAndTranslateName; fScaleAndTranslateUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType, "scaleAndTranslate", &scaleAndTranslateName); args.fFragBuilder->codeAppendf("half2 coords = half2(sk_FragCoord.xy * %s.xy + %s.zw);", scaleAndTranslateName, scaleAndTranslateName); fGLDomain.sampleTexture(args.fFragBuilder, args.fUniformHandler, args.fShaderCaps, dstdfp.fTextureDomain, args.fOutputColor, SkString("coords"), args.fTexSamplers[0], args.fInputColor); } protected: void onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& fp) override { const GrDeviceSpaceTextureDecalFragmentProcessor& dstdfp = fp.cast(); GrTextureProxy* proxy = dstdfp.textureSampler(0).proxy(); GrTexture* texture = proxy->peekTexture(); fGLDomain.setData(pdman, dstdfp.fTextureDomain, proxy, dstdfp.textureSampler(0).samplerState()); float iw = 1.f / texture->width(); float ih = 1.f / texture->height(); float scaleAndTransData[4] = { iw, ih, -dstdfp.fDeviceSpaceOffset.fX * iw, -dstdfp.fDeviceSpaceOffset.fY * ih }; if (proxy->origin() == kBottomLeft_GrSurfaceOrigin) { scaleAndTransData[1] = -scaleAndTransData[1]; scaleAndTransData[3] = 1 - scaleAndTransData[3]; } pdman.set4fv(fScaleAndTranslateUni, 1, scaleAndTransData); } private: GrTextureDomain::GLDomain fGLDomain; UniformHandle fScaleAndTranslateUni; }; return new GLSLProcessor; } bool GrDeviceSpaceTextureDecalFragmentProcessor::onIsEqual(const GrFragmentProcessor& fp) const { const GrDeviceSpaceTextureDecalFragmentProcessor& dstdfp = fp.cast(); return dstdfp.fTextureSampler.proxy()->underlyingUniqueID() == fTextureSampler.proxy()->underlyingUniqueID() && dstdfp.fDeviceSpaceOffset == fDeviceSpaceOffset && dstdfp.fTextureDomain == fTextureDomain; } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrDeviceSpaceTextureDecalFragmentProcessor); #if GR_TEST_UTILS std::unique_ptr GrDeviceSpaceTextureDecalFragmentProcessor::TestCreate( GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; sk_sp proxy = d->textureProxy(texIdx); SkIRect subset; subset.fLeft = d->fRandom->nextULessThan(proxy->width() - 1); subset.fRight = d->fRandom->nextRangeU(subset.fLeft, proxy->width()); subset.fTop = d->fRandom->nextULessThan(proxy->height() - 1); subset.fBottom = d->fRandom->nextRangeU(subset.fTop, proxy->height()); SkIPoint pt; pt.fX = d->fRandom->nextULessThan(2048); pt.fY = d->fRandom->nextULessThan(2048); return GrDeviceSpaceTextureDecalFragmentProcessor::Make(std::move(proxy), subset, pt); } #endif