/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGLGpu.h" #include "GrBackendSemaphore.h" #include "GrBackendSurface.h" #include "GrCpuBuffer.h" #include "GrFixedClip.h" #include "GrGLBuffer.h" #include "GrGLGpuCommandBuffer.h" #include "GrGLSemaphore.h" #include "GrGLStencilAttachment.h" #include "GrGLTextureRenderTarget.h" #include "GrGpuResourcePriv.h" #include "GrMesh.h" #include "GrPipeline.h" #include "GrRenderTargetPriv.h" #include "GrShaderCaps.h" #include "GrSurfaceProxyPriv.h" #include "GrTexturePriv.h" #include "GrTypes.h" #include "SkAutoMalloc.h" #include "SkConvertPixels.h" #include "SkHalf.h" #include "SkMakeUnique.h" #include "SkMipMap.h" #include "SkPixmap.h" #include "SkSLCompiler.h" #include "SkStrokeRec.h" #include "SkTemplates.h" #include "SkTo.h" #include "SkTraceEvent.h" #include "SkTypes.h" #include "builders/GrGLShaderStringBuilder.h" #include #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) #define SKIP_CACHE_CHECK true #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) #else #define CLEAR_ERROR_BEFORE_ALLOC(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR #endif //#define USE_NSIGHT /////////////////////////////////////////////////////////////////////////////// static const GrGLenum gXfermodeEquation2Blend[] = { // Basic OpenGL blend equations. GR_GL_FUNC_ADD, GR_GL_FUNC_SUBTRACT, GR_GL_FUNC_REVERSE_SUBTRACT, // GL_KHR_blend_equation_advanced. GR_GL_SCREEN, GR_GL_OVERLAY, GR_GL_DARKEN, GR_GL_LIGHTEN, GR_GL_COLORDODGE, GR_GL_COLORBURN, GR_GL_HARDLIGHT, GR_GL_SOFTLIGHT, GR_GL_DIFFERENCE, GR_GL_EXCLUSION, GR_GL_MULTIPLY, GR_GL_HSL_HUE, GR_GL_HSL_SATURATION, GR_GL_HSL_COLOR, GR_GL_HSL_LUMINOSITY, // Illegal... needs to map to something. GR_GL_FUNC_ADD, }; GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation); GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation); GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation); GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation); GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation); GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation); GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation); GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation); GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation); GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation); GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation); GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation); GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation); GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation); GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation); GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation); GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation); GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation); GR_STATIC_ASSERT(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt); static const GrGLenum gXfermodeCoeff2Blend[] = { GR_GL_ZERO, GR_GL_ONE, GR_GL_SRC_COLOR, GR_GL_ONE_MINUS_SRC_COLOR, GR_GL_DST_COLOR, GR_GL_ONE_MINUS_DST_COLOR, GR_GL_SRC_ALPHA, GR_GL_ONE_MINUS_SRC_ALPHA, GR_GL_DST_ALPHA, GR_GL_ONE_MINUS_DST_ALPHA, GR_GL_CONSTANT_COLOR, GR_GL_ONE_MINUS_CONSTANT_COLOR, GR_GL_CONSTANT_ALPHA, GR_GL_ONE_MINUS_CONSTANT_ALPHA, // extended blend coeffs GR_GL_SRC1_COLOR, GR_GL_ONE_MINUS_SRC1_COLOR, GR_GL_SRC1_ALPHA, GR_GL_ONE_MINUS_SRC1_ALPHA, // Illegal... needs to map to something. GR_GL_ZERO, }; bool GrGLGpu::BlendCoeffReferencesConstant(GrBlendCoeff coeff) { static const bool gCoeffReferencesBlendConst[] = { false, false, false, false, false, false, false, false, false, false, true, true, true, true, // extended blend coeffs false, false, false, false, // Illegal. false, }; return gCoeffReferencesBlendConst[coeff]; GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst)); GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff); GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff); GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff); GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff); GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff); GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff); GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff); GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff); GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff); GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff); GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff); GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff); GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff); GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff); GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff); GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff); GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff); GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff); // assertion for gXfermodeCoeff2Blend have to be in GrGpu scope GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gXfermodeCoeff2Blend)); } ////////////////////////////////////////////////////////////////////////////// static int gl_target_to_binding_index(GrGLenum target) { switch (target) { case GR_GL_TEXTURE_2D: return 0; case GR_GL_TEXTURE_RECTANGLE: return 1; case GR_GL_TEXTURE_EXTERNAL: return 2; } SK_ABORT("Unexpected GL texture target."); return 0; } GrGpuResource::UniqueID GrGLGpu::TextureUnitBindings::boundID(GrGLenum target) const { return fTargetBindings[gl_target_to_binding_index(target)].fBoundResourceID; } bool GrGLGpu::TextureUnitBindings::hasBeenModified(GrGLenum target) const { return fTargetBindings[gl_target_to_binding_index(target)].fHasBeenModified; } void GrGLGpu::TextureUnitBindings::setBoundID(GrGLenum target, GrGpuResource::UniqueID resourceID) { int targetIndex = gl_target_to_binding_index(target); fTargetBindings[targetIndex].fBoundResourceID = resourceID; fTargetBindings[targetIndex].fHasBeenModified = true; } void GrGLGpu::TextureUnitBindings::invalidateForScratchUse(GrGLenum target) { this->setBoundID(target, GrGpuResource::UniqueID()); } void GrGLGpu::TextureUnitBindings::invalidateAllTargets(bool markUnmodified) { for (auto& targetBinding : fTargetBindings) { targetBinding.fBoundResourceID.makeInvalid(); if (markUnmodified) { targetBinding.fHasBeenModified = false; } } } ////////////////////////////////////////////////////////////////////////////// static GrGLenum filter_to_gl_mag_filter(GrSamplerState::Filter filter) { switch (filter) { case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST; case GrSamplerState::Filter::kBilerp: return GR_GL_LINEAR; case GrSamplerState::Filter::kMipMap: return GR_GL_LINEAR; } SK_ABORT("Unknown filter"); return 0; } static GrGLenum filter_to_gl_min_filter(GrSamplerState::Filter filter) { switch (filter) { case GrSamplerState::Filter::kNearest: return GR_GL_NEAREST; case GrSamplerState::Filter::kBilerp: return GR_GL_LINEAR; case GrSamplerState::Filter::kMipMap: return GR_GL_LINEAR_MIPMAP_LINEAR; } SK_ABORT("Unknown filter"); return 0; } static inline GrGLenum wrap_mode_to_gl_wrap(GrSamplerState::WrapMode wrapMode, const GrCaps& caps) { switch (wrapMode) { case GrSamplerState::WrapMode::kClamp: return GR_GL_CLAMP_TO_EDGE; case GrSamplerState::WrapMode::kRepeat: return GR_GL_REPEAT; case GrSamplerState::WrapMode::kMirrorRepeat: return GR_GL_MIRRORED_REPEAT; case GrSamplerState::WrapMode::kClampToBorder: // May not be supported but should have been caught earlier SkASSERT(caps.clampToBorderSupport()); return GR_GL_CLAMP_TO_BORDER; } SK_ABORT("Unknown wrap mode"); return 0; } /////////////////////////////////////////////////////////////////////////////// class GrGLGpu::SamplerObjectCache { public: SamplerObjectCache(GrGLGpu* gpu) : fGpu(gpu) { fNumTextureUnits = fGpu->glCaps().shaderCaps()->maxFragmentSamplers(); fHWBoundSamplers.reset(new GrGLuint[fNumTextureUnits]); std::fill_n(fHWBoundSamplers.get(), fNumTextureUnits, 0); std::fill_n(fSamplers, kNumSamplers, 0); } ~SamplerObjectCache() { if (!fNumTextureUnits) { // We've already been abandoned. return; } GR_GL_CALL(fGpu->glInterface(), DeleteSamplers(kNumSamplers, fSamplers)); } void bindSampler(int unitIdx, const GrSamplerState& state) { int index = StateToIndex(state); if (!fSamplers[index]) { GrGLuint s; GR_GL_CALL(fGpu->glInterface(), GenSamplers(1, &s)); if (!s) { return; } fSamplers[index] = s; auto minFilter = filter_to_gl_min_filter(state.filter()); auto magFilter = filter_to_gl_mag_filter(state.filter()); auto wrapX = wrap_mode_to_gl_wrap(state.wrapModeX(), fGpu->glCaps()); auto wrapY = wrap_mode_to_gl_wrap(state.wrapModeY(), fGpu->glCaps()); GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_MIN_FILTER, minFilter)); GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_MAG_FILTER, magFilter)); GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_S, wrapX)); GR_GL_CALL(fGpu->glInterface(), SamplerParameteri(s, GR_GL_TEXTURE_WRAP_T, wrapY)); } if (fHWBoundSamplers[unitIdx] != fSamplers[index]) { GR_GL_CALL(fGpu->glInterface(), BindSampler(unitIdx, fSamplers[index])); fHWBoundSamplers[unitIdx] = fSamplers[index]; } } void invalidateBindings() { // When we have sampler support we always use samplers. So setting these to zero will cause // a rebind on next usage. std::fill_n(fHWBoundSamplers.get(), fNumTextureUnits, 0); } void abandon() { fHWBoundSamplers.reset(); fNumTextureUnits = 0; } void release() { if (!fNumTextureUnits) { // We've already been abandoned. return; } GR_GL_CALL(fGpu->glInterface(), DeleteSamplers(kNumSamplers, fSamplers)); std::fill_n(fSamplers, kNumSamplers, 0); // Deleting a bound sampler implicitly binds sampler 0. std::fill_n(fHWBoundSamplers.get(), fNumTextureUnits, 0); } private: static int StateToIndex(const GrSamplerState& state) { int filter = static_cast(state.filter()); SkASSERT(filter >= 0 && filter < 3); int wrapX = static_cast(state.wrapModeX()); SkASSERT(wrapX >= 0 && wrapX < 4); int wrapY = static_cast(state.wrapModeY()); SkASSERT(wrapY >= 0 && wrapY < 4); int idx = 16 * filter + 4 * wrapX + wrapY; SkASSERT(idx < kNumSamplers); return idx; } GrGLGpu* fGpu; static constexpr int kNumSamplers = 48; std::unique_ptr fHWBoundSamplers; GrGLuint fSamplers[kNumSamplers]; int fNumTextureUnits; }; /////////////////////////////////////////////////////////////////////////////// sk_sp GrGLGpu::Make(sk_sp interface, const GrContextOptions& options, GrContext* context) { if (!interface) { interface = GrGLMakeNativeInterface(); // For clients that have written their own GrGLCreateNativeInterface and haven't yet updated // to GrGLMakeNativeInterface. if (!interface) { interface = sk_ref_sp(GrGLCreateNativeInterface()); } if (!interface) { return nullptr; } } #ifdef USE_NSIGHT const_cast(options).fSuppressPathRendering = true; #endif auto glContext = GrGLContext::Make(std::move(interface), options); if (!glContext) { return nullptr; } return sk_sp(new GrGLGpu(std::move(glContext), context)); } GrGLGpu::GrGLGpu(std::unique_ptr ctx, GrContext* context) : GrGpu(context) , fGLContext(std::move(ctx)) , fProgramCache(new ProgramCache(this)) , fHWProgramID(0) , fTempSrcFBOID(0) , fTempDstFBOID(0) , fStencilClearFBOID(0) { SkASSERT(fGLContext); GrGLClearErr(this->glInterface()); fCaps = sk_ref_sp(fGLContext->caps()); fHWTextureUnitBindings.reset(this->numTextureUnits()); this->hwBufferState(GrGpuBufferType::kVertex)->fGLTarget = GR_GL_ARRAY_BUFFER; this->hwBufferState(GrGpuBufferType::kIndex)->fGLTarget = GR_GL_ELEMENT_ARRAY_BUFFER; if (GrGLCaps::kChromium_TransferBufferType == this->glCaps().transferBufferType()) { this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->fGLTarget = GR_GL_PIXEL_UNPACK_TRANSFER_BUFFER_CHROMIUM; this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->fGLTarget = GR_GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM; } else { this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->fGLTarget = GR_GL_PIXEL_UNPACK_BUFFER; this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->fGLTarget = GR_GL_PIXEL_PACK_BUFFER; } for (int i = 0; i < kGrGpuBufferTypeCount; ++i) { fHWBufferState[i].invalidate(); } GR_STATIC_ASSERT(4 == SK_ARRAY_COUNT(fHWBufferState)); if (this->glCaps().shaderCaps()->pathRenderingSupport()) { fPathRendering.reset(new GrGLPathRendering(this)); } if (this->glCaps().samplerObjectSupport()) { fSamplerObjectCache.reset(new SamplerObjectCache(this)); } } GrGLGpu::~GrGLGpu() { // Ensure any GrGpuResource objects get deleted first, since they may require a working GrGLGpu // to release the resources held by the objects themselves. fPathRendering.reset(); fCopyProgramArrayBuffer.reset(); fMipmapProgramArrayBuffer.reset(); fHWProgram.reset(); if (fHWProgramID) { // detach the current program so there is no confusion on OpenGL's part // that we want it to be deleted GL_CALL(UseProgram(0)); } if (fTempSrcFBOID) { this->deleteFramebuffer(fTempSrcFBOID); } if (fTempDstFBOID) { this->deleteFramebuffer(fTempDstFBOID); } if (fStencilClearFBOID) { this->deleteFramebuffer(fStencilClearFBOID); } for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { if (0 != fCopyPrograms[i].fProgram) { GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); } } for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { if (0 != fMipmapPrograms[i].fProgram) { GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram)); } } delete fProgramCache; fSamplerObjectCache.reset(); } void GrGLGpu::disconnect(DisconnectType type) { INHERITED::disconnect(type); if (DisconnectType::kCleanup == type) { if (fHWProgramID) { GL_CALL(UseProgram(0)); } if (fTempSrcFBOID) { this->deleteFramebuffer(fTempSrcFBOID); } if (fTempDstFBOID) { this->deleteFramebuffer(fTempDstFBOID); } if (fStencilClearFBOID) { this->deleteFramebuffer(fStencilClearFBOID); } for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { if (fCopyPrograms[i].fProgram) { GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); } } for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { if (fMipmapPrograms[i].fProgram) { GL_CALL(DeleteProgram(fMipmapPrograms[i].fProgram)); } } if (fSamplerObjectCache) { fSamplerObjectCache->release(); } } else { if (fProgramCache) { fProgramCache->abandon(); } if (fSamplerObjectCache) { fSamplerObjectCache->abandon(); } } fHWProgram.reset(); delete fProgramCache; fProgramCache = nullptr; fHWProgramID = 0; fTempSrcFBOID = 0; fTempDstFBOID = 0; fStencilClearFBOID = 0; fCopyProgramArrayBuffer.reset(); for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { fCopyPrograms[i].fProgram = 0; } fMipmapProgramArrayBuffer.reset(); for (size_t i = 0; i < SK_ARRAY_COUNT(fMipmapPrograms); ++i) { fMipmapPrograms[i].fProgram = 0; } if (this->glCaps().shaderCaps()->pathRenderingSupport()) { this->glPathRendering()->disconnect(type); } } /////////////////////////////////////////////////////////////////////////////// void GrGLGpu::onResetContext(uint32_t resetBits) { if (resetBits & kMisc_GrGLBackendState) { // we don't use the zb at all GL_CALL(Disable(GR_GL_DEPTH_TEST)); GL_CALL(DepthMask(GR_GL_FALSE)); // We don't use face culling. GL_CALL(Disable(GR_GL_CULL_FACE)); // We do use separate stencil. Our algorithms don't care which face is front vs. back so // just set this to the default for self-consistency. GL_CALL(FrontFace(GR_GL_CCW)); this->hwBufferState(GrGpuBufferType::kXferCpuToGpu)->invalidate(); this->hwBufferState(GrGpuBufferType::kXferGpuToCpu)->invalidate(); if (kGL_GrGLStandard == this->glStandard()) { #ifndef USE_NSIGHT // Desktop-only state that we never change if (!this->glCaps().isCoreProfile()) { GL_CALL(Disable(GR_GL_POINT_SMOOTH)); GL_CALL(Disable(GR_GL_LINE_SMOOTH)); GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); } // The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a // core profile. This seems like a bug since the core spec removes any mention of // GL_ARB_imaging. if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) { GL_CALL(Disable(GR_GL_COLOR_TABLE)); } GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); if (this->caps()->wireframeMode()) { GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE)); } else { GL_CALL(PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_FILL)); } #endif // Since ES doesn't support glPointSize at all we always use the VS to // set the point size GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); } if (kGLES_GrGLStandard == this->glStandard() && this->glCaps().fbFetchRequiresEnablePerSample()) { // The arm extension requires specifically enabling MSAA fetching per sample. // On some devices this may have a perf hit. Also multiple render targets are disabled GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE)); } fHWWriteToColor = kUnknown_TriState; // we only ever use lines in hairline mode GL_CALL(LineWidth(1)); GL_CALL(Disable(GR_GL_DITHER)); fHWClearColor[0] = fHWClearColor[1] = fHWClearColor[2] = fHWClearColor[3] = SK_FloatNaN; } if (resetBits & kMSAAEnable_GrGLBackendState) { fMSAAEnabled = kUnknown_TriState; if (this->caps()->usesMixedSamples()) { // The skia blend modes all use premultiplied alpha and therefore expect RGBA coverage // modulation. This state has no effect when not rendering to a mixed sampled target. GL_CALL(CoverageModulation(GR_GL_RGBA)); } } fHWActiveTextureUnitIdx = -1; // invalid fLastPrimitiveType = static_cast(-1); if (resetBits & kTextureBinding_GrGLBackendState) { for (int s = 0; s < this->numTextureUnits(); ++s) { fHWTextureUnitBindings[s].invalidateAllTargets(false); } if (fSamplerObjectCache) { fSamplerObjectCache->invalidateBindings(); } } if (resetBits & kBlend_GrGLBackendState) { fHWBlendState.invalidate(); } if (resetBits & kView_GrGLBackendState) { fHWScissorSettings.invalidate(); fHWWindowRectsState.invalidate(); fHWViewport.invalidate(); } if (resetBits & kStencil_GrGLBackendState) { fHWStencilSettings.invalidate(); fHWStencilTestEnabled = kUnknown_TriState; } // Vertex if (resetBits & kVertex_GrGLBackendState) { fHWVertexArrayState.invalidate(); this->hwBufferState(GrGpuBufferType::kVertex)->invalidate(); this->hwBufferState(GrGpuBufferType::kIndex)->invalidate(); } if (resetBits & kRenderTarget_GrGLBackendState) { fHWBoundRenderTargetUniqueID.makeInvalid(); fHWSRGBFramebuffer = kUnknown_TriState; } if (resetBits & kPathRendering_GrGLBackendState) { if (this->caps()->shaderCaps()->pathRenderingSupport()) { this->glPathRendering()->resetContext(); } } // we assume these values if (resetBits & kPixelStore_GrGLBackendState) { if (this->glCaps().unpackRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } if (this->glCaps().packRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); } } if (resetBits & kProgram_GrGLBackendState) { fHWProgramID = 0; fHWProgram.reset(); } } static bool check_backend_texture(const GrBackendTexture& backendTex, const GrGLCaps& caps, GrGLTexture::IDDesc* idDesc) { GrGLTextureInfo info; if (!backendTex.getGLTextureInfo(&info) || !info.fID) { return false; } idDesc->fInfo = info; if (GR_GL_TEXTURE_EXTERNAL == idDesc->fInfo.fTarget) { if (!caps.shaderCaps()->externalTextureSupport()) { return false; } } else if (GR_GL_TEXTURE_RECTANGLE == idDesc->fInfo.fTarget) { if (!caps.rectangleTextureSupport()) { return false; } } else if (GR_GL_TEXTURE_2D != idDesc->fInfo.fTarget) { return false; } return true; } sk_sp GrGLGpu::onWrapBackendTexture(const GrBackendTexture& backendTex, GrWrapOwnership ownership, GrWrapCacheable cacheable, GrIOType ioType) { GrGLTexture::IDDesc idDesc; if (!check_backend_texture(backendTex, this->glCaps(), &idDesc)) { return nullptr; } if (!idDesc.fInfo.fFormat) { idDesc.fInfo.fFormat = this->glCaps().configSizedInternalFormat(backendTex.config()); } if (kBorrow_GrWrapOwnership == ownership) { idDesc.fOwnership = GrBackendObjectOwnership::kBorrowed; } else { idDesc.fOwnership = GrBackendObjectOwnership::kOwned; } GrSurfaceDesc surfDesc; surfDesc.fFlags = kNone_GrSurfaceFlags; surfDesc.fWidth = backendTex.width(); surfDesc.fHeight = backendTex.height(); surfDesc.fConfig = backendTex.config(); surfDesc.fSampleCnt = 1; GrMipMapsStatus mipMapsStatus = backendTex.hasMipMaps() ? GrMipMapsStatus::kValid : GrMipMapsStatus::kNotAllocated; auto texture = GrGLTexture::MakeWrapped(this, surfDesc, mipMapsStatus, idDesc, cacheable, ioType); // We don't know what parameters are already set on wrapped textures. texture->textureParamsModified(); return std::move(texture); } sk_sp GrGLGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex, int sampleCnt, GrWrapOwnership ownership, GrWrapCacheable cacheable) { GrGLTexture::IDDesc idDesc; if (!check_backend_texture(backendTex, this->glCaps(), &idDesc)) { return nullptr; } if (!idDesc.fInfo.fFormat) { idDesc.fInfo.fFormat = this->glCaps().configSizedInternalFormat(backendTex.config()); } // We don't support rendering to a EXTERNAL texture. if (GR_GL_TEXTURE_EXTERNAL == idDesc.fInfo.fTarget) { return nullptr; } if (kBorrow_GrWrapOwnership == ownership) { idDesc.fOwnership = GrBackendObjectOwnership::kBorrowed; } else { idDesc.fOwnership = GrBackendObjectOwnership::kOwned; } GrSurfaceDesc surfDesc; surfDesc.fFlags = kRenderTarget_GrSurfaceFlag; surfDesc.fWidth = backendTex.width(); surfDesc.fHeight = backendTex.height(); surfDesc.fConfig = backendTex.config(); surfDesc.fSampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, backendTex.config()); if (surfDesc.fSampleCnt < 1) { return nullptr; } GrGLRenderTarget::IDDesc rtIDDesc; if (!this->createRenderTargetObjects(surfDesc, idDesc.fInfo, &rtIDDesc)) { return nullptr; } GrMipMapsStatus mipMapsStatus = backendTex.hasMipMaps() ? GrMipMapsStatus::kDirty : GrMipMapsStatus::kNotAllocated; sk_sp texRT(GrGLTextureRenderTarget::MakeWrapped( this, surfDesc, idDesc, rtIDDesc, cacheable, mipMapsStatus)); texRT->baseLevelWasBoundToFBO(); // We don't know what parameters are already set on wrapped textures. texRT->textureParamsModified(); return std::move(texRT); } sk_sp GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT) { GrGLFramebufferInfo info; if (!backendRT.getGLFramebufferInfo(&info)) { return nullptr; } GrGLRenderTarget::IDDesc idDesc; idDesc.fRTFBOID = info.fFBOID; idDesc.fMSColorRenderbufferID = 0; idDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; idDesc.fRTFBOOwnership = GrBackendObjectOwnership::kBorrowed; idDesc.fIsMixedSampled = false; GrSurfaceDesc desc; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fWidth = backendRT.width(); desc.fHeight = backendRT.height(); desc.fConfig = backendRT.config(); desc.fSampleCnt = this->caps()->getRenderTargetSampleCount(backendRT.sampleCnt(), backendRT.config()); return GrGLRenderTarget::MakeWrapped(this, desc, info.fFormat, idDesc, backendRT.stencilBits()); } sk_sp GrGLGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTexture& tex, int sampleCnt) { GrGLTextureInfo info; if (!tex.getGLTextureInfo(&info) || !info.fID) { return nullptr; } if (GR_GL_TEXTURE_RECTANGLE != info.fTarget && GR_GL_TEXTURE_2D != info.fTarget) { // Only texture rectangle and texture 2d are supported. We do not check whether texture // rectangle is supported by Skia - if the caller provided us with a texture rectangle, // we assume the necessary support exists. return nullptr; } GrSurfaceDesc surfDesc; surfDesc.fFlags = kRenderTarget_GrSurfaceFlag; surfDesc.fWidth = tex.width(); surfDesc.fHeight = tex.height(); surfDesc.fConfig = tex.config(); surfDesc.fSampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, tex.config()); GrGLRenderTarget::IDDesc rtIDDesc; if (!this->createRenderTargetObjects(surfDesc, info, &rtIDDesc)) { return nullptr; } return GrGLRenderTarget::MakeWrapped(this, surfDesc, info.fFormat, rtIDDesc, 0); } static bool check_write_and_transfer_input(GrGLTexture* glTex) { if (!glTex) { return false; } // Write or transfer of pixels is not implemented for TEXTURE_EXTERNAL textures if (GR_GL_TEXTURE_EXTERNAL == glTex->target()) { return false; } return true; } bool GrGLGpu::onWritePixels(GrSurface* surface, int left, int top, int width, int height, GrColorType srcColorType, const GrMipLevel texels[], int mipLevelCount) { auto glTex = static_cast(surface->asTexture()); if (!check_write_and_transfer_input(glTex)) { return false; } this->bindTextureToScratchUnit(glTex->target(), glTex->textureID()); // No sRGB transformation occurs in uploadTexData. We choose to make the src config match the // srgb-ness of the surface to avoid issues in ES2 where internal/external formats must match. // When we're on ES2 and the dst is GL_SRGB_ALPHA by making the config be kSRGB_8888 we know // that our caps will choose GL_SRGB_ALPHA as the external format, too. On ES3 or regular GL our // caps knows to make the external format be GL_RGBA. auto srgbEncoded = GrPixelConfigIsSRGBEncoded(surface->config()); auto srcAsConfig = GrColorTypeToPixelConfig(srcColorType, srgbEncoded); SkASSERT(!GrPixelConfigIsCompressed(glTex->config())); return this->uploadTexData(glTex->config(), glTex->width(), glTex->height(), glTex->target(), kWrite_UploadType, left, top, width, height, srcAsConfig, texels, mipLevelCount); } // For GL_[UN]PACK_ALIGNMENT. TODO: This really wants to be GrColorType. static inline GrGLint config_alignment(GrPixelConfig config) { SkASSERT(!GrPixelConfigIsCompressed(config)); switch (config) { case kAlpha_8_GrPixelConfig: case kAlpha_8_as_Alpha_GrPixelConfig: case kAlpha_8_as_Red_GrPixelConfig: case kGray_8_GrPixelConfig: case kGray_8_as_Lum_GrPixelConfig: case kGray_8_as_Red_GrPixelConfig: return 1; case kRGB_565_GrPixelConfig: case kRGBA_4444_GrPixelConfig: case kRG_88_GrPixelConfig: case kAlpha_half_GrPixelConfig: case kAlpha_half_as_Red_GrPixelConfig: case kRGBA_half_GrPixelConfig: case kRGBA_half_Clamped_GrPixelConfig: return 2; case kRGBA_8888_GrPixelConfig: case kRGB_888_GrPixelConfig: // We're really talking about GrColorType::kRGB_888x here. case kRGB_888X_GrPixelConfig: case kBGRA_8888_GrPixelConfig: case kSRGBA_8888_GrPixelConfig: case kSBGRA_8888_GrPixelConfig: case kRGBA_1010102_GrPixelConfig: case kRGBA_float_GrPixelConfig: case kRG_float_GrPixelConfig: return 4; case kRGB_ETC1_GrPixelConfig: case kUnknown_GrPixelConfig: return 0; } SK_ABORT("Invalid pixel config"); return 0; } bool GrGLGpu::onTransferPixels(GrTexture* texture, int left, int top, int width, int height, GrColorType bufferColorType, GrGpuBuffer* transferBuffer, size_t offset, size_t rowBytes) { GrGLTexture* glTex = static_cast(texture); GrPixelConfig texConfig = glTex->config(); SkASSERT(this->caps()->isConfigTexturable(texConfig)); // Can't transfer compressed data SkASSERT(!GrPixelConfigIsCompressed(glTex->config())); if (!check_write_and_transfer_input(glTex)) { return false; } static_assert(sizeof(int) == sizeof(int32_t), ""); if (width <= 0 || height <= 0) { return false; } this->bindTextureToScratchUnit(glTex->target(), glTex->textureID()); SkASSERT(!transferBuffer->isMapped()); SkASSERT(!transferBuffer->isCpuBuffer()); const GrGLBuffer* glBuffer = static_cast(transferBuffer); this->bindBuffer(GrGpuBufferType::kXferCpuToGpu, glBuffer); SkDEBUGCODE( SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height()); SkASSERT(bounds.contains(subRect)); ) int bpp = GrColorTypeBytesPerPixel(bufferColorType); const size_t trimRowBytes = width * bpp; if (!rowBytes) { rowBytes = trimRowBytes; } const void* pixels = (void*)offset; if (width < 0 || height < 0) { return false; } bool restoreGLRowLength = false; if (trimRowBytes != rowBytes) { // we should have checked for this support already SkASSERT(this->glCaps().unpackRowLengthSupport()); GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowBytes / bpp)); restoreGLRowLength = true; } // Internal format comes from the texture desc. GrGLenum internalFormat; // External format and type come from the upload data. GrGLenum externalFormat; GrGLenum externalType; auto bufferAsConfig = GrColorTypeToPixelConfig(bufferColorType, GrSRGBEncoded::kNo); if (!this->glCaps().getTexImageFormats(texConfig, bufferAsConfig, &internalFormat, &externalFormat, &externalType)) { return false; } GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, config_alignment(texConfig))); GL_CALL(TexSubImage2D(glTex->target(), 0, left, top, width, height, externalFormat, externalType, pixels)); if (restoreGLRowLength) { GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } return true; } /** * Creates storage space for the texture and fills it with texels. * * @param config Pixel config of the texture. * @param interface The GL interface in use. * @param caps The capabilities of the GL device. * @param target Which bound texture to target (GR_GL_TEXTURE_2D, e.g.) * @param internalFormat The data format used for the internal storage of the texture. May be sized. * @param internalFormatForTexStorage The data format used for the TexStorage API. Must be sized. * @param externalFormat The data format used for the external storage of the texture. * @param externalType The type of the data used for the external storage of the texture. * @param texels The texel data of the texture being created. * @param mipLevelCount Number of mipmap levels * @param baseWidth The width of the texture's base mipmap level * @param baseHeight The height of the texture's base mipmap level */ static bool allocate_and_populate_texture(GrPixelConfig config, const GrGLInterface& interface, const GrGLCaps& caps, GrGLenum target, GrGLenum internalFormat, GrGLenum internalFormatForTexStorage, GrGLenum externalFormat, GrGLenum externalType, const GrMipLevel texels[], int mipLevelCount, int baseWidth, int baseHeight) { CLEAR_ERROR_BEFORE_ALLOC(&interface); bool useTexStorage = caps.isConfigTexSupportEnabled(config); // We can only use TexStorage if we know we will not later change the storage requirements. // This means if we may later want to add mipmaps, we cannot use TexStorage. // Right now, we cannot know if we will later add mipmaps or not. // The only time we can use TexStorage is when we already have the // mipmaps. useTexStorage &= mipLevelCount > 1; if (useTexStorage) { // We never resize or change formats of textures. GL_ALLOC_CALL(&interface, TexStorage2D(target, SkTMax(mipLevelCount, 1), internalFormatForTexStorage, baseWidth, baseHeight)); GrGLenum error = CHECK_ALLOC_ERROR(&interface); if (error != GR_GL_NO_ERROR) { return false; } else { for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { const void* currentMipData = texels[currentMipLevel].fPixels; if (currentMipData == nullptr) { continue; } int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); GR_GL_CALL(&interface, TexSubImage2D(target, currentMipLevel, 0, // left 0, // top currentWidth, currentHeight, externalFormat, externalType, currentMipData)); } return true; } } else { if (!mipLevelCount) { GL_ALLOC_CALL(&interface, TexImage2D(target, 0, internalFormat, baseWidth, baseHeight, 0, // border externalFormat, externalType, nullptr)); GrGLenum error = CHECK_ALLOC_ERROR(&interface); if (error != GR_GL_NO_ERROR) { return false; } } else { for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); const void* currentMipData = texels[currentMipLevel].fPixels; // Even if curremtMipData is nullptr, continue to call TexImage2D. // This will allocate texture memory which we can later populate. GL_ALLOC_CALL(&interface, TexImage2D(target, currentMipLevel, internalFormat, currentWidth, currentHeight, 0, // border externalFormat, externalType, currentMipData)); GrGLenum error = CHECK_ALLOC_ERROR(&interface); if (error != GR_GL_NO_ERROR) { return false; } } } } return true; } /** * Creates storage space for the texture and fills it with texels. * * @param config Compressed pixel config of the texture. * @param interface The GL interface in use. * @param caps The capabilities of the GL device. * @param target Which bound texture to target (GR_GL_TEXTURE_2D, e.g.) * @param internalFormat The data format used for the internal storage of the texture. * @param texels The texel data of the texture being created. * @param mipLevelCount Number of mipmap levels * @param baseWidth The width of the texture's base mipmap level * @param baseHeight The height of the texture's base mipmap level */ static bool allocate_and_populate_compressed_texture(GrPixelConfig config, const GrGLInterface& interface, const GrGLCaps& caps, GrGLenum target, GrGLenum internalFormat, const GrMipLevel texels[], int mipLevelCount, int baseWidth, int baseHeight) { CLEAR_ERROR_BEFORE_ALLOC(&interface); SkASSERT(GrPixelConfigIsCompressed(config)); bool useTexStorage = caps.isConfigTexSupportEnabled(config); // We can only use TexStorage if we know we will not later change the storage requirements. // This means if we may later want to add mipmaps, we cannot use TexStorage. // Right now, we cannot know if we will later add mipmaps or not. // The only time we can use TexStorage is when we already have the // mipmaps. useTexStorage &= mipLevelCount > 1; if (useTexStorage) { // We never resize or change formats of textures. GL_ALLOC_CALL(&interface, TexStorage2D(target, mipLevelCount, internalFormat, baseWidth, baseHeight)); GrGLenum error = CHECK_ALLOC_ERROR(&interface); if (error != GR_GL_NO_ERROR) { return false; } else { for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { const void* currentMipData = texels[currentMipLevel].fPixels; if (currentMipData == nullptr) { // Compressed textures require data for every level return false; } int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); // Make sure that the width and height that we pass to OpenGL // is a multiple of the block size. size_t dataSize = GrCompressedFormatDataSize(config, currentWidth, currentHeight); GR_GL_CALL(&interface, CompressedTexSubImage2D(target, currentMipLevel, 0, // left 0, // top currentWidth, currentHeight, internalFormat, SkToInt(dataSize), currentMipData)); } } } else { for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { const void* currentMipData = texels[currentMipLevel].fPixels; if (currentMipData == nullptr) { // Compressed textures require data for every level return false; } int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); // Make sure that the width and height that we pass to OpenGL // is a multiple of the block size. size_t dataSize = GrCompressedFormatDataSize(config, baseWidth, baseHeight); GL_ALLOC_CALL(&interface, CompressedTexImage2D(target, currentMipLevel, internalFormat, currentWidth, currentHeight, 0, // border SkToInt(dataSize), currentMipData)); GrGLenum error = CHECK_ALLOC_ERROR(&interface); if (error != GR_GL_NO_ERROR) { return false; } } } return true; } /** * After a texture is created, any state which was altered during its creation * needs to be restored. * * @param interface The GL interface to use. * @param caps The capabilities of the GL device. * @param restoreGLRowLength Should the row length unpacking be restored? * @param glFlipY Did GL flip the texture vertically? */ static void restore_pixelstore_state(const GrGLInterface& interface, const GrGLCaps& caps, bool restoreGLRowLength) { if (restoreGLRowLength) { SkASSERT(caps.unpackRowLengthSupport()); GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } } void GrGLGpu::unbindCpuToGpuXferBuffer() { auto* xferBufferState = this->hwBufferState(GrGpuBufferType::kXferCpuToGpu); if (!xferBufferState->fBoundBufferUniqueID.isInvalid()) { GL_CALL(BindBuffer(xferBufferState->fGLTarget, 0)); xferBufferState->invalidate(); } } // TODO: Make this take a GrColorType instead of dataConfig. This requires updating GrGLCaps to // convert from GrColorType to externalFormat/externalType GLenum values. bool GrGLGpu::uploadTexData(GrPixelConfig texConfig, int texWidth, int texHeight, GrGLenum target, UploadType uploadType, int left, int top, int width, int height, GrPixelConfig dataConfig, const GrMipLevel texels[], int mipLevelCount, GrMipMapsStatus* mipMapsStatus) { // If we're uploading compressed data then we should be using uploadCompressedTexData SkASSERT(!GrPixelConfigIsCompressed(dataConfig)); SkASSERT(this->caps()->isConfigTexturable(texConfig)); SkDEBUGCODE( SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); SkIRect bounds = SkIRect::MakeWH(texWidth, texHeight); SkASSERT(bounds.contains(subRect)); ) SkASSERT(1 == mipLevelCount || (0 == left && 0 == top && width == texWidth && height == texHeight)); this->unbindCpuToGpuXferBuffer(); // texels is const. // But we may need to flip the texture vertically to prepare it. // Rather than flip in place and alter the incoming data, // we allocate a new buffer to flip into. // This means we need to make a non-const shallow copy of texels. SkAutoTMalloc texelsShallowCopy; if (mipLevelCount) { texelsShallowCopy.reset(mipLevelCount); memcpy(texelsShallowCopy.get(), texels, mipLevelCount*sizeof(GrMipLevel)); } const GrGLInterface* interface = this->glInterface(); const GrGLCaps& caps = this->glCaps(); size_t bpp = GrBytesPerPixel(dataConfig); if (width == 0 || height == 0) { return false; } // Internal format comes from the texture desc. GrGLenum internalFormat; // External format and type come from the upload data. GrGLenum externalFormat; GrGLenum externalType; if (!this->glCaps().getTexImageFormats(texConfig, dataConfig, &internalFormat, &externalFormat, &externalType)) { return false; } // TexStorage requires a sized format, and internalFormat may or may not be GrGLenum internalFormatForTexStorage = this->glCaps().configSizedInternalFormat(texConfig); /* * Check whether to allocate a temporary buffer for flipping y or * because our srcData has extra bytes past each row. If so, we need * to trim those off here, since GL ES may not let us specify * GL_UNPACK_ROW_LENGTH. */ bool restoreGLRowLength = false; // in case we need a temporary, trimmed copy of the src pixels SkAutoSMalloc<128 * 128> tempStorage; if (mipMapsStatus) { *mipMapsStatus = GrMipMapsStatus::kValid; } const bool usesMips = mipLevelCount > 1; // find the combined size of all the mip levels and the relative offset of // each into the collective buffer bool willNeedData = false; size_t combinedBufferSize = 0; SkTArray individualMipOffsets(mipLevelCount); for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { if (texelsShallowCopy[currentMipLevel].fPixels) { int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, width / twoToTheMipLevel); int currentHeight = SkTMax(1, height / twoToTheMipLevel); const size_t trimRowBytes = currentWidth * bpp; const size_t trimmedSize = trimRowBytes * currentHeight; const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes ? texelsShallowCopy[currentMipLevel].fRowBytes : trimRowBytes; if (((!caps.unpackRowLengthSupport() || usesMips) && trimRowBytes != rowBytes)) { willNeedData = true; } individualMipOffsets.push_back(combinedBufferSize); combinedBufferSize += trimmedSize; } else { if (mipMapsStatus) { *mipMapsStatus = GrMipMapsStatus::kDirty; } individualMipOffsets.push_back(0); } } if (mipMapsStatus && mipLevelCount <= 1) { *mipMapsStatus = GrMipMapsStatus::kNotAllocated; } char* buffer = nullptr; if (willNeedData) { buffer = (char*)tempStorage.reset(combinedBufferSize); } for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { if (!texelsShallowCopy[currentMipLevel].fPixels) { continue; } int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, width / twoToTheMipLevel); int currentHeight = SkTMax(1, height / twoToTheMipLevel); const size_t trimRowBytes = currentWidth * bpp; /* * check whether to allocate a temporary buffer for flipping y or * because our srcData has extra bytes past each row. If so, we need * to trim those off here, since GL ES may not let us specify * GL_UNPACK_ROW_LENGTH. */ restoreGLRowLength = false; const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes ? texelsShallowCopy[currentMipLevel].fRowBytes : trimRowBytes; // TODO: This optimization should be enabled with or without mips. // For use with mips, we must set GR_GL_UNPACK_ROW_LENGTH once per // mip level, before calling glTexImage2D. if (caps.unpackRowLengthSupport() && !usesMips) { // can't use this for flipping, only non-neg values allowed. :( if (rowBytes != trimRowBytes) { GrGLint rowLength = static_cast(rowBytes / bpp); GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); restoreGLRowLength = true; } } else if (trimRowBytes != rowBytes) { // copy data into our new storage, skipping the trailing bytes const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels; char* dst = buffer + individualMipOffsets[currentMipLevel]; SkRectMemcpy(dst, trimRowBytes, src, rowBytes, trimRowBytes, currentHeight); // now point data to our copied version texelsShallowCopy[currentMipLevel].fPixels = buffer + individualMipOffsets[currentMipLevel]; texelsShallowCopy[currentMipLevel].fRowBytes = trimRowBytes; } } if (mipLevelCount) { GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ALIGNMENT, config_alignment(texConfig))); } bool succeeded = true; if (kNewTexture_UploadType == uploadType) { if (0 == left && 0 == top && texWidth == width && texHeight == height) { succeeded = allocate_and_populate_texture( texConfig, *interface, caps, target, internalFormat, internalFormatForTexStorage, externalFormat, externalType, texelsShallowCopy, mipLevelCount, width, height); } else { succeeded = false; } } else { for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { if (!texelsShallowCopy[currentMipLevel].fPixels) { continue; } int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, width / twoToTheMipLevel); int currentHeight = SkTMax(1, height / twoToTheMipLevel); GL_CALL(TexSubImage2D(target, currentMipLevel, left, top, currentWidth, currentHeight, externalFormat, externalType, texelsShallowCopy[currentMipLevel].fPixels)); } } restore_pixelstore_state(*interface, caps, restoreGLRowLength); return succeeded; } bool GrGLGpu::uploadCompressedTexData(GrPixelConfig texConfig, int texWidth, int texHeight, GrGLenum target, GrPixelConfig dataConfig, const GrMipLevel texels[], int mipLevelCount, GrMipMapsStatus* mipMapsStatus) { SkASSERT(this->caps()->isConfigTexturable(texConfig)); const GrGLInterface* interface = this->glInterface(); const GrGLCaps& caps = this->glCaps(); // We only need the internal format for compressed 2D textures. GrGLenum internalFormat; if (!caps.getCompressedTexImageFormats(texConfig, &internalFormat)) { return false; } if (mipMapsStatus) { if (mipLevelCount <= 1) { *mipMapsStatus = GrMipMapsStatus::kNotAllocated; } else { *mipMapsStatus = GrMipMapsStatus::kValid; } } return allocate_and_populate_compressed_texture(texConfig, *interface, caps, target, internalFormat, texels, mipLevelCount, texWidth, texHeight); } static bool renderbuffer_storage_msaa(const GrGLContext& ctx, int sampleCount, GrGLenum format, int width, int height) { CLEAR_ERROR_BEFORE_ALLOC(ctx.interface()); SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType()); switch (ctx.caps()->msFBOType()) { case GrGLCaps::kStandard_MSFBOType: case GrGLCaps::kMixedSamples_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kES_Apple_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kES_EXT_MsToTexture_MSFBOType: case GrGLCaps::kES_IMG_MsToTexture_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kNone_MSFBOType: SK_ABORT("Shouldn't be here if we don't support multisampled renderbuffers."); break; } return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface())); } bool GrGLGpu::createRenderTargetObjects(const GrSurfaceDesc& desc, const GrGLTextureInfo& texInfo, GrGLRenderTarget::IDDesc* idDesc) { idDesc->fMSColorRenderbufferID = 0; idDesc->fRTFBOID = 0; idDesc->fRTFBOOwnership = GrBackendObjectOwnership::kOwned; idDesc->fTexFBOID = 0; SkASSERT((GrGLCaps::kMixedSamples_MSFBOType == this->glCaps().msFBOType()) == this->caps()->usesMixedSamples()); idDesc->fIsMixedSampled = desc.fSampleCnt > 1 && this->caps()->usesMixedSamples(); GrGLenum status; GrGLenum colorRenderbufferFormat = 0; // suppress warning if (desc.fSampleCnt > 1 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { goto FAILED; } GL_CALL(GenFramebuffers(1, &idDesc->fTexFBOID)); if (!idDesc->fTexFBOID) { goto FAILED; } // If we are using multisampling we will create two FBOS. We render to one and then resolve to // the texture bound to the other. The exception is the IMG multisample extension. With this // extension the texture is multisampled when rendered to and then auto-resolves it when it is // rendered from. if (desc.fSampleCnt > 1 && this->glCaps().usesMSAARenderBuffers()) { GL_CALL(GenFramebuffers(1, &idDesc->fRTFBOID)); GL_CALL(GenRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); if (!idDesc->fRTFBOID || !idDesc->fMSColorRenderbufferID) { goto FAILED; } this->glCaps().getRenderbufferFormat(desc.fConfig, &colorRenderbufferFormat); } else { idDesc->fRTFBOID = idDesc->fTexFBOID; } // below here we may bind the FBO fHWBoundRenderTargetUniqueID.makeInvalid(); if (idDesc->fRTFBOID != idDesc->fTexFBOID) { SkASSERT(desc.fSampleCnt > 1); GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID)); if (!renderbuffer_storage_msaa(*fGLContext, desc.fSampleCnt, colorRenderbufferFormat, desc.fWidth, desc.fHeight)) { goto FAILED; } this->bindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fRTFBOID); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID)); if (!this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); } } this->bindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fTexFBOID); if (this->glCaps().usesImplicitMSAAResolve() && desc.fSampleCnt > 1) { GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, texInfo.fTarget, texInfo.fID, 0, desc.fSampleCnt)); } else { GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, texInfo.fTarget, texInfo.fID, 0)); } if (!this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); } return true; FAILED: if (idDesc->fMSColorRenderbufferID) { GL_CALL(DeleteRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); } if (idDesc->fRTFBOID != idDesc->fTexFBOID) { this->deleteFramebuffer(idDesc->fRTFBOID); } if (idDesc->fTexFBOID) { this->deleteFramebuffer(idDesc->fTexFBOID); } return false; } // good to set a break-point here to know when createTexture fails static sk_sp return_null_texture() { // SkDEBUGFAIL("null texture"); return nullptr; } static GrGLTexture::SamplerParams set_initial_texture_params(const GrGLInterface* interface, const GrGLTextureInfo& info) { // Some drivers like to know filter/wrap before seeing glTexImage2D. Some // drivers have a bug where an FBO won't be complete if it includes a // texture that is not mipmap complete (considering the filter in use). GrGLTexture::SamplerParams params; params.fMinFilter = GR_GL_NEAREST; params.fMagFilter = GR_GL_NEAREST; params.fWrapS = GR_GL_CLAMP_TO_EDGE; params.fWrapT = GR_GL_CLAMP_TO_EDGE; GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_MAG_FILTER, params.fMagFilter)); GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_MIN_FILTER, params.fMinFilter)); GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_S, params.fWrapS)); GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_T, params.fWrapT)); return params; } sk_sp GrGLGpu::onCreateTexture(const GrSurfaceDesc& desc, SkBudgeted budgeted, const GrMipLevel texels[], int mipLevelCount) { // We fail if the MSAA was requested and is not available. if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt > 1) { //SkDebugf("MSAA RT requested but not supported on this platform."); return return_null_texture(); } bool performClear = (desc.fFlags & kPerformInitialClear_GrSurfaceFlag) && !GrPixelConfigIsCompressed(desc.fConfig); GrMipLevel zeroLevel; std::unique_ptr zeros; if (performClear && !this->glCaps().clearTextureSupport() && !this->glCaps().canConfigBeFBOColorAttachment(desc.fConfig)) { size_t rowSize = GrBytesPerPixel(desc.fConfig) * desc.fWidth; size_t size = rowSize * desc.fHeight; zeros.reset(new uint8_t[size]); memset(zeros.get(), 0, size); zeroLevel.fPixels = zeros.get(); zeroLevel.fRowBytes = 0; texels = &zeroLevel; mipLevelCount = 1; performClear = false; } bool isRenderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag); GrGLTexture::IDDesc idDesc; idDesc.fOwnership = GrBackendObjectOwnership::kOwned; GrMipMapsStatus mipMapsStatus; GrGLTexture::SamplerParams initialTexParams; if (!this->createTextureImpl(desc, &idDesc.fInfo, isRenderTarget, &initialTexParams, texels, mipLevelCount, &mipMapsStatus)) { return return_null_texture(); } sk_sp tex; if (isRenderTarget) { // unbind the texture from the texture unit before binding it to the frame buffer GL_CALL(BindTexture(idDesc.fInfo.fTarget, 0)); GrGLRenderTarget::IDDesc rtIDDesc; if (!this->createRenderTargetObjects(desc, idDesc.fInfo, &rtIDDesc)) { GL_CALL(DeleteTextures(1, &idDesc.fInfo.fID)); return return_null_texture(); } tex = sk_make_sp(this, budgeted, desc, idDesc, rtIDDesc, mipMapsStatus); tex->baseLevelWasBoundToFBO(); } else { tex = sk_make_sp(this, budgeted, desc, idDesc, mipMapsStatus); } tex->setCachedParams(&initialTexParams, tex->getCachedNonSamplerParams(), this->getResetTimestamp()); #ifdef TRACE_TEXTURE_CREATION SkDebugf("--- new texture [%d] size=(%d %d) config=%d\n", idDesc.fInfo.fID, desc.fWidth, desc.fHeight, desc.fConfig); #endif if (tex && performClear) { if (this->glCaps().clearTextureSupport()) { static constexpr uint32_t kZero = 0; GL_CALL(ClearTexImage(tex->textureID(), 0, GR_GL_RGBA, GR_GL_UNSIGNED_BYTE, &kZero)); } else { GrGLIRect viewport; this->bindSurfaceFBOForPixelOps(tex.get(), GR_GL_FRAMEBUFFER, &viewport, kDst_TempFBOTarget); this->disableScissor(); this->disableWindowRectangles(); this->flushColorWrite(true); this->flushClearColor(0, 0, 0, 0); GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, tex.get()); fHWBoundRenderTargetUniqueID.makeInvalid(); } } return std::move(tex); } namespace { const GrGLuint kUnknownBitCount = GrGLStencilAttachment::kUnknownBitCount; void inline get_stencil_rb_sizes(const GrGLInterface* gl, GrGLStencilAttachment::Format* format) { // we shouldn't ever know one size and not the other SkASSERT((kUnknownBitCount == format->fStencilBits) == (kUnknownBitCount == format->fTotalBits)); if (kUnknownBitCount == format->fStencilBits) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_STENCIL_SIZE, (GrGLint*)&format->fStencilBits); if (format->fPacked) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_DEPTH_SIZE, (GrGLint*)&format->fTotalBits); format->fTotalBits += format->fStencilBits; } else { format->fTotalBits = format->fStencilBits; } } } } int GrGLGpu::getCompatibleStencilIndex(GrPixelConfig config) { static const int kSize = 16; SkASSERT(this->caps()->isConfigRenderable(config)); if (!this->glCaps().hasStencilFormatBeenDeterminedForConfig(config)) { // Default to unsupported, set this if we find a stencil format that works. int firstWorkingStencilFormatIndex = -1; // Create color texture GrGLuint colorID = 0; GL_CALL(GenTextures(1, &colorID)); this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, colorID); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE)); GrGLenum internalFormat; GrGLenum externalFormat; GrGLenum externalType; if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat, &externalType)) { return false; } this->unbindCpuToGpuXferBuffer(); CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, 0, internalFormat, kSize, kSize, 0, externalFormat, externalType, nullptr)); if (GR_GL_NO_ERROR != CHECK_ALLOC_ERROR(this->glInterface())) { GL_CALL(DeleteTextures(1, &colorID)); return -1; } // unbind the texture from the texture unit before binding it to the frame buffer GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); // Create Framebuffer GrGLuint fb = 0; GL_CALL(GenFramebuffers(1, &fb)); this->bindFramebuffer(GR_GL_FRAMEBUFFER, fb); fHWBoundRenderTargetUniqueID.makeInvalid(); GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, colorID, 0)); GrGLuint sbRBID = 0; GL_CALL(GenRenderbuffers(1, &sbRBID)); // look over formats till I find a compatible one int stencilFmtCnt = this->glCaps().stencilFormats().count(); if (sbRBID) { GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbRBID)); for (int i = 0; i < stencilFmtCnt && sbRBID; ++i) { const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[i]; CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, sFmt.fInternalFormat, kSize, kSize)); if (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface())) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, sbRBID)); if (sFmt.fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, sbRBID)); } else { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status == GR_GL_FRAMEBUFFER_COMPLETE) { firstWorkingStencilFormatIndex = i; break; } GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); if (sFmt.fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } } } GL_CALL(DeleteRenderbuffers(1, &sbRBID)); } GL_CALL(DeleteTextures(1, &colorID)); this->bindFramebuffer(GR_GL_FRAMEBUFFER, 0); this->deleteFramebuffer(fb); fGLContext->caps()->setStencilFormatIndexForConfig(config, firstWorkingStencilFormatIndex); } return this->glCaps().getStencilFormatIndexForConfig(config); } bool GrGLGpu::createTextureImpl(const GrSurfaceDesc& desc, GrGLTextureInfo* info, bool renderTarget, GrGLTexture::SamplerParams* initialTexParams, const GrMipLevel texels[], int mipLevelCount, GrMipMapsStatus* mipMapsStatus) { info->fID = 0; info->fTarget = GR_GL_TEXTURE_2D; GL_CALL(GenTextures(1, &(info->fID))); if (!info->fID) { return false; } this->bindTextureToScratchUnit(info->fTarget, info->fID); if (renderTarget && this->glCaps().textureUsageSupport()) { // provides a hint about how this texture will be used GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_USAGE, GR_GL_FRAMEBUFFER_ATTACHMENT)); } if (info) { *initialTexParams = set_initial_texture_params(this->glInterface(), *info); } bool success = false; if (GrPixelConfigIsCompressed(desc.fConfig)) { SkASSERT(!renderTarget); success = this->uploadCompressedTexData(desc.fConfig, desc.fWidth, desc.fHeight, info->fTarget, desc.fConfig, texels, mipLevelCount, mipMapsStatus); } else { success = this->uploadTexData(desc.fConfig, desc.fWidth, desc.fHeight, info->fTarget, kNewTexture_UploadType, 0, 0, desc.fWidth, desc.fHeight, desc.fConfig, texels, mipLevelCount, mipMapsStatus); } if (!success) { GL_CALL(DeleteTextures(1, &(info->fID))); return false; } info->fFormat = this->glCaps().configSizedInternalFormat(desc.fConfig); return true; } GrStencilAttachment* GrGLGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt, int width, int height) { SkASSERT(width >= rt->width()); SkASSERT(height >= rt->height()); int samples = rt->numStencilSamples(); GrGLStencilAttachment::IDDesc sbDesc; int sIdx = this->getCompatibleStencilIndex(rt->config()); if (sIdx < 0) { return nullptr; } if (!sbDesc.fRenderbufferID) { GL_CALL(GenRenderbuffers(1, &sbDesc.fRenderbufferID)); } if (!sbDesc.fRenderbufferID) { return nullptr; } GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID)); const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx]; CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // we do this "if" so that we don't call the multisample // version on a GL that doesn't have an MSAA extension. if (samples > 1) { SkAssertResult(renderbuffer_storage_msaa(*fGLContext, samples, sFmt.fInternalFormat, width, height)); } else { GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, sFmt.fInternalFormat, width, height)); SkASSERT(GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface())); } fStats.incStencilAttachmentCreates(); // After sized formats we attempt an unsized format and take // whatever sizes GL gives us. In that case we query for the size. GrGLStencilAttachment::Format format = sFmt; get_stencil_rb_sizes(this->glInterface(), &format); GrGLStencilAttachment* stencil = new GrGLStencilAttachment(this, sbDesc, width, height, samples, format); return stencil; } //////////////////////////////////////////////////////////////////////////////// sk_sp GrGLGpu::onCreateBuffer(size_t size, GrGpuBufferType intendedType, GrAccessPattern accessPattern, const void* data) { return GrGLBuffer::Make(this, size, intendedType, accessPattern, data); } void GrGLGpu::flushScissor(const GrScissorState& scissorState, const GrGLIRect& rtViewport, GrSurfaceOrigin rtOrigin) { if (scissorState.enabled()) { GrGLIRect scissor; scissor.setRelativeTo(rtViewport, scissorState.rect(), rtOrigin); // if the scissor fully contains the viewport then we fall through and // disable the scissor test. if (!scissor.contains(rtViewport)) { if (fHWScissorSettings.fRect != scissor) { scissor.pushToGLScissor(this->glInterface()); fHWScissorSettings.fRect = scissor; } if (kYes_TriState != fHWScissorSettings.fEnabled) { GL_CALL(Enable(GR_GL_SCISSOR_TEST)); fHWScissorSettings.fEnabled = kYes_TriState; } return; } } // See fall through note above this->disableScissor(); } void GrGLGpu::flushWindowRectangles(const GrWindowRectsState& windowState, const GrGLRenderTarget* rt, GrSurfaceOrigin origin) { #ifndef USE_NSIGHT typedef GrWindowRectsState::Mode Mode; SkASSERT(!windowState.enabled() || rt->renderFBOID()); // Window rects can't be used on-screen. SkASSERT(windowState.numWindows() <= this->caps()->maxWindowRectangles()); if (!this->caps()->maxWindowRectangles() || fHWWindowRectsState.knownEqualTo(origin, rt->getViewport(), windowState)) { return; } // This is purely a workaround for a spurious warning generated by gcc. Otherwise the above // assert would be sufficient. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=5912 int numWindows = SkTMin(windowState.numWindows(), int(GrWindowRectangles::kMaxWindows)); SkASSERT(windowState.numWindows() == numWindows); GrGLIRect glwindows[GrWindowRectangles::kMaxWindows]; const SkIRect* skwindows = windowState.windows().data(); for (int i = 0; i < numWindows; ++i) { glwindows[i].setRelativeTo(rt->getViewport(), skwindows[i], origin); } GrGLenum glmode = (Mode::kExclusive == windowState.mode()) ? GR_GL_EXCLUSIVE : GR_GL_INCLUSIVE; GL_CALL(WindowRectangles(glmode, numWindows, glwindows->asInts())); fHWWindowRectsState.set(origin, rt->getViewport(), windowState); #endif } void GrGLGpu::disableWindowRectangles() { #ifndef USE_NSIGHT if (!this->caps()->maxWindowRectangles() || fHWWindowRectsState.knownDisabled()) { return; } GL_CALL(WindowRectangles(GR_GL_EXCLUSIVE, 0, nullptr)); fHWWindowRectsState.setDisabled(); #endif } void GrGLGpu::resolveAndGenerateMipMapsForProcessorTextures( const GrPrimitiveProcessor& primProc, const GrPipeline& pipeline, const GrTextureProxy* const primProcTextures[], int numPrimitiveProcessorTextureSets) { auto genLevelsIfNeeded = [this](GrTexture* tex, const GrSamplerState& sampler) { SkASSERT(tex); if (sampler.filter() == GrSamplerState::Filter::kMipMap && tex->texturePriv().mipMapped() == GrMipMapped::kYes && tex->texturePriv().mipMapsAreDirty()) { SkASSERT(this->caps()->mipMapSupport()); this->regenerateMipMapLevels(static_cast(tex)); SkASSERT(!tex->asRenderTarget() || !tex->asRenderTarget()->needsResolve()); } else if (auto* rt = tex->asRenderTarget()) { if (rt->needsResolve()) { this->resolveRenderTarget(rt); } } }; for (int set = 0, tex = 0; set < numPrimitiveProcessorTextureSets; ++set) { for (int sampler = 0; sampler < primProc.numTextureSamplers(); ++sampler, ++tex) { GrTexture* texture = primProcTextures[tex]->peekTexture(); genLevelsIfNeeded(texture, primProc.textureSampler(sampler).samplerState()); } } GrFragmentProcessor::Iter iter(pipeline); while (const GrFragmentProcessor* fp = iter.next()) { for (int i = 0; i < fp->numTextureSamplers(); ++i) { const auto& textureSampler = fp->textureSampler(i); genLevelsIfNeeded(textureSampler.peekTexture(), textureSampler.samplerState()); } } } bool GrGLGpu::flushGLState(GrRenderTarget* renderTarget, GrSurfaceOrigin origin, const GrPrimitiveProcessor& primProc, const GrPipeline& pipeline, const GrPipeline::FixedDynamicState* fixedDynamicState, const GrPipeline::DynamicStateArrays* dynamicStateArrays, int dynamicStateArraysLength, bool willDrawPoints) { const GrTextureProxy* const* primProcProxiesForMipRegen = nullptr; const GrTextureProxy* const* primProcProxiesToBind = nullptr; int numPrimProcTextureSets = 1; // number of texture per prim proc sampler. if (dynamicStateArrays && dynamicStateArrays->fPrimitiveProcessorTextures) { primProcProxiesForMipRegen = dynamicStateArrays->fPrimitiveProcessorTextures; numPrimProcTextureSets = dynamicStateArraysLength; } else if (fixedDynamicState && fixedDynamicState->fPrimitiveProcessorTextures) { primProcProxiesForMipRegen = fixedDynamicState->fPrimitiveProcessorTextures; primProcProxiesToBind = fixedDynamicState->fPrimitiveProcessorTextures; } SkASSERT(SkToBool(primProcProxiesForMipRegen) == SkToBool(primProc.numTextureSamplers())); sk_sp program(fProgramCache->refProgram(this, renderTarget, origin, primProc, primProcProxiesForMipRegen, pipeline, willDrawPoints)); if (!program) { GrCapsDebugf(this->caps(), "Failed to create program!\n"); return false; } this->resolveAndGenerateMipMapsForProcessorTextures( primProc, pipeline, primProcProxiesForMipRegen, numPrimProcTextureSets); GrXferProcessor::BlendInfo blendInfo; pipeline.getXferProcessor().getBlendInfo(&blendInfo); this->flushColorWrite(blendInfo.fWriteColor); this->flushProgram(std::move(program)); // Swizzle the blend to match what the shader will output. const GrSwizzle& swizzle = this->caps()->shaderCaps()->configOutputSwizzle( renderTarget->config()); this->flushBlend(blendInfo, swizzle); fHWProgram->updateUniformsAndTextureBindings(renderTarget, origin, primProc, pipeline, primProcProxiesToBind); GrGLRenderTarget* glRT = static_cast(renderTarget); GrStencilSettings stencil; if (pipeline.isStencilEnabled()) { // TODO: attach stencil and create settings during render target flush. SkASSERT(glRT->renderTargetPriv().getStencilAttachment()); stencil.reset(*pipeline.getUserStencil(), pipeline.hasStencilClip(), glRT->renderTargetPriv().numStencilBits()); } this->flushStencil(stencil); if (pipeline.isScissorEnabled()) { static constexpr SkIRect kBogusScissor{0, 0, 1, 1}; GrScissorState state(fixedDynamicState ? fixedDynamicState->fScissorRect : kBogusScissor); this->flushScissor(state, glRT->getViewport(), origin); } else { this->disableScissor(); } this->flushWindowRectangles(pipeline.getWindowRectsState(), glRT, origin); this->flushHWAAState(glRT, pipeline.isHWAntialiasState()); // This must come after textures are flushed because a texture may need // to be msaa-resolved (which will modify bound FBO state). this->flushRenderTarget(glRT); return true; } void GrGLGpu::flushProgram(sk_sp program) { if (!program) { fHWProgram.reset(); fHWProgramID = 0; return; } SkASSERT((program == fHWProgram) == (fHWProgramID == program->programID())); if (program == fHWProgram) { return; } auto id = program->programID(); SkASSERT(id); GL_CALL(UseProgram(id)); fHWProgram = std::move(program); fHWProgramID = id; } void GrGLGpu::flushProgram(GrGLuint id) { SkASSERT(id); if (fHWProgramID == id) { SkASSERT(!fHWProgram); return; } fHWProgram.reset(); GL_CALL(UseProgram(id)); fHWProgramID = id; } void GrGLGpu::setupGeometry(const GrBuffer* indexBuffer, const GrBuffer* vertexBuffer, int baseVertex, const GrBuffer* instanceBuffer, int baseInstance, GrPrimitiveRestart enablePrimitiveRestart) { SkASSERT((enablePrimitiveRestart == GrPrimitiveRestart::kNo) || indexBuffer); GrGLAttribArrayState* attribState; if (indexBuffer) { SkASSERT(indexBuffer->isCpuBuffer() || !static_cast(indexBuffer)->isMapped()); attribState = fHWVertexArrayState.bindInternalVertexArray(this, indexBuffer); } else { attribState = fHWVertexArrayState.bindInternalVertexArray(this); } int numAttribs = fHWProgram->numVertexAttributes() + fHWProgram->numInstanceAttributes(); attribState->enableVertexArrays(this, numAttribs, enablePrimitiveRestart); if (int vertexStride = fHWProgram->vertexStride()) { SkASSERT(vertexBuffer); SkASSERT(vertexBuffer->isCpuBuffer() || !static_cast(vertexBuffer)->isMapped()); size_t bufferOffset = baseVertex * static_cast(vertexStride); for (int i = 0; i < fHWProgram->numVertexAttributes(); ++i) { const auto& attrib = fHWProgram->vertexAttribute(i); static constexpr int kDivisor = 0; attribState->set(this, attrib.fLocation, vertexBuffer, attrib.fCPUType, attrib.fGPUType, vertexStride, bufferOffset + attrib.fOffset, kDivisor); } } if (int instanceStride = fHWProgram->instanceStride()) { SkASSERT(instanceBuffer); SkASSERT(instanceBuffer->isCpuBuffer() || !static_cast(instanceBuffer)->isMapped()); size_t bufferOffset = baseInstance * static_cast(instanceStride); int attribIdx = fHWProgram->numVertexAttributes(); for (int i = 0; i < fHWProgram->numInstanceAttributes(); ++i, ++attribIdx) { const auto& attrib = fHWProgram->instanceAttribute(i); static constexpr int kDivisor = 1; attribState->set(this, attrib.fLocation, instanceBuffer, attrib.fCPUType, attrib.fGPUType, instanceStride, bufferOffset + attrib.fOffset, kDivisor); } } } GrGLenum GrGLGpu::bindBuffer(GrGpuBufferType type, const GrBuffer* buffer) { this->handleDirtyContext(); // Index buffer state is tied to the vertex array. if (GrGpuBufferType::kIndex == type) { this->bindVertexArray(0); } auto* bufferState = this->hwBufferState(type); if (buffer->isCpuBuffer()) { if (!bufferState->fBufferZeroKnownBound) { GL_CALL(BindBuffer(bufferState->fGLTarget, 0)); bufferState->fBufferZeroKnownBound = true; bufferState->fBoundBufferUniqueID.makeInvalid(); } } else if (static_cast(buffer)->uniqueID() != bufferState->fBoundBufferUniqueID) { const GrGLBuffer* glBuffer = static_cast(buffer); GL_CALL(BindBuffer(bufferState->fGLTarget, glBuffer->bufferID())); bufferState->fBufferZeroKnownBound = false; bufferState->fBoundBufferUniqueID = glBuffer->uniqueID(); } return bufferState->fGLTarget; } void GrGLGpu::disableScissor() { if (kNo_TriState != fHWScissorSettings.fEnabled) { GL_CALL(Disable(GR_GL_SCISSOR_TEST)); fHWScissorSettings.fEnabled = kNo_TriState; return; } } void GrGLGpu::clear(const GrFixedClip& clip, const SkPMColor4f& color, GrRenderTarget* target, GrSurfaceOrigin origin) { // parent class should never let us get here with no RT SkASSERT(target); SkASSERT(!this->caps()->performColorClearsAsDraws()); SkASSERT(!clip.scissorEnabled() || !this->caps()->performPartialClearsAsDraws()); this->handleDirtyContext(); GrGLRenderTarget* glRT = static_cast(target); if (clip.scissorEnabled()) { this->flushRenderTarget(glRT, origin, clip.scissorRect()); } else { this->flushRenderTarget(glRT); } this->flushScissor(clip.scissorState(), glRT->getViewport(), origin); this->flushWindowRectangles(clip.windowRectsState(), glRT, origin); this->flushColorWrite(true); GrGLfloat r = color.fR, g = color.fG, b = color.fB, a = color.fA; if (this->glCaps().clearToBoundaryValuesIsBroken() && (1 == r || 0 == r) && (1 == g || 0 == g) && (1 == b || 0 == b) && (1 == a || 0 == a)) { static const GrGLfloat safeAlpha1 = nextafter(1.f, 2.f); static const GrGLfloat safeAlpha0 = nextafter(0.f, -1.f); a = (1 == a) ? safeAlpha1 : safeAlpha0; } this->flushClearColor(r, g, b, a); GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); } void GrGLGpu::clearStencil(GrRenderTarget* target, int clearValue) { SkASSERT(!this->caps()->performStencilClearsAsDraws()); if (!target) { return; } GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment(); // this should only be called internally when we know we have a // stencil buffer. SkASSERT(sb); GrGLRenderTarget* glRT = static_cast(target); this->flushRenderTargetNoColorWrites(glRT); this->disableScissor(); this->disableWindowRectangles(); GL_CALL(StencilMask(0xffffffff)); GL_CALL(ClearStencil(clearValue)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWStencilSettings.invalidate(); if (!clearValue) { sb->cleared(); } } void GrGLGpu::clearStencilClip(const GrFixedClip& clip, bool insideStencilMask, GrRenderTarget* target, GrSurfaceOrigin origin) { SkASSERT(target); SkASSERT(!this->caps()->performStencilClearsAsDraws()); this->handleDirtyContext(); GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment(); // this should only be called internally when we know we have a // stencil buffer. SkASSERT(sb); GrGLint stencilBitCount = sb->bits(); #if 0 SkASSERT(stencilBitCount > 0); GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); #else // we could just clear the clip bit but when we go through // ANGLE a partial stencil mask will cause clears to be // turned into draws. Our contract on GrOpList says that // changing the clip between stencil passes may or may not // zero the client's clip bits. So we just clear the whole thing. static const GrGLint clipStencilMask = ~0; #endif GrGLint value; if (insideStencilMask) { value = (1 << (stencilBitCount - 1)); } else { value = 0; } GrGLRenderTarget* glRT = static_cast(target); this->flushRenderTargetNoColorWrites(glRT); this->flushScissor(clip.scissorState(), glRT->getViewport(), origin); this->flushWindowRectangles(clip.windowRectsState(), glRT, origin); GL_CALL(StencilMask((uint32_t) clipStencilMask)); GL_CALL(ClearStencil(value)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWStencilSettings.invalidate(); } bool GrGLGpu::readPixelsSupported(GrRenderTarget* target, GrPixelConfig readConfig) { #ifdef SK_BUILD_FOR_MAC // Chromium may ask us to read back from locked IOSurfaces. Calling the command buffer's // glGetIntegerv() with GL_IMPLEMENTATION_COLOR_READ_FORMAT/_TYPE causes the command buffer // to make a call to check the framebuffer status which can hang the driver. So in Mac Chromium // we always use a temporary surface to test for read pixels support. // https://www.crbug.com/662802 if (this->glContext().driver() == kChromium_GrGLDriver) { return this->readPixelsSupported(target->config(), readConfig); } #endif auto bindRenderTarget = [this, target]() -> bool { this->flushRenderTargetNoColorWrites(static_cast(target)); return true; }; auto unbindRenderTarget = []{}; auto getIntegerv = [this](GrGLenum query, GrGLint* value) { GR_GL_GetIntegerv(this->glInterface(), query, value); }; GrPixelConfig rtConfig = target->config(); return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget, unbindRenderTarget); } bool GrGLGpu::readPixelsSupported(GrPixelConfig rtConfig, GrPixelConfig readConfig) { sk_sp temp; auto bindRenderTarget = [this, rtConfig, &temp]() -> bool { GrSurfaceDesc desc; desc.fConfig = rtConfig; desc.fWidth = desc.fHeight = 16; if (this->glCaps().isConfigRenderable(rtConfig)) { desc.fFlags = kRenderTarget_GrSurfaceFlag; temp = this->createTexture(desc, SkBudgeted::kNo); if (!temp) { return false; } GrGLRenderTarget* glrt = static_cast(temp->asRenderTarget()); this->flushRenderTargetNoColorWrites(glrt); return true; } else if (this->glCaps().canConfigBeFBOColorAttachment(rtConfig)) { temp = this->createTexture(desc, SkBudgeted::kNo); if (!temp) { return false; } GrGLIRect vp; this->bindSurfaceFBOForPixelOps(temp.get(), GR_GL_FRAMEBUFFER, &vp, kDst_TempFBOTarget); fHWBoundRenderTargetUniqueID.makeInvalid(); return true; } return false; }; auto unbindRenderTarget = [this, &temp]() { this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, temp.get()); }; auto getIntegerv = [this](GrGLenum query, GrGLint* value) { GR_GL_GetIntegerv(this->glInterface(), query, value); }; return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget, unbindRenderTarget); } bool GrGLGpu::readPixelsSupported(GrSurface* surfaceForConfig, GrPixelConfig readConfig) { if (GrRenderTarget* rt = surfaceForConfig->asRenderTarget()) { return this->readPixelsSupported(rt, readConfig); } else { GrPixelConfig config = surfaceForConfig->config(); return this->readPixelsSupported(config, readConfig); } } bool GrGLGpu::onReadPixels(GrSurface* surface, int left, int top, int width, int height, GrColorType dstColorType, void* buffer, size_t rowBytes) { SkASSERT(surface); GrGLRenderTarget* renderTarget = static_cast(surface->asRenderTarget()); if (!renderTarget && !this->glCaps().canConfigBeFBOColorAttachment(surface->config())) { return false; } // TODO: Avoid this conversion by making GrGLCaps work with color types. auto dstAsConfig = GrColorTypeToPixelConfig(dstColorType, GrSRGBEncoded::kNo); if (!this->readPixelsSupported(surface, dstAsConfig)) { return false; } GrGLenum externalFormat; GrGLenum externalType; if (!this->glCaps().getReadPixelsFormat(surface->config(), dstAsConfig, &externalFormat, &externalType)) { return false; } GrGLIRect glvp; if (renderTarget) { // resolve the render target if necessary switch (renderTarget->getResolveType()) { case GrGLRenderTarget::kCantResolve_ResolveType: return false; case GrGLRenderTarget::kAutoResolves_ResolveType: this->flushRenderTargetNoColorWrites(renderTarget); break; case GrGLRenderTarget::kCanResolve_ResolveType: this->onResolveRenderTarget(renderTarget); // we don't track the state of the READ FBO ID. this->bindFramebuffer(GR_GL_READ_FRAMEBUFFER, renderTarget->textureFBOID()); break; default: SK_ABORT("Unknown resolve type"); } glvp = renderTarget->getViewport(); } else { // Use a temporary FBO. this->bindSurfaceFBOForPixelOps(surface, GR_GL_FRAMEBUFFER, &glvp, kSrc_TempFBOTarget); fHWBoundRenderTargetUniqueID.makeInvalid(); } // the read rect is viewport-relative GrGLIRect readRect; readRect.setRelativeTo(glvp, left, top, width, height, kTopLeft_GrSurfaceOrigin); int bytesPerPixel = GrBytesPerPixel(dstAsConfig); size_t tightRowBytes = bytesPerPixel * width; size_t readDstRowBytes = tightRowBytes; void* readDst = buffer; // determine if GL can read using the passed rowBytes or if we need a scratch buffer. SkAutoSMalloc<32 * sizeof(GrColor)> scratch; if (rowBytes != tightRowBytes) { if (this->glCaps().packRowLengthSupport() && !(rowBytes % bytesPerPixel)) { GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, static_cast(rowBytes / bytesPerPixel))); readDstRowBytes = rowBytes; } else { scratch.reset(tightRowBytes * height); readDst = scratch.get(); } } GL_CALL(PixelStorei(GR_GL_PACK_ALIGNMENT, config_alignment(dstAsConfig))); bool reattachStencil = false; if (this->glCaps().detachStencilFromMSAABuffersBeforeReadPixels() && renderTarget && renderTarget->renderTargetPriv().getStencilAttachment() && renderTarget->numColorSamples() > 1) { // Fix Adreno devices that won't read from MSAA framebuffers with stencil attached reattachStencil = true; GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, readRect.fWidth, readRect.fHeight, externalFormat, externalType, readDst)); if (reattachStencil) { GrGLStencilAttachment* stencilAttachment = static_cast( renderTarget->renderTargetPriv().getStencilAttachment()); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, stencilAttachment->renderbufferID())); } if (readDstRowBytes != tightRowBytes) { SkASSERT(this->glCaps().packRowLengthSupport()); GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (readDst != buffer) { SkASSERT(readDst != buffer); SkASSERT(rowBytes != tightRowBytes); const char* src = reinterpret_cast(readDst); char* dst = reinterpret_cast(buffer); SkRectMemcpy(dst, rowBytes, src, readDstRowBytes, tightRowBytes, height); } if (!renderTarget) { this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, surface); } return true; } GrGpuRTCommandBuffer* GrGLGpu::getCommandBuffer( GrRenderTarget* rt, GrSurfaceOrigin origin, const SkRect& bounds, const GrGpuRTCommandBuffer::LoadAndStoreInfo& colorInfo, const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo& stencilInfo) { if (!fCachedRTCommandBuffer) { fCachedRTCommandBuffer.reset(new GrGLGpuRTCommandBuffer(this)); } fCachedRTCommandBuffer->set(rt, origin, colorInfo, stencilInfo); return fCachedRTCommandBuffer.get(); } GrGpuTextureCommandBuffer* GrGLGpu::getCommandBuffer(GrTexture* texture, GrSurfaceOrigin origin) { if (!fCachedTexCommandBuffer) { fCachedTexCommandBuffer.reset(new GrGLGpuTextureCommandBuffer(this)); } fCachedTexCommandBuffer->set(texture, origin); return fCachedTexCommandBuffer.get(); } void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, GrSurfaceOrigin origin, const SkIRect& bounds) { this->flushRenderTargetNoColorWrites(target); this->didWriteToSurface(target, origin, &bounds); } void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target) { this->flushRenderTargetNoColorWrites(target); this->didWriteToSurface(target, kTopLeft_GrSurfaceOrigin, nullptr); } void GrGLGpu::flushRenderTargetNoColorWrites(GrGLRenderTarget* target) { SkASSERT(target); GrGpuResource::UniqueID rtID = target->uniqueID(); if (fHWBoundRenderTargetUniqueID != rtID) { this->bindFramebuffer(GR_GL_FRAMEBUFFER, target->renderFBOID()); #ifdef SK_DEBUG // don't do this check in Chromium -- this is causing // lots of repeated command buffer flushes when the compositor is // rendering with Ganesh, which is really slow; even too slow for // Debug mode. if (kChromium_GrGLDriver != this->glContext().driver()) { GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { SkDebugf("GrGLGpu::flushRenderTarget glCheckFramebufferStatus %x\n", status); } } #endif fHWBoundRenderTargetUniqueID = rtID; this->flushViewport(target->getViewport()); } if (this->glCaps().srgbWriteControl()) { this->flushFramebufferSRGB(GrPixelConfigIsSRGB(target->config())); } } void GrGLGpu::flushFramebufferSRGB(bool enable) { if (enable && kYes_TriState != fHWSRGBFramebuffer) { GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB)); fHWSRGBFramebuffer = kYes_TriState; } else if (!enable && kNo_TriState != fHWSRGBFramebuffer) { GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB)); fHWSRGBFramebuffer = kNo_TriState; } } void GrGLGpu::flushViewport(const GrGLIRect& viewport) { if (fHWViewport != viewport) { viewport.pushToGLViewport(this->glInterface()); fHWViewport = viewport; } } #define SWAP_PER_DRAW 0 #if SWAP_PER_DRAW #if defined(SK_BUILD_FOR_MAC) #include #elif defined(SK_BUILD_FOR_WIN) #include void SwapBuf() { DWORD procID = GetCurrentProcessId(); HWND hwnd = GetTopWindow(GetDesktopWindow()); while(hwnd) { DWORD wndProcID = 0; GetWindowThreadProcessId(hwnd, &wndProcID); if(wndProcID == procID) { SwapBuffers(GetDC(hwnd)); } hwnd = GetNextWindow(hwnd, GW_HWNDNEXT); } } #endif #endif void GrGLGpu::draw(GrRenderTarget* renderTarget, GrSurfaceOrigin origin, const GrPrimitiveProcessor& primProc, const GrPipeline& pipeline, const GrPipeline::FixedDynamicState* fixedDynamicState, const GrPipeline::DynamicStateArrays* dynamicStateArrays, const GrMesh meshes[], int meshCount) { this->handleDirtyContext(); bool hasPoints = false; for (int i = 0; i < meshCount; ++i) { if (meshes[i].primitiveType() == GrPrimitiveType::kPoints) { hasPoints = true; break; } } if (!this->flushGLState(renderTarget, origin, primProc, pipeline, fixedDynamicState, dynamicStateArrays, meshCount, hasPoints)) { return; } bool dynamicScissor = false; bool dynamicPrimProcTextures = false; if (dynamicStateArrays) { dynamicScissor = pipeline.isScissorEnabled() && dynamicStateArrays->fScissorRects; dynamicPrimProcTextures = dynamicStateArrays->fPrimitiveProcessorTextures; } for (int m = 0; m < meshCount; ++m) { if (GrXferBarrierType barrierType = pipeline.xferBarrierType(renderTarget->asTexture(), *this->caps())) { this->xferBarrier(renderTarget, barrierType); } if (dynamicScissor) { GrGLRenderTarget* glRT = static_cast(renderTarget); this->flushScissor(GrScissorState(dynamicStateArrays->fScissorRects[m]), glRT->getViewport(), origin); } if (dynamicPrimProcTextures) { auto texProxyArray = dynamicStateArrays->fPrimitiveProcessorTextures + m * primProc.numTextureSamplers(); fHWProgram->updatePrimitiveProcessorTextureBindings(primProc, texProxyArray); } if (this->glCaps().requiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines() && GrIsPrimTypeLines(meshes[m].primitiveType()) && !GrIsPrimTypeLines(fLastPrimitiveType)) { GL_CALL(Enable(GR_GL_CULL_FACE)); GL_CALL(Disable(GR_GL_CULL_FACE)); } meshes[m].sendToGpu(this); fLastPrimitiveType = meshes[m].primitiveType(); } #if SWAP_PER_DRAW glFlush(); #if defined(SK_BUILD_FOR_MAC) aglSwapBuffers(aglGetCurrentContext()); int set_a_break_pt_here = 9; aglSwapBuffers(aglGetCurrentContext()); #elif defined(SK_BUILD_FOR_WIN) SwapBuf(); int set_a_break_pt_here = 9; SwapBuf(); #endif #endif } static GrGLenum gr_primitive_type_to_gl_mode(GrPrimitiveType primitiveType) { switch (primitiveType) { case GrPrimitiveType::kTriangles: return GR_GL_TRIANGLES; case GrPrimitiveType::kTriangleStrip: return GR_GL_TRIANGLE_STRIP; case GrPrimitiveType::kPoints: return GR_GL_POINTS; case GrPrimitiveType::kLines: return GR_GL_LINES; case GrPrimitiveType::kLineStrip: return GR_GL_LINE_STRIP; case GrPrimitiveType::kLinesAdjacency: return GR_GL_LINES_ADJACENCY; } SK_ABORT("invalid GrPrimitiveType"); return GR_GL_TRIANGLES; } void GrGLGpu::sendMeshToGpu(GrPrimitiveType primitiveType, const GrBuffer* vertexBuffer, int vertexCount, int baseVertex) { const GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType); if (this->glCaps().drawArraysBaseVertexIsBroken()) { this->setupGeometry(nullptr, vertexBuffer, baseVertex, nullptr, 0, GrPrimitiveRestart::kNo); GL_CALL(DrawArrays(glPrimType, 0, vertexCount)); } else { this->setupGeometry(nullptr, vertexBuffer, 0, nullptr, 0, GrPrimitiveRestart::kNo); GL_CALL(DrawArrays(glPrimType, baseVertex, vertexCount)); } fStats.incNumDraws(); } static const GrGLvoid* element_ptr(const GrBuffer* indexBuffer, int baseIndex) { size_t baseOffset = baseIndex * sizeof(uint16_t); if (indexBuffer->isCpuBuffer()) { return static_cast(indexBuffer)->data() + baseOffset; } else { return reinterpret_cast(baseOffset); } } void GrGLGpu::sendIndexedMeshToGpu(GrPrimitiveType primitiveType, const GrBuffer* indexBuffer, int indexCount, int baseIndex, uint16_t minIndexValue, uint16_t maxIndexValue, const GrBuffer* vertexBuffer, int baseVertex, GrPrimitiveRestart enablePrimitiveRestart) { const GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType); const GrGLvoid* elementPtr = element_ptr(indexBuffer, baseIndex); this->setupGeometry(indexBuffer, vertexBuffer, baseVertex, nullptr, 0, enablePrimitiveRestart); if (this->glCaps().drawRangeElementsSupport()) { GL_CALL(DrawRangeElements(glPrimType, minIndexValue, maxIndexValue, indexCount, GR_GL_UNSIGNED_SHORT, elementPtr)); } else { GL_CALL(DrawElements(glPrimType, indexCount, GR_GL_UNSIGNED_SHORT, elementPtr)); } fStats.incNumDraws(); } void GrGLGpu::sendInstancedMeshToGpu(GrPrimitiveType primitiveType, const GrBuffer* vertexBuffer, int vertexCount, int baseVertex, const GrBuffer* instanceBuffer, int instanceCount, int baseInstance) { GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType); int maxInstances = this->glCaps().maxInstancesPerDrawWithoutCrashing(instanceCount); for (int i = 0; i < instanceCount; i += maxInstances) { this->setupGeometry(nullptr, vertexBuffer, 0, instanceBuffer, baseInstance + i, GrPrimitiveRestart::kNo); GL_CALL(DrawArraysInstanced(glPrimType, baseVertex, vertexCount, SkTMin(instanceCount - i, maxInstances))); fStats.incNumDraws(); } } void GrGLGpu::sendIndexedInstancedMeshToGpu(GrPrimitiveType primitiveType, const GrBuffer* indexBuffer, int indexCount, int baseIndex, const GrBuffer* vertexBuffer, int baseVertex, const GrBuffer* instanceBuffer, int instanceCount, int baseInstance, GrPrimitiveRestart enablePrimitiveRestart) { const GrGLenum glPrimType = gr_primitive_type_to_gl_mode(primitiveType); const GrGLvoid* elementPtr = element_ptr(indexBuffer, baseIndex); int maxInstances = this->glCaps().maxInstancesPerDrawWithoutCrashing(instanceCount); for (int i = 0; i < instanceCount; i += maxInstances) { this->setupGeometry(indexBuffer, vertexBuffer, baseVertex, instanceBuffer, baseInstance + i, enablePrimitiveRestart); GL_CALL(DrawElementsInstanced(glPrimType, indexCount, GR_GL_UNSIGNED_SHORT, elementPtr, SkTMin(instanceCount - i, maxInstances))); fStats.incNumDraws(); } } void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target) { GrGLRenderTarget* rt = static_cast(target); if (rt->needsResolve()) { // Some extensions automatically resolves the texture when it is read. if (this->glCaps().usesMSAARenderBuffers()) { SkASSERT(rt->textureFBOID() != rt->renderFBOID()); SkASSERT(rt->textureFBOID() != 0 && rt->renderFBOID() != 0); this->bindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID()); this->bindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID()); // make sure we go through flushRenderTarget() since we've modified // the bound DRAW FBO ID. fHWBoundRenderTargetUniqueID.makeInvalid(); const GrGLIRect& vp = rt->getViewport(); const SkIRect dirtyRect = rt->getResolveRect(); // The dirty rect tracked on the RT is always stored in the native coordinates of the // surface. Choose kTopLeft so no adjustments are made static constexpr auto kDirtyRectOrigin = kTopLeft_GrSurfaceOrigin; if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) { // Apple's extension uses the scissor as the blit bounds. GrScissorState scissorState; scissorState.set(dirtyRect); this->flushScissor(scissorState, vp, kDirtyRectOrigin); this->disableWindowRectangles(); GL_CALL(ResolveMultisampleFramebuffer()); } else { int l, b, r, t; if (GrGLCaps::kResolveMustBeFull_BlitFrambufferFlag & this->glCaps().blitFramebufferSupportFlags()) { l = 0; b = 0; r = target->width(); t = target->height(); } else { GrGLIRect rect; rect.setRelativeTo(vp, dirtyRect, kDirtyRectOrigin); l = rect.fLeft; b = rect.fBottom; r = rect.fLeft + rect.fWidth; t = rect.fBottom + rect.fHeight; } // BlitFrameBuffer respects the scissor, so disable it. this->disableScissor(); this->disableWindowRectangles(); GL_CALL(BlitFramebuffer(l, b, r, t, l, b, r, t, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); } } rt->flagAsResolved(); } } namespace { GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { static const GrGLenum gTable[kGrStencilOpCount] = { GR_GL_KEEP, // kKeep GR_GL_ZERO, // kZero GR_GL_REPLACE, // kReplace GR_GL_INVERT, // kInvert GR_GL_INCR_WRAP, // kIncWrap GR_GL_DECR_WRAP, // kDecWrap GR_GL_INCR, // kIncClamp GR_GL_DECR, // kDecClamp }; GR_STATIC_ASSERT(0 == (int)GrStencilOp::kKeep); GR_STATIC_ASSERT(1 == (int)GrStencilOp::kZero); GR_STATIC_ASSERT(2 == (int)GrStencilOp::kReplace); GR_STATIC_ASSERT(3 == (int)GrStencilOp::kInvert); GR_STATIC_ASSERT(4 == (int)GrStencilOp::kIncWrap); GR_STATIC_ASSERT(5 == (int)GrStencilOp::kDecWrap); GR_STATIC_ASSERT(6 == (int)GrStencilOp::kIncClamp); GR_STATIC_ASSERT(7 == (int)GrStencilOp::kDecClamp); SkASSERT(op < (GrStencilOp)kGrStencilOpCount); return gTable[(int)op]; } void set_gl_stencil(const GrGLInterface* gl, const GrStencilSettings::Face& face, GrGLenum glFace) { GrGLenum glFunc = GrToGLStencilFunc(face.fTest); GrGLenum glFailOp = gr_to_gl_stencil_op(face.fFailOp); GrGLenum glPassOp = gr_to_gl_stencil_op(face.fPassOp); GrGLint ref = face.fRef; GrGLint mask = face.fTestMask; GrGLint writeMask = face.fWriteMask; if (GR_GL_FRONT_AND_BACK == glFace) { // we call the combined func just in case separate stencil is not // supported. GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); GR_GL_CALL(gl, StencilMask(writeMask)); GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp)); } else { GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp)); } } } void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings) { if (stencilSettings.isDisabled()) { this->disableStencil(); } else if (fHWStencilSettings != stencilSettings) { if (kYes_TriState != fHWStencilTestEnabled) { GL_CALL(Enable(GR_GL_STENCIL_TEST)); fHWStencilTestEnabled = kYes_TriState; } if (stencilSettings.isTwoSided()) { set_gl_stencil(this->glInterface(), stencilSettings.front(), GR_GL_FRONT); set_gl_stencil(this->glInterface(), stencilSettings.back(), GR_GL_BACK); } else { set_gl_stencil(this->glInterface(), stencilSettings.front(), GR_GL_FRONT_AND_BACK); } fHWStencilSettings = stencilSettings; } } void GrGLGpu::disableStencil() { if (kNo_TriState != fHWStencilTestEnabled) { GL_CALL(Disable(GR_GL_STENCIL_TEST)); fHWStencilTestEnabled = kNo_TriState; fHWStencilSettings.invalidate(); } } void GrGLGpu::flushHWAAState(GrRenderTarget* rt, bool useHWAA) { // rt is only optional if useHWAA is false. SkASSERT(rt || !useHWAA); SkASSERT(!useHWAA || rt->isStencilBufferMultisampled()); if (this->caps()->multisampleDisableSupport()) { if (useHWAA) { if (kYes_TriState != fMSAAEnabled) { GL_CALL(Enable(GR_GL_MULTISAMPLE)); fMSAAEnabled = kYes_TriState; } } else { if (kNo_TriState != fMSAAEnabled) { GL_CALL(Disable(GR_GL_MULTISAMPLE)); fMSAAEnabled = kNo_TriState; } } } } void GrGLGpu::flushBlend(const GrXferProcessor::BlendInfo& blendInfo, const GrSwizzle& swizzle) { // Any optimization to disable blending should have already been applied and // tweaked the equation to "add" or "subtract", and the coeffs to (1, 0). GrBlendEquation equation = blendInfo.fEquation; GrBlendCoeff srcCoeff = blendInfo.fSrcBlend; GrBlendCoeff dstCoeff = blendInfo.fDstBlend; bool blendOff = ((kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) && kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff) || !blendInfo.fWriteColor; if (blendOff) { if (kNo_TriState != fHWBlendState.fEnabled) { GL_CALL(Disable(GR_GL_BLEND)); // Workaround for the ARM KHR_blend_equation_advanced blacklist issue // https://code.google.com/p/skia/issues/detail?id=3943 if (kARM_GrGLVendor == this->ctxInfo().vendor() && GrBlendEquationIsAdvanced(fHWBlendState.fEquation)) { SkASSERT(this->caps()->advancedBlendEquationSupport()); // Set to any basic blending equation. GrBlendEquation blend_equation = kAdd_GrBlendEquation; GL_CALL(BlendEquation(gXfermodeEquation2Blend[blend_equation])); fHWBlendState.fEquation = blend_equation; } fHWBlendState.fEnabled = kNo_TriState; } return; } if (kYes_TriState != fHWBlendState.fEnabled) { GL_CALL(Enable(GR_GL_BLEND)); fHWBlendState.fEnabled = kYes_TriState; } if (fHWBlendState.fEquation != equation) { GL_CALL(BlendEquation(gXfermodeEquation2Blend[equation])); fHWBlendState.fEquation = equation; } if (GrBlendEquationIsAdvanced(equation)) { SkASSERT(this->caps()->advancedBlendEquationSupport()); // Advanced equations have no other blend state. return; } if (fHWBlendState.fSrcCoeff != srcCoeff || fHWBlendState.fDstCoeff != dstCoeff) { GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], gXfermodeCoeff2Blend[dstCoeff])); fHWBlendState.fSrcCoeff = srcCoeff; fHWBlendState.fDstCoeff = dstCoeff; } if ((BlendCoeffReferencesConstant(srcCoeff) || BlendCoeffReferencesConstant(dstCoeff))) { SkPMColor4f blendConst = swizzle.applyTo(blendInfo.fBlendConstant); if (!fHWBlendState.fConstColorValid || fHWBlendState.fConstColor != blendConst) { GL_CALL(BlendColor(blendConst.fR, blendConst.fG, blendConst.fB, blendConst.fA)); fHWBlendState.fConstColor = blendConst; fHWBlendState.fConstColorValid = true; } } } static void get_gl_swizzle_values(const GrSwizzle& swizzle, GrGLenum glValues[4]) { for (int i = 0; i < 4; ++i) { switch (swizzle[i]) { case 'r': glValues[i] = GR_GL_RED; break; case 'g': glValues[i] = GR_GL_GREEN; break; case 'b': glValues[i] = GR_GL_BLUE; break; case 'a': glValues[i] = GR_GL_ALPHA; break; case '1': glValues[i] = GR_GL_ONE; break; default: SK_ABORT("Unsupported component"); } } } void GrGLGpu::bindTexture(int unitIdx, GrSamplerState samplerState, GrGLTexture* texture) { SkASSERT(texture); #ifdef SK_DEBUG if (!this->caps()->npotTextureTileSupport()) { if (samplerState.isRepeated()) { const int w = texture->width(); const int h = texture->height(); SkASSERT(SkIsPow2(w) && SkIsPow2(h)); } } #endif // If we created a rt/tex and rendered to it without using a texture and now we're texturing // from the rt it will still be the last bound texture, but it needs resolving. So keep this // out of the "last != next" check. GrGLRenderTarget* texRT = static_cast(texture->asRenderTarget()); if (texRT) { this->onResolveRenderTarget(texRT); } GrGpuResource::UniqueID textureID = texture->uniqueID(); GrGLenum target = texture->target(); if (fHWTextureUnitBindings[unitIdx].boundID(target) != textureID) { this->setTextureUnit(unitIdx); GL_CALL(BindTexture(target, texture->textureID())); fHWTextureUnitBindings[unitIdx].setBoundID(target, textureID); } if (samplerState.filter() == GrSamplerState::Filter::kMipMap) { if (!this->caps()->mipMapSupport() || texture->texturePriv().mipMapped() == GrMipMapped::kNo) { samplerState.setFilterMode(GrSamplerState::Filter::kBilerp); } } #ifdef SK_DEBUG // We were supposed to ensure MipMaps were up-to-date before getting here. if (samplerState.filter() == GrSamplerState::Filter::kMipMap) { SkASSERT(!texture->texturePriv().mipMapsAreDirty()); } #endif ResetTimestamp timestamp = texture->getCachedParamsTimestamp(); bool setAll = timestamp < this->getResetTimestamp(); const GrGLTexture::SamplerParams* samplerParamsToRecord = nullptr; GrGLTexture::SamplerParams newSamplerParams; if (fSamplerObjectCache) { fSamplerObjectCache->bindSampler(unitIdx, samplerState); } else { const GrGLTexture::SamplerParams& oldSamplerParams = texture->getCachedSamplerParams(); samplerParamsToRecord = &newSamplerParams; newSamplerParams.fMinFilter = filter_to_gl_min_filter(samplerState.filter()); newSamplerParams.fMagFilter = filter_to_gl_mag_filter(samplerState.filter()); newSamplerParams.fWrapS = wrap_mode_to_gl_wrap(samplerState.wrapModeX(), this->glCaps()); newSamplerParams.fWrapT = wrap_mode_to_gl_wrap(samplerState.wrapModeY(), this->glCaps()); // These are the OpenGL default values. newSamplerParams.fMinLOD = -1000.f; newSamplerParams.fMaxLOD = 1000.f; if (setAll || newSamplerParams.fMagFilter != oldSamplerParams.fMagFilter) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, newSamplerParams.fMagFilter)); } if (setAll || newSamplerParams.fMinFilter != oldSamplerParams.fMinFilter) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, newSamplerParams.fMinFilter)); } if (this->glCaps().mipMapLevelAndLodControlSupport()) { if (setAll || newSamplerParams.fMinLOD != oldSamplerParams.fMinLOD) { this->setTextureUnit(unitIdx); GL_CALL(TexParameterf(target, GR_GL_TEXTURE_MIN_LOD, newSamplerParams.fMinLOD)); } if (setAll || newSamplerParams.fMaxLOD != oldSamplerParams.fMaxLOD) { this->setTextureUnit(unitIdx); GL_CALL(TexParameterf(target, GR_GL_TEXTURE_MAX_LOD, newSamplerParams.fMaxLOD)); } } if (setAll || newSamplerParams.fWrapS != oldSamplerParams.fWrapS) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_S, newSamplerParams.fWrapS)); } if (setAll || newSamplerParams.fWrapT != oldSamplerParams.fWrapT) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_T, newSamplerParams.fWrapT)); } if (this->glCaps().clampToBorderSupport()) { // Make sure the border color is transparent black (the default) if (setAll || oldSamplerParams.fBorderColorInvalid) { this->setTextureUnit(unitIdx); static const GrGLfloat kTransparentBlack[4] = {0.f, 0.f, 0.f, 0.f}; GL_CALL(TexParameterfv(target, GR_GL_TEXTURE_BORDER_COLOR, kTransparentBlack)); } } } GrGLTexture::NonSamplerParams newNonSamplerParams; newNonSamplerParams.fBaseMipMapLevel = 0; newNonSamplerParams.fMaxMipMapLevel = texture->texturePriv().maxMipMapLevel(); const GrGLTexture::NonSamplerParams& oldNonSamplerParams = texture->getCachedNonSamplerParams(); if (this->glCaps().textureSwizzleSupport()) { auto swizzle = this->glCaps().configSwizzle(texture->config()); newNonSamplerParams.fSwizzleKey = swizzle.asKey(); if (setAll || swizzle.asKey() != oldNonSamplerParams.fSwizzleKey) { GrGLenum glValues[4]; get_gl_swizzle_values(swizzle, glValues); this->setTextureUnit(unitIdx); if (this->glStandard() == kGLES_GrGLStandard) { // ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA. GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_R, glValues[0])); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_G, glValues[1])); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_B, glValues[2])); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_A, glValues[3])); } else { GR_STATIC_ASSERT(sizeof(glValues[0]) == sizeof(GrGLint)); GL_CALL(TexParameteriv(target, GR_GL_TEXTURE_SWIZZLE_RGBA, reinterpret_cast(glValues))); } } } // These are not supported in ES2 contexts if (this->glCaps().mipMapLevelAndLodControlSupport() && (texture->texturePriv().textureType() != GrTextureType::kExternal || !this->glCaps().dontSetBaseOrMaxLevelForExternalTextures())) { if (newNonSamplerParams.fBaseMipMapLevel != oldNonSamplerParams.fBaseMipMapLevel) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_BASE_LEVEL, newNonSamplerParams.fBaseMipMapLevel)); } if (newNonSamplerParams.fMaxMipMapLevel != oldNonSamplerParams.fMaxMipMapLevel) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LEVEL, newNonSamplerParams.fMaxMipMapLevel)); } } texture->setCachedParams(samplerParamsToRecord, newNonSamplerParams, this->getResetTimestamp()); } void GrGLGpu::onResetTextureBindings() { static constexpr GrGLenum kTargets[] = {GR_GL_TEXTURE_2D, GR_GL_TEXTURE_RECTANGLE, GR_GL_TEXTURE_EXTERNAL}; for (int i = 0; i < this->numTextureUnits(); ++i) { this->setTextureUnit(i); for (auto target : kTargets) { if (fHWTextureUnitBindings[i].hasBeenModified(target)) { GL_CALL(BindTexture(target, 0)); } } fHWTextureUnitBindings[i].invalidateAllTargets(true); } } void GrGLGpu::flushColorWrite(bool writeColor) { if (!writeColor) { if (kNo_TriState != fHWWriteToColor) { GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE, GR_GL_FALSE, GR_GL_FALSE)); fHWWriteToColor = kNo_TriState; } } else { if (kYes_TriState != fHWWriteToColor) { GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWWriteToColor = kYes_TriState; } } } void GrGLGpu::flushClearColor(GrGLfloat r, GrGLfloat g, GrGLfloat b, GrGLfloat a) { if (r != fHWClearColor[0] || g != fHWClearColor[1] || b != fHWClearColor[2] || a != fHWClearColor[3]) { GL_CALL(ClearColor(r, g, b, a)); fHWClearColor[0] = r; fHWClearColor[1] = g; fHWClearColor[2] = b; fHWClearColor[3] = a; } } void GrGLGpu::setTextureUnit(int unit) { SkASSERT(unit >= 0 && unit < this->numTextureUnits()); if (unit != fHWActiveTextureUnitIdx) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); fHWActiveTextureUnitIdx = unit; } } void GrGLGpu::bindTextureToScratchUnit(GrGLenum target, GrGLint textureID) { // Bind the last texture unit since it is the least likely to be used by GrGLProgram. int lastUnitIdx = this->numTextureUnits() - 1; if (lastUnitIdx != fHWActiveTextureUnitIdx) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx)); fHWActiveTextureUnitIdx = lastUnitIdx; } // Clear out the this field so that if a GrGLProgram does use this unit it will rebind the // correct texture. fHWTextureUnitBindings[lastUnitIdx].invalidateForScratchUse(target); GL_CALL(BindTexture(target, textureID)); } // Determines whether glBlitFramebuffer could be used between src and dst by onCopySurface. static inline bool can_blit_framebuffer_for_copy_surface( const GrSurface* dst, GrSurfaceOrigin dstOrigin, const GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint, const GrGLCaps& caps) { int dstSampleCnt = 0; int srcSampleCnt = 0; if (const GrRenderTarget* rt = dst->asRenderTarget()) { dstSampleCnt = rt->numColorSamples(); } if (const GrRenderTarget* rt = src->asRenderTarget()) { srcSampleCnt = rt->numColorSamples(); } SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTarget())); SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTarget())); const GrGLTexture* dstTex = static_cast(dst->asTexture()); const GrGLTexture* srcTex = static_cast(src->asTexture()); bool dstIsGLTexture2D = dstTex ? GR_GL_TEXTURE_2D == dstTex->target() : false; bool srcIsGLTexture2D = srcTex ? GR_GL_TEXTURE_2D == srcTex->target() : false; return caps.canCopyAsBlit(dst->config(), dstSampleCnt, SkToBool(dstTex), dstIsGLTexture2D, dstOrigin, src->config(), srcSampleCnt, SkToBool(srcTex), srcIsGLTexture2D, srcOrigin, src->getBoundsRect(), srcRect, dstPoint); } static bool rt_has_msaa_render_buffer(const GrGLRenderTarget* rt, const GrGLCaps& glCaps) { // A RT has a separate MSAA renderbuffer if: // 1) It's multisampled // 2) We're using an extension with separate MSAA renderbuffers // 3) It's not FBO 0, which is special and always auto-resolves return rt->numColorSamples() > 1 && glCaps.usesMSAARenderBuffers() && rt->renderFBOID() != 0; } static inline bool can_copy_texsubimage(const GrSurface* dst, GrSurfaceOrigin dstOrigin, const GrSurface* src, GrSurfaceOrigin srcOrigin, const GrGLCaps& caps) { const GrGLRenderTarget* dstRT = static_cast(dst->asRenderTarget()); const GrGLRenderTarget* srcRT = static_cast(src->asRenderTarget()); const GrGLTexture* dstTex = static_cast(dst->asTexture()); const GrGLTexture* srcTex = static_cast(src->asTexture()); bool dstHasMSAARenderBuffer = dstRT ? rt_has_msaa_render_buffer(dstRT, caps) : false; bool srcHasMSAARenderBuffer = srcRT ? rt_has_msaa_render_buffer(srcRT, caps) : false; bool dstIsGLTexture2D = dstTex ? GR_GL_TEXTURE_2D == dstTex->target() : false; bool srcIsGLTexture2D = srcTex ? GR_GL_TEXTURE_2D == srcTex->target() : false; return caps.canCopyTexSubImage(dst->config(), dstHasMSAARenderBuffer, SkToBool(dstTex), dstIsGLTexture2D, dstOrigin, src->config(), srcHasMSAARenderBuffer, SkToBool(srcTex), srcIsGLTexture2D, srcOrigin); } // If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is // relative to is output. void GrGLGpu::bindSurfaceFBOForPixelOps(GrSurface* surface, GrGLenum fboTarget, GrGLIRect* viewport, TempFBOTarget tempFBOTarget) { GrGLRenderTarget* rt = static_cast(surface->asRenderTarget()); if (!rt) { SkASSERT(surface->asTexture()); GrGLTexture* texture = static_cast(surface->asTexture()); GrGLuint texID = texture->textureID(); GrGLenum target = texture->target(); GrGLuint* tempFBOID; tempFBOID = kSrc_TempFBOTarget == tempFBOTarget ? &fTempSrcFBOID : &fTempDstFBOID; if (0 == *tempFBOID) { GR_GL_CALL(this->glInterface(), GenFramebuffers(1, tempFBOID)); } this->bindFramebuffer(fboTarget, *tempFBOID); GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, GR_GL_COLOR_ATTACHMENT0, target, texID, 0)); texture->baseLevelWasBoundToFBO(); viewport->fLeft = 0; viewport->fBottom = 0; viewport->fWidth = surface->width(); viewport->fHeight = surface->height(); } else { this->bindFramebuffer(fboTarget, rt->renderFBOID()); *viewport = rt->getViewport(); } } void GrGLGpu::unbindTextureFBOForPixelOps(GrGLenum fboTarget, GrSurface* surface) { // bindSurfaceFBOForPixelOps temporarily binds textures that are not render targets to if (!surface->asRenderTarget()) { SkASSERT(surface->asTexture()); GrGLenum textureTarget = static_cast(surface->asTexture())->target(); GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, GR_GL_COLOR_ATTACHMENT0, textureTarget, 0, 0)); } } void GrGLGpu::onFBOChanged() { if (this->caps()->workarounds().flush_on_framebuffer_change || this->caps()->workarounds().restore_scissor_on_fbo_change) { GL_CALL(Flush()); } } void GrGLGpu::bindFramebuffer(GrGLenum target, GrGLuint fboid) { fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(target, fboid)); if (target == GR_GL_FRAMEBUFFER || target == GR_GL_DRAW_FRAMEBUFFER) { fBoundDrawFramebuffer = fboid; } if (this->caps()->workarounds().restore_scissor_on_fbo_change) { // The driver forgets the correct scissor when modifying the FBO binding. if (!fHWScissorSettings.fRect.isInvalid()) { fHWScissorSettings.fRect.pushToGLScissor(this->glInterface()); } } this->onFBOChanged(); } void GrGLGpu::deleteFramebuffer(GrGLuint fboid) { if (fboid == fBoundDrawFramebuffer && this->caps()->workarounds().unbind_attachments_on_bound_render_fbo_delete) { // This workaround only applies to deleting currently bound framebuffers // on Adreno 420. Because this is a somewhat rare case, instead of // tracking all the attachments of every framebuffer instead just always // unbind all attachments. GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_RENDERBUFFER, 0)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } GL_CALL(DeleteFramebuffers(1, &fboid)); // Deleting the currently bound framebuffer rebinds to 0. if (fboid == fBoundDrawFramebuffer) { this->onFBOChanged(); } } bool GrGLGpu::onCopySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint, bool canDiscardOutsideDstRect) { // None of our copy methods can handle a swizzle. TODO: Make copySurfaceAsDraw handle the // swizzle. if (this->caps()->shaderCaps()->configOutputSwizzle(src->config()) != this->caps()->shaderCaps()->configOutputSwizzle(dst->config())) { return false; } // Don't prefer copying as a draw if the dst doesn't already have a FBO object. // This implicitly handles this->glCaps().useDrawInsteadOfAllRenderTargetWrites(). bool preferCopy = SkToBool(dst->asRenderTarget()); if (preferCopy && this->glCaps().canCopyAsDraw(dst->config(), SkToBool(src->asTexture()))) { if (this->copySurfaceAsDraw(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint)) { return true; } } if (can_copy_texsubimage(dst, dstOrigin, src, srcOrigin, this->glCaps())) { this->copySurfaceAsCopyTexSubImage(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint); return true; } if (can_blit_framebuffer_for_copy_surface(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint, this->glCaps())) { return this->copySurfaceAsBlitFramebuffer(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint); } if (!preferCopy && this->glCaps().canCopyAsDraw(dst->config(), SkToBool(src->asTexture()))) { if (this->copySurfaceAsDraw(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint)) { return true; } } return false; } bool GrGLGpu::createCopyProgram(GrTexture* srcTex) { TRACE_EVENT0("skia", TRACE_FUNC); int progIdx = TextureToCopyProgramIdx(srcTex); const GrShaderCaps* shaderCaps = this->caps()->shaderCaps(); GrSLType samplerType = GrSLCombinedSamplerTypeForTextureType(srcTex->texturePriv().textureType()); if (!fCopyProgramArrayBuffer) { static const GrGLfloat vdata[] = { 0, 0, 0, 1, 1, 0, 1, 1 }; fCopyProgramArrayBuffer = GrGLBuffer::Make(this, sizeof(vdata), GrGpuBufferType::kVertex, kStatic_GrAccessPattern, vdata); } if (!fCopyProgramArrayBuffer) { return false; } SkASSERT(!fCopyPrograms[progIdx].fProgram); GL_CALL_RET(fCopyPrograms[progIdx].fProgram, CreateProgram()); if (!fCopyPrograms[progIdx].fProgram) { return false; } const char* version = shaderCaps->versionDeclString(); GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::kIn_TypeModifier); GrShaderVar uTexCoordXform("u_texCoordXform", kHalf4_GrSLType, GrShaderVar::kUniform_TypeModifier); GrShaderVar uPosXform("u_posXform", kHalf4_GrSLType, GrShaderVar::kUniform_TypeModifier); GrShaderVar uTexture("u_texture", samplerType, GrShaderVar::kUniform_TypeModifier); GrShaderVar vTexCoord("v_texCoord", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier); GrShaderVar oFragColor("o_FragColor", kHalf4_GrSLType, GrShaderVar::kOut_TypeModifier); SkString vshaderTxt(version); if (shaderCaps->noperspectiveInterpolationSupport()) { if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { vshaderTxt.appendf("#extension %s : require\n", extension); } vTexCoord.addModifier("noperspective"); } aVertex.appendDecl(shaderCaps, &vshaderTxt); vshaderTxt.append(";"); uTexCoordXform.appendDecl(shaderCaps, &vshaderTxt); vshaderTxt.append(";"); uPosXform.appendDecl(shaderCaps, &vshaderTxt); vshaderTxt.append(";"); vTexCoord.appendDecl(shaderCaps, &vshaderTxt); vshaderTxt.append(";"); vshaderTxt.append( "// Copy Program VS\n" "void main() {" " v_texCoord = half2(a_vertex.xy * u_texCoordXform.xy + u_texCoordXform.zw);" " sk_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;" " sk_Position.zw = half2(0, 1);" "}" ); SkString fshaderTxt(version); if (shaderCaps->noperspectiveInterpolationSupport()) { if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { fshaderTxt.appendf("#extension %s : require\n", extension); } } vTexCoord.setTypeModifier(GrShaderVar::kIn_TypeModifier); vTexCoord.appendDecl(shaderCaps, &fshaderTxt); fshaderTxt.append(";"); uTexture.appendDecl(shaderCaps, &fshaderTxt); fshaderTxt.append(";"); fshaderTxt.appendf( "// Copy Program FS\n" "void main() {" " sk_FragColor = texture(u_texture, v_texCoord);" "}" ); const char* str; GrGLint length; str = vshaderTxt.c_str(); length = SkToInt(vshaderTxt.size()); SkSL::Program::Settings settings; settings.fCaps = shaderCaps; SkSL::String glsl; std::unique_ptr program = GrSkSLtoGLSL(*fGLContext, GR_GL_VERTEX_SHADER, &str, &length, 1, settings, &glsl); GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram, GR_GL_VERTEX_SHADER, glsl.c_str(), glsl.size(), &fStats, settings); SkASSERT(program->fInputs.isEmpty()); str = fshaderTxt.c_str(); length = SkToInt(fshaderTxt.size()); program = GrSkSLtoGLSL(*fGLContext, GR_GL_FRAGMENT_SHADER, &str, &length, 1, settings, &glsl); GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram, GR_GL_FRAGMENT_SHADER, glsl.c_str(), glsl.size(), &fStats, settings); SkASSERT(program->fInputs.isEmpty()); GL_CALL(LinkProgram(fCopyPrograms[progIdx].fProgram)); GL_CALL_RET(fCopyPrograms[progIdx].fTextureUniform, GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texture")); GL_CALL_RET(fCopyPrograms[progIdx].fPosXformUniform, GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_posXform")); GL_CALL_RET(fCopyPrograms[progIdx].fTexCoordXformUniform, GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texCoordXform")); GL_CALL(BindAttribLocation(fCopyPrograms[progIdx].fProgram, 0, "a_vertex")); GL_CALL(DeleteShader(vshader)); GL_CALL(DeleteShader(fshader)); return true; } bool GrGLGpu::createMipmapProgram(int progIdx) { const bool oddWidth = SkToBool(progIdx & 0x2); const bool oddHeight = SkToBool(progIdx & 0x1); const int numTaps = (oddWidth ? 2 : 1) * (oddHeight ? 2 : 1); const GrShaderCaps* shaderCaps = this->caps()->shaderCaps(); SkASSERT(!fMipmapPrograms[progIdx].fProgram); GL_CALL_RET(fMipmapPrograms[progIdx].fProgram, CreateProgram()); if (!fMipmapPrograms[progIdx].fProgram) { return false; } const char* version = shaderCaps->versionDeclString(); GrShaderVar aVertex("a_vertex", kHalf2_GrSLType, GrShaderVar::kIn_TypeModifier); GrShaderVar uTexCoordXform("u_texCoordXform", kHalf4_GrSLType, GrShaderVar::kUniform_TypeModifier); GrShaderVar uTexture("u_texture", kTexture2DSampler_GrSLType, GrShaderVar::kUniform_TypeModifier); // We need 1, 2, or 4 texture coordinates (depending on parity of each dimension): GrShaderVar vTexCoords[] = { GrShaderVar("v_texCoord0", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier), GrShaderVar("v_texCoord1", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier), GrShaderVar("v_texCoord2", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier), GrShaderVar("v_texCoord3", kHalf2_GrSLType, GrShaderVar::kOut_TypeModifier), }; GrShaderVar oFragColor("o_FragColor", kHalf4_GrSLType,GrShaderVar::kOut_TypeModifier); SkString vshaderTxt(version); if (shaderCaps->noperspectiveInterpolationSupport()) { if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { vshaderTxt.appendf("#extension %s : require\n", extension); } vTexCoords[0].addModifier("noperspective"); vTexCoords[1].addModifier("noperspective"); vTexCoords[2].addModifier("noperspective"); vTexCoords[3].addModifier("noperspective"); } aVertex.appendDecl(shaderCaps, &vshaderTxt); vshaderTxt.append(";"); uTexCoordXform.appendDecl(shaderCaps, &vshaderTxt); vshaderTxt.append(";"); for (int i = 0; i < numTaps; ++i) { vTexCoords[i].appendDecl(shaderCaps, &vshaderTxt); vshaderTxt.append(";"); } vshaderTxt.append( "// Mipmap Program VS\n" "void main() {" " sk_Position.xy = a_vertex * half2(2, 2) - half2(1, 1);" " sk_Position.zw = half2(0, 1);" ); // Insert texture coordinate computation: if (oddWidth && oddHeight) { vshaderTxt.append( " v_texCoord0 = a_vertex.xy * u_texCoordXform.yw;" " v_texCoord1 = a_vertex.xy * u_texCoordXform.yw + half2(u_texCoordXform.x, 0);" " v_texCoord2 = a_vertex.xy * u_texCoordXform.yw + half2(0, u_texCoordXform.z);" " v_texCoord3 = a_vertex.xy * u_texCoordXform.yw + u_texCoordXform.xz;" ); } else if (oddWidth) { vshaderTxt.append( " v_texCoord0 = a_vertex.xy * half2(u_texCoordXform.y, 1);" " v_texCoord1 = a_vertex.xy * half2(u_texCoordXform.y, 1) + half2(u_texCoordXform.x, 0);" ); } else if (oddHeight) { vshaderTxt.append( " v_texCoord0 = a_vertex.xy * half2(1, u_texCoordXform.w);" " v_texCoord1 = a_vertex.xy * half2(1, u_texCoordXform.w) + half2(0, u_texCoordXform.z);" ); } else { vshaderTxt.append( " v_texCoord0 = a_vertex.xy;" ); } vshaderTxt.append("}"); SkString fshaderTxt(version); if (shaderCaps->noperspectiveInterpolationSupport()) { if (const char* extension = shaderCaps->noperspectiveInterpolationExtensionString()) { fshaderTxt.appendf("#extension %s : require\n", extension); } } for (int i = 0; i < numTaps; ++i) { vTexCoords[i].setTypeModifier(GrShaderVar::kIn_TypeModifier); vTexCoords[i].appendDecl(shaderCaps, &fshaderTxt); fshaderTxt.append(";"); } uTexture.appendDecl(shaderCaps, &fshaderTxt); fshaderTxt.append(";"); fshaderTxt.append( "// Mipmap Program FS\n" "void main() {" ); if (oddWidth && oddHeight) { fshaderTxt.append( " sk_FragColor = (texture(u_texture, v_texCoord0) + " " texture(u_texture, v_texCoord1) + " " texture(u_texture, v_texCoord2) + " " texture(u_texture, v_texCoord3)) * 0.25;" ); } else if (oddWidth || oddHeight) { fshaderTxt.append( " sk_FragColor = (texture(u_texture, v_texCoord0) + " " texture(u_texture, v_texCoord1)) * 0.5;" ); } else { fshaderTxt.append( " sk_FragColor = texture(u_texture, v_texCoord0);" ); } fshaderTxt.append("}"); const char* str; GrGLint length; str = vshaderTxt.c_str(); length = SkToInt(vshaderTxt.size()); SkSL::Program::Settings settings; settings.fCaps = shaderCaps; SkSL::String glsl; std::unique_ptr program = GrSkSLtoGLSL(*fGLContext, GR_GL_VERTEX_SHADER, &str, &length, 1, settings, &glsl); GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram, GR_GL_VERTEX_SHADER, glsl.c_str(), glsl.size(), &fStats, settings); SkASSERT(program->fInputs.isEmpty()); str = fshaderTxt.c_str(); length = SkToInt(fshaderTxt.size()); program = GrSkSLtoGLSL(*fGLContext, GR_GL_FRAGMENT_SHADER, &str, &length, 1, settings, &glsl); GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fMipmapPrograms[progIdx].fProgram, GR_GL_FRAGMENT_SHADER, glsl.c_str(), glsl.size(), &fStats, settings); SkASSERT(program->fInputs.isEmpty()); GL_CALL(LinkProgram(fMipmapPrograms[progIdx].fProgram)); GL_CALL_RET(fMipmapPrograms[progIdx].fTextureUniform, GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texture")); GL_CALL_RET(fMipmapPrograms[progIdx].fTexCoordXformUniform, GetUniformLocation(fMipmapPrograms[progIdx].fProgram, "u_texCoordXform")); GL_CALL(BindAttribLocation(fMipmapPrograms[progIdx].fProgram, 0, "a_vertex")); GL_CALL(DeleteShader(vshader)); GL_CALL(DeleteShader(fshader)); return true; } bool GrGLGpu::copySurfaceAsDraw(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint) { GrGLTexture* srcTex = static_cast(src->asTexture()); int progIdx = TextureToCopyProgramIdx(srcTex); if (!this->glCaps().canConfigBeFBOColorAttachment(dst->config())) { return false; } if (!fCopyPrograms[progIdx].fProgram) { if (!this->createCopyProgram(srcTex)) { SkDebugf("Failed to create copy program.\n"); return false; } } int w = srcRect.width(); int h = srcRect.height(); this->bindTexture(0, GrSamplerState::ClampNearest(), srcTex); GrGLIRect dstVP; this->bindSurfaceFBOForPixelOps(dst, GR_GL_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget); this->flushViewport(dstVP); fHWBoundRenderTargetUniqueID.makeInvalid(); SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, w, h); this->flushProgram(fCopyPrograms[progIdx].fProgram); fHWVertexArrayState.setVertexArrayID(this, 0); GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this); attribs->enableVertexArrays(this, 1); attribs->set(this, 0, fCopyProgramArrayBuffer.get(), kFloat2_GrVertexAttribType, kFloat2_GrSLType, 2 * sizeof(GrGLfloat), 0); // dst rect edges in NDC (-1 to 1) int dw = dst->width(); int dh = dst->height(); GrGLfloat dx0 = 2.f * dstPoint.fX / dw - 1.f; GrGLfloat dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f; GrGLfloat dy0 = 2.f * dstPoint.fY / dh - 1.f; GrGLfloat dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f; if (kBottomLeft_GrSurfaceOrigin == dstOrigin) { dy0 = -dy0; dy1 = -dy1; } GrGLfloat sx0 = (GrGLfloat)srcRect.fLeft; GrGLfloat sx1 = (GrGLfloat)(srcRect.fLeft + w); GrGLfloat sy0 = (GrGLfloat)srcRect.fTop; GrGLfloat sy1 = (GrGLfloat)(srcRect.fTop + h); int sw = src->width(); int sh = src->height(); if (kBottomLeft_GrSurfaceOrigin == srcOrigin) { sy0 = sh - sy0; sy1 = sh - sy1; } if (srcTex->texturePriv().textureType() != GrTextureType::kRectangle) { // src rect edges in normalized texture space (0 to 1) sx0 /= sw; sx1 /= sw; sy0 /= sh; sy1 /= sh; } GL_CALL(Uniform4f(fCopyPrograms[progIdx].fPosXformUniform, dx1 - dx0, dy1 - dy0, dx0, dy0)); GL_CALL(Uniform4f(fCopyPrograms[progIdx].fTexCoordXformUniform, sx1 - sx0, sy1 - sy0, sx0, sy0)); GL_CALL(Uniform1i(fCopyPrograms[progIdx].fTextureUniform, 0)); GrXferProcessor::BlendInfo blendInfo; blendInfo.reset(); this->flushBlend(blendInfo, GrSwizzle::RGBA()); this->flushColorWrite(true); this->flushHWAAState(nullptr, false); this->disableScissor(); this->disableWindowRectangles(); this->disableStencil(); if (this->glCaps().srgbWriteControl()) { this->flushFramebufferSRGB(true); } GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, dst); this->didWriteToSurface(dst, dstOrigin, &dstRect); return true; } void GrGLGpu::copySurfaceAsCopyTexSubImage(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(can_copy_texsubimage(dst, dstOrigin, src, srcOrigin, this->glCaps())); GrGLIRect srcVP; this->bindSurfaceFBOForPixelOps(src, GR_GL_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget); GrGLTexture* dstTex = static_cast(dst->asTexture()); SkASSERT(dstTex); // We modified the bound FBO fHWBoundRenderTargetUniqueID.makeInvalid(); GrGLIRect srcGLRect; srcGLRect.setRelativeTo(srcVP, srcRect, srcOrigin); this->bindTextureToScratchUnit(dstTex->target(), dstTex->textureID()); GrGLint dstY; if (kBottomLeft_GrSurfaceOrigin == dstOrigin) { dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight); } else { dstY = dstPoint.fY; } GL_CALL(CopyTexSubImage2D(dstTex->target(), 0, dstPoint.fX, dstY, srcGLRect.fLeft, srcGLRect.fBottom, srcGLRect.fWidth, srcGLRect.fHeight)); this->unbindTextureFBOForPixelOps(GR_GL_FRAMEBUFFER, src); SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); this->didWriteToSurface(dst, dstOrigin, &dstRect); } bool GrGLGpu::copySurfaceAsBlitFramebuffer(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(can_blit_framebuffer_for_copy_surface(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint, this->glCaps())); SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); if (dst == src) { if (SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) { return false; } } GrGLIRect dstVP; GrGLIRect srcVP; this->bindSurfaceFBOForPixelOps(dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget); this->bindSurfaceFBOForPixelOps(src, GR_GL_READ_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget); // We modified the bound FBO fHWBoundRenderTargetUniqueID.makeInvalid(); GrGLIRect srcGLRect; GrGLIRect dstGLRect; srcGLRect.setRelativeTo(srcVP, srcRect, srcOrigin); dstGLRect.setRelativeTo(dstVP, dstRect, dstOrigin); // BlitFrameBuffer respects the scissor, so disable it. this->disableScissor(); this->disableWindowRectangles(); GrGLint srcY0; GrGLint srcY1; // Does the blit need to y-mirror or not? if (srcOrigin == dstOrigin) { srcY0 = srcGLRect.fBottom; srcY1 = srcGLRect.fBottom + srcGLRect.fHeight; } else { srcY0 = srcGLRect.fBottom + srcGLRect.fHeight; srcY1 = srcGLRect.fBottom; } GL_CALL(BlitFramebuffer(srcGLRect.fLeft, srcY0, srcGLRect.fLeft + srcGLRect.fWidth, srcY1, dstGLRect.fLeft, dstGLRect.fBottom, dstGLRect.fLeft + dstGLRect.fWidth, dstGLRect.fBottom + dstGLRect.fHeight, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); this->unbindTextureFBOForPixelOps(GR_GL_DRAW_FRAMEBUFFER, dst); this->unbindTextureFBOForPixelOps(GR_GL_READ_FRAMEBUFFER, src); this->didWriteToSurface(dst, dstOrigin, &dstRect); return true; } bool GrGLGpu::onRegenerateMipMapLevels(GrTexture* texture) { auto glTex = static_cast(texture); // Mipmaps are only supported on 2D textures: if (GR_GL_TEXTURE_2D != glTex->target()) { return false; } // Manual implementation of mipmap generation, to work around driver bugs w/sRGB. // Uses draw calls to do a series of downsample operations to successive mips. // The manual approach requires the ability to limit which level we're sampling and that the // destination can be bound to a FBO: if (!this->glCaps().doManualMipmapping() || !this->glCaps().canConfigBeFBOColorAttachment(texture->config())) { GrGLenum target = glTex->target(); this->bindTextureToScratchUnit(target, glTex->textureID()); GL_CALL(GenerateMipmap(glTex->target())); return true; } int width = texture->width(); int height = texture->height(); int levelCount = SkMipMap::ComputeLevelCount(width, height) + 1; SkASSERT(levelCount == texture->texturePriv().maxMipMapLevel() + 1); // Create (if necessary), then bind temporary FBO: if (0 == fTempDstFBOID) { GL_CALL(GenFramebuffers(1, &fTempDstFBOID)); } this->bindFramebuffer(GR_GL_FRAMEBUFFER, fTempDstFBOID); fHWBoundRenderTargetUniqueID.makeInvalid(); // Bind the texture, to get things configured for filtering. // We'll be changing our base level further below: this->setTextureUnit(0); this->bindTexture(0, GrSamplerState::ClampBilerp(), glTex); // Vertex data: if (!fMipmapProgramArrayBuffer) { static const GrGLfloat vdata[] = { 0, 0, 0, 1, 1, 0, 1, 1 }; fMipmapProgramArrayBuffer = GrGLBuffer::Make(this, sizeof(vdata), GrGpuBufferType::kVertex, kStatic_GrAccessPattern, vdata); } if (!fMipmapProgramArrayBuffer) { return false; } fHWVertexArrayState.setVertexArrayID(this, 0); GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this); attribs->enableVertexArrays(this, 1); attribs->set(this, 0, fMipmapProgramArrayBuffer.get(), kFloat2_GrVertexAttribType, kFloat2_GrSLType, 2 * sizeof(GrGLfloat), 0); // Set "simple" state once: GrXferProcessor::BlendInfo blendInfo; blendInfo.reset(); this->flushBlend(blendInfo, GrSwizzle::RGBA()); this->flushColorWrite(true); this->flushHWAAState(nullptr, false); this->disableScissor(); this->disableWindowRectangles(); this->disableStencil(); // Do all the blits: width = texture->width(); height = texture->height(); GrGLIRect viewport; viewport.fLeft = 0; viewport.fBottom = 0; for (GrGLint level = 1; level < levelCount; ++level) { // Get and bind the program for this particular downsample (filter shape can vary): int progIdx = TextureSizeToMipmapProgramIdx(width, height); if (!fMipmapPrograms[progIdx].fProgram) { if (!this->createMipmapProgram(progIdx)) { SkDebugf("Failed to create mipmap program.\n"); // Invalidate all params to cover base level change in a previous iteration. glTex->textureParamsModified(); return false; } } this->flushProgram(fMipmapPrograms[progIdx].fProgram); // Texcoord uniform is expected to contain (1/w, (w-1)/w, 1/h, (h-1)/h) const float invWidth = 1.0f / width; const float invHeight = 1.0f / height; GL_CALL(Uniform4f(fMipmapPrograms[progIdx].fTexCoordXformUniform, invWidth, (width - 1) * invWidth, invHeight, (height - 1) * invHeight)); GL_CALL(Uniform1i(fMipmapPrograms[progIdx].fTextureUniform, 0)); // Only sample from previous mip GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_BASE_LEVEL, level - 1)); GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, glTex->textureID(), level)); width = SkTMax(1, width / 2); height = SkTMax(1, height / 2); viewport.fWidth = width; viewport.fHeight = height; this->flushViewport(viewport); GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); } // Unbind: GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, 0, 0)); // We modified the base level param. GrGLTexture::NonSamplerParams params = glTex->getCachedNonSamplerParams(); params.fBaseMipMapLevel = levelCount - 2; // we drew the 2nd to last level into the last level. glTex->setCachedParams(nullptr, params, this->getResetTimestamp()); return true; } void GrGLGpu::querySampleLocations( GrRenderTarget* renderTarget, const GrStencilSettings& stencilSettings, SkTArray* sampleLocations) { this->flushStencil(stencilSettings); this->flushHWAAState(renderTarget, true); this->flushRenderTarget(static_cast(renderTarget)); int effectiveSampleCnt; GR_GL_GetIntegerv(this->glInterface(), GR_GL_SAMPLES, &effectiveSampleCnt); SkASSERT(effectiveSampleCnt >= renderTarget->numStencilSamples()); sampleLocations->reset(effectiveSampleCnt); for (int i = 0; i < effectiveSampleCnt; ++i) { GL_CALL(GetMultisamplefv(GR_GL_SAMPLE_POSITION, i, &(*sampleLocations)[i].fX)); } } void GrGLGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType type) { SkASSERT(type); switch (type) { case kTexture_GrXferBarrierType: { GrGLRenderTarget* glrt = static_cast(rt); SkASSERT(glrt->textureFBOID() != 0 && glrt->renderFBOID() != 0); if (glrt->textureFBOID() != glrt->renderFBOID()) { // The render target uses separate storage so no need for glTextureBarrier. // FIXME: The render target will resolve automatically when its texture is bound, // but we could resolve only the bounds that will be read if we do it here instead. return; } SkASSERT(this->caps()->textureBarrierSupport()); GL_CALL(TextureBarrier()); return; } case kBlend_GrXferBarrierType: SkASSERT(GrCaps::kAdvanced_BlendEquationSupport == this->caps()->blendEquationSupport()); GL_CALL(BlendBarrier()); return; default: break; // placate compiler warnings that kNone not handled } } #if GR_TEST_UTILS GrBackendTexture GrGLGpu::createTestingOnlyBackendTexture(const void* pixels, int w, int h, GrColorType colorType, bool /*isRT*/, GrMipMapped mipMapped, size_t rowBytes) { this->handleDirtyContext(); GrPixelConfig config = GrColorTypeToPixelConfig(colorType, GrSRGBEncoded::kNo); if (!this->caps()->isConfigTexturable(config)) { return GrBackendTexture(); // invalid } if (w > this->caps()->maxTextureSize() || h > this->caps()->maxTextureSize()) { return GrBackendTexture(); // invalid } // Currently we don't support uploading pixel data when mipped. if (pixels && GrMipMapped::kYes == mipMapped) { return GrBackendTexture(); // invalid } int bpp = GrColorTypeBytesPerPixel(colorType); const size_t trimRowBytes = w * bpp; if (!rowBytes) { rowBytes = trimRowBytes; } GrGLTextureInfo info; info.fTarget = GR_GL_TEXTURE_2D; info.fID = 0; GL_CALL(GenTextures(1, &info.fID)); this->bindTextureToScratchUnit(info.fTarget, info.fID); GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1)); GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE)); GL_CALL(TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE)); // we have to do something special for compressed textures if (GrPixelConfigIsCompressed(config)) { GrGLenum internalFormat; const GrGLInterface* interface = this->glInterface(); const GrGLCaps& caps = this->glCaps(); if (!caps.getCompressedTexImageFormats(config, &internalFormat)) { return GrBackendTexture(); } GrMipLevel mipLevel = { pixels, rowBytes }; if (!allocate_and_populate_compressed_texture(config, *interface, caps, info.fTarget, internalFormat, &mipLevel, 1, w, h)) { return GrBackendTexture(); } } else { bool restoreGLRowLength = false; if (trimRowBytes != rowBytes && this->glCaps().unpackRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowBytes / bpp)); restoreGLRowLength = true; } GrGLenum internalFormat; GrGLenum externalFormat; GrGLenum externalType; if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat, &externalType)) { return GrBackendTexture(); // invalid } info.fFormat = this->glCaps().configSizedInternalFormat(config); this->unbindCpuToGpuXferBuffer(); // Figure out the number of mip levels. int mipLevels = 1; if (GrMipMapped::kYes == mipMapped) { mipLevels = SkMipMap::ComputeLevelCount(w, h) + 1; } size_t baseLayerSize = bpp * w * h; SkAutoMalloc defaultStorage(baseLayerSize); if (!pixels) { // Fill in the texture with all zeros so we don't have random garbage pixels = defaultStorage.get(); memset(defaultStorage.get(), 0, baseLayerSize); } else if (trimRowBytes != rowBytes && !restoreGLRowLength) { // We weren't able to use GR_GL_UNPACK_ROW_LENGTH so make a copy char* copy = (char*)defaultStorage.get(); for (int y = 0; y < h; ++y) { memcpy(©[y*trimRowBytes], &((const char*)pixels)[y*rowBytes], trimRowBytes); } pixels = copy; } int width = w; int height = h; for (int i = 0; i < mipLevels; ++i) { GL_CALL(TexImage2D(info.fTarget, i, internalFormat, width, height, 0, externalFormat, externalType, pixels)); width = SkTMax(1, width / 2); height = SkTMax(1, height / 2); } if (restoreGLRowLength) { GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } } // unbind the texture from the texture unit to avoid asserts GL_CALL(BindTexture(info.fTarget, 0)); GrBackendTexture beTex = GrBackendTexture(w, h, mipMapped, info); // Lots of tests don't go through Skia's public interface which will set the config so for // testing we make sure we set a config here. beTex.setPixelConfig(config); return beTex; } bool GrGLGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const { SkASSERT(GrBackendApi::kOpenGL == tex.backend()); GrGLTextureInfo info; if (!tex.getGLTextureInfo(&info)) { return false; } GrGLboolean result; GL_CALL_RET(result, IsTexture(info.fID)); return (GR_GL_TRUE == result); } void GrGLGpu::deleteTestingOnlyBackendTexture(const GrBackendTexture& tex) { SkASSERT(GrBackendApi::kOpenGL == tex.backend()); GrGLTextureInfo info; if (tex.getGLTextureInfo(&info)) { GL_CALL(DeleteTextures(1, &info.fID)); } } GrBackendRenderTarget GrGLGpu::createTestingOnlyBackendRenderTarget(int w, int h, GrColorType colorType) { if (w > this->caps()->maxRenderTargetSize() || h > this->caps()->maxRenderTargetSize()) { return GrBackendRenderTarget(); // invalid } this->handleDirtyContext(); auto config = GrColorTypeToPixelConfig(colorType, GrSRGBEncoded::kNo); if (!this->glCaps().isConfigRenderable(config)) { return {}; } bool useTexture = false; GrGLenum colorBufferFormat; GrGLenum externalFormat = 0, externalType = 0; if (config == kBGRA_8888_GrPixelConfig && this->glCaps().bgraIsInternalFormat()) { // BGRA render buffers are not supported. this->glCaps().getTexImageFormats(config, config, &colorBufferFormat, &externalFormat, &externalType); useTexture = true; } else { this->glCaps().getRenderbufferFormat(config, &colorBufferFormat); } int sFormatIdx = this->getCompatibleStencilIndex(config); if (sFormatIdx < 0) { return {}; } GrGLuint colorID = 0; GrGLuint stencilID = 0; auto deleteIDs = [&] { if (colorID) { if (useTexture) { GL_CALL(DeleteTextures(1, &colorID)); } else { GL_CALL(DeleteRenderbuffers(1, &colorID)); } } if (stencilID) { GL_CALL(DeleteRenderbuffers(1, &stencilID)); } }; if (useTexture) { GL_CALL(GenTextures(1, &colorID)); } else { GL_CALL(GenRenderbuffers(1, &colorID)); } GL_CALL(GenRenderbuffers(1, &stencilID)); if (!stencilID || !colorID) { deleteIDs(); return {}; } GrGLFramebufferInfo info; info.fFBOID = 0; this->glCaps().getSizedInternalFormat(config, &info.fFormat); GL_CALL(GenFramebuffers(1, &info.fFBOID)); if (!info.fFBOID) { deleteIDs(); return {}; } this->invalidateBoundRenderTarget(); this->bindFramebuffer(GR_GL_FRAMEBUFFER, info.fFBOID); if (useTexture) { this->bindTextureToScratchUnit(GR_GL_TEXTURE_2D, colorID); GL_CALL(TexImage2D(GR_GL_TEXTURE_2D, 0, colorBufferFormat, w, h, 0, externalFormat, externalType, nullptr)); GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, colorID, 0)); } else { GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, colorID)); GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, colorBufferFormat, w, h)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_RENDERBUFFER, colorID)); } GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, stencilID)); auto stencilBufferFormat = this->glCaps().stencilFormats()[sFormatIdx].fInternalFormat; GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, stencilBufferFormat, w, h)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, stencilID)); if (this->glCaps().stencilFormats()[sFormatIdx].fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, stencilID)); } // We don't want to have to recover the renderbuffer/texture IDs later to delete them. OpenGL // has this rule that if a renderbuffer/texture is deleted and a FBO other than the current FBO // has the RB attached then deletion is delayed. So we unbind the FBO here and delete the // renderbuffers/texture. this->bindFramebuffer(GR_GL_FRAMEBUFFER, 0); deleteIDs(); this->bindFramebuffer(GR_GL_FRAMEBUFFER, info.fFBOID); GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (GR_GL_FRAMEBUFFER_COMPLETE != status) { this->deleteFramebuffer(info.fFBOID); return {}; } auto stencilBits = SkToInt(this->glCaps().stencilFormats()[sFormatIdx].fStencilBits); GrBackendRenderTarget beRT = GrBackendRenderTarget(w, h, 1, stencilBits, info); // Lots of tests don't go through Skia's public interface which will set the config so for // testing we make sure we set a config here. beRT.setPixelConfig(config); #ifdef SK_DEBUG SkColorType skColorType = GrColorTypeToSkColorType(colorType); if (skColorType != kUnknown_SkColorType) { SkASSERT(this->caps()->validateBackendRenderTarget( beRT, GrColorTypeToSkColorType(colorType)) != kUnknown_GrPixelConfig); } #endif return beRT; } void GrGLGpu::deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget& backendRT) { SkASSERT(GrBackendApi::kOpenGL == backendRT.backend()); GrGLFramebufferInfo info; if (backendRT.getGLFramebufferInfo(&info)) { if (info.fFBOID) { this->deleteFramebuffer(info.fFBOID); } } } void GrGLGpu::testingOnly_flushGpuAndSync() { GL_CALL(Finish()); } #endif /////////////////////////////////////////////////////////////////////////////// GrGLAttribArrayState* GrGLGpu::HWVertexArrayState::bindInternalVertexArray(GrGLGpu* gpu, const GrBuffer* ibuf) { GrGLAttribArrayState* attribState; if (gpu->glCaps().isCoreProfile()) { if (!fCoreProfileVertexArray) { GrGLuint arrayID; GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID)); int attrCount = gpu->glCaps().maxVertexAttributes(); fCoreProfileVertexArray = new GrGLVertexArray(arrayID, attrCount); } if (ibuf) { attribState = fCoreProfileVertexArray->bindWithIndexBuffer(gpu, ibuf); } else { attribState = fCoreProfileVertexArray->bind(gpu); } } else { if (ibuf) { // bindBuffer implicitly binds VAO 0 when binding an index buffer. gpu->bindBuffer(GrGpuBufferType::kIndex, ibuf); } else { this->setVertexArrayID(gpu, 0); } int attrCount = gpu->glCaps().maxVertexAttributes(); if (fDefaultVertexArrayAttribState.count() != attrCount) { fDefaultVertexArrayAttribState.resize(attrCount); } attribState = &fDefaultVertexArrayAttribState; } return attribState; } void GrGLGpu::onFinishFlush(GrSurfaceProxy*, SkSurface::BackendSurfaceAccess access, GrFlushFlags flags, bool insertedSemaphore, GrGpuFinishedProc finishedProc, GrGpuFinishedContext finishedContext) { // If we inserted semaphores during the flush, we need to call GLFlush. if (insertedSemaphore) { GL_CALL(Flush()); } if (flags & kSyncCpu_GrFlushFlag) { GL_CALL(Finish()); } // TODO: We should have GL actually wait until the GPU has finished work on the GPU. if (finishedProc) { finishedProc(finishedContext); } } void GrGLGpu::submit(GrGpuCommandBuffer* buffer) { if (buffer->asRTCommandBuffer()) { SkASSERT(fCachedRTCommandBuffer.get() == buffer); fCachedRTCommandBuffer->reset(); } else { SkASSERT(fCachedTexCommandBuffer.get() == buffer); fCachedTexCommandBuffer->reset(); } } GrFence SK_WARN_UNUSED_RESULT GrGLGpu::insertFence() { SkASSERT(this->caps()->fenceSyncSupport()); GrGLsync sync; GL_CALL_RET(sync, FenceSync(GR_GL_SYNC_GPU_COMMANDS_COMPLETE, 0)); GR_STATIC_ASSERT(sizeof(GrFence) >= sizeof(GrGLsync)); return (GrFence)sync; } bool GrGLGpu::waitFence(GrFence fence, uint64_t timeout) { GrGLenum result; GL_CALL_RET(result, ClientWaitSync((GrGLsync)fence, GR_GL_SYNC_FLUSH_COMMANDS_BIT, timeout)); return (GR_GL_CONDITION_SATISFIED == result); } void GrGLGpu::deleteFence(GrFence fence) const { this->deleteSync((GrGLsync)fence); } sk_sp SK_WARN_UNUSED_RESULT GrGLGpu::makeSemaphore(bool isOwned) { SkASSERT(this->caps()->fenceSyncSupport()); return GrGLSemaphore::Make(this, isOwned); } sk_sp GrGLGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore, GrResourceProvider::SemaphoreWrapType wrapType, GrWrapOwnership ownership) { SkASSERT(this->caps()->fenceSyncSupport()); return GrGLSemaphore::MakeWrapped(this, semaphore.glSync(), ownership); } void GrGLGpu::insertSemaphore(sk_sp semaphore) { GrGLSemaphore* glSem = static_cast(semaphore.get()); GrGLsync sync; GL_CALL_RET(sync, FenceSync(GR_GL_SYNC_GPU_COMMANDS_COMPLETE, 0)); glSem->setSync(sync); } void GrGLGpu::waitSemaphore(sk_sp semaphore) { GrGLSemaphore* glSem = static_cast(semaphore.get()); GL_CALL(WaitSync(glSem->sync(), 0, GR_GL_TIMEOUT_IGNORED)); } void GrGLGpu::deleteSync(GrGLsync sync) const { GL_CALL(DeleteSync(sync)); } void GrGLGpu::insertEventMarker(const char* msg) { GL_CALL(InsertEventMarker(strlen(msg), msg)); } sk_sp GrGLGpu::prepareTextureForCrossContextUsage(GrTexture* texture) { // Set up a semaphore to be signaled once the data is ready, and flush GL sk_sp semaphore = this->makeSemaphore(true); this->insertSemaphore(semaphore); // We must call flush here to make sure the GrGLSync object gets created and sent to the gpu. GL_CALL(Flush()); return semaphore; } int GrGLGpu::TextureToCopyProgramIdx(GrTexture* texture) { switch (GrSLCombinedSamplerTypeForTextureType(texture->texturePriv().textureType())) { case kTexture2DSampler_GrSLType: return 0; case kTexture2DRectSampler_GrSLType: return 1; case kTextureExternalSampler_GrSLType: return 2; default: SK_ABORT("Unexpected samper type"); return 0; } } #ifdef SK_ENABLE_DUMP_GPU #include "SkJSONWriter.h" void GrGLGpu::onDumpJSON(SkJSONWriter* writer) const { // We are called by the base class, which has already called beginObject(). We choose to nest // all of our caps information in a named sub-object. writer->beginObject("GL GPU"); const GrGLubyte* str; GL_CALL_RET(str, GetString(GR_GL_VERSION)); writer->appendString("GL_VERSION", (const char*)(str)); GL_CALL_RET(str, GetString(GR_GL_RENDERER)); writer->appendString("GL_RENDERER", (const char*)(str)); GL_CALL_RET(str, GetString(GR_GL_VENDOR)); writer->appendString("GL_VENDOR", (const char*)(str)); GL_CALL_RET(str, GetString(GR_GL_SHADING_LANGUAGE_VERSION)); writer->appendString("GL_SHADING_LANGUAGE_VERSION", (const char*)(str)); writer->appendName("extensions"); glInterface()->fExtensions.dumpJSON(writer); writer->endObject(); } #endif