/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAAConvexPathRenderer.h" #include "GrCaps.h" #include "GrDrawOpTest.h" #include "GrGeometryProcessor.h" #include "GrPathUtils.h" #include "GrProcessor.h" #include "GrRenderTargetContext.h" #include "GrShape.h" #include "GrSimpleMeshDrawOpHelper.h" #include "GrVertexWriter.h" #include "SkGeometry.h" #include "SkPathPriv.h" #include "SkPointPriv.h" #include "SkString.h" #include "SkTypes.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLVertexGeoBuilder.h" #include "ops/GrMeshDrawOp.h" GrAAConvexPathRenderer::GrAAConvexPathRenderer() { } struct Segment { enum { // These enum values are assumed in member functions below. kLine = 0, kQuad = 1, } fType; // line uses one pt, quad uses 2 pts SkPoint fPts[2]; // normal to edge ending at each pt SkVector fNorms[2]; // is the corner where the previous segment meets this segment // sharp. If so, fMid is a normalized bisector facing outward. SkVector fMid; int countPoints() { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fType + 1; } const SkPoint& endPt() const { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fPts[fType]; } const SkPoint& endNorm() const { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fNorms[fType]; } }; typedef SkTArray SegmentArray; static bool center_of_mass(const SegmentArray& segments, SkPoint* c) { SkScalar area = 0; SkPoint center = {0, 0}; int count = segments.count(); SkPoint p0 = {0, 0}; if (count > 2) { // We translate the polygon so that the first point is at the origin. // This avoids some precision issues with small area polygons far away // from the origin. p0 = segments[0].endPt(); SkPoint pi; SkPoint pj; // the first and last iteration of the below loop would compute // zeros since the starting / ending point is (0,0). So instead we start // at i=1 and make the last iteration i=count-2. pj = segments[1].endPt() - p0; for (int i = 1; i < count - 1; ++i) { pi = pj; pj = segments[i + 1].endPt() - p0; SkScalar t = SkPoint::CrossProduct(pi, pj); area += t; center.fX += (pi.fX + pj.fX) * t; center.fY += (pi.fY + pj.fY) * t; } } // If the poly has no area then we instead return the average of // its points. if (SkScalarNearlyZero(area)) { SkPoint avg; avg.set(0, 0); for (int i = 0; i < count; ++i) { const SkPoint& pt = segments[i].endPt(); avg.fX += pt.fX; avg.fY += pt.fY; } SkScalar denom = SK_Scalar1 / count; avg.scale(denom); *c = avg; } else { area *= 3; area = SkScalarInvert(area); center.scale(area); // undo the translate of p0 to the origin. *c = center + p0; } return !SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY) && c->isFinite(); } static bool compute_vectors(SegmentArray* segments, SkPoint* fanPt, SkPathPriv::FirstDirection dir, int* vCount, int* iCount) { if (!center_of_mass(*segments, fanPt)) { return false; } int count = segments->count(); // Make the normals point towards the outside SkPointPriv::Side normSide; if (dir == SkPathPriv::kCCW_FirstDirection) { normSide = SkPointPriv::kRight_Side; } else { normSide = SkPointPriv::kLeft_Side; } int64_t vCount64 = 0; int64_t iCount64 = 0; // compute normals at all points for (int a = 0; a < count; ++a) { Segment& sega = (*segments)[a]; int b = (a + 1) % count; Segment& segb = (*segments)[b]; const SkPoint* prevPt = &sega.endPt(); int n = segb.countPoints(); for (int p = 0; p < n; ++p) { segb.fNorms[p] = segb.fPts[p] - *prevPt; segb.fNorms[p].normalize(); segb.fNorms[p] = SkPointPriv::MakeOrthog(segb.fNorms[p], normSide); prevPt = &segb.fPts[p]; } if (Segment::kLine == segb.fType) { vCount64 += 5; iCount64 += 9; } else { vCount64 += 6; iCount64 += 12; } } // compute mid-vectors where segments meet. TODO: Detect shallow corners // and leave out the wedges and close gaps by stitching segments together. for (int a = 0; a < count; ++a) { const Segment& sega = (*segments)[a]; int b = (a + 1) % count; Segment& segb = (*segments)[b]; segb.fMid = segb.fNorms[0] + sega.endNorm(); segb.fMid.normalize(); // corner wedges vCount64 += 4; iCount64 += 6; } if (vCount64 > SK_MaxS32 || iCount64 > SK_MaxS32) { return false; } *vCount = vCount64; *iCount = iCount64; return true; } struct DegenerateTestData { DegenerateTestData() { fStage = kInitial; } bool isDegenerate() const { return kNonDegenerate != fStage; } enum { kInitial, kPoint, kLine, kNonDegenerate } fStage; SkPoint fFirstPoint; SkVector fLineNormal; SkScalar fLineC; }; static const SkScalar kClose = (SK_Scalar1 / 16); static const SkScalar kCloseSqd = kClose * kClose; static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) { switch (data->fStage) { case DegenerateTestData::kInitial: data->fFirstPoint = pt; data->fStage = DegenerateTestData::kPoint; break; case DegenerateTestData::kPoint: if (SkPointPriv::DistanceToSqd(pt, data->fFirstPoint) > kCloseSqd) { data->fLineNormal = pt - data->fFirstPoint; data->fLineNormal.normalize(); data->fLineNormal = SkPointPriv::MakeOrthog(data->fLineNormal); data->fLineC = -data->fLineNormal.dot(data->fFirstPoint); data->fStage = DegenerateTestData::kLine; } break; case DegenerateTestData::kLine: if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) { data->fStage = DegenerateTestData::kNonDegenerate; } case DegenerateTestData::kNonDegenerate: break; default: SK_ABORT("Unexpected degenerate test stage."); } } static inline bool get_direction(const SkPath& path, const SkMatrix& m, SkPathPriv::FirstDirection* dir) { if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) { return false; } // check whether m reverses the orientation SkASSERT(!m.hasPerspective()); SkScalar det2x2 = m.get(SkMatrix::kMScaleX) * m.get(SkMatrix::kMScaleY) - m.get(SkMatrix::kMSkewX) * m.get(SkMatrix::kMSkewY); if (det2x2 < 0) { *dir = SkPathPriv::OppositeFirstDirection(*dir); } return true; } static inline void add_line_to_segment(const SkPoint& pt, SegmentArray* segments) { segments->push_back(); segments->back().fType = Segment::kLine; segments->back().fPts[0] = pt; } static inline void add_quad_segment(const SkPoint pts[3], SegmentArray* segments) { if (SkPointPriv::DistanceToSqd(pts[0], pts[1]) < kCloseSqd || SkPointPriv::DistanceToSqd(pts[1], pts[2]) < kCloseSqd) { if (pts[0] != pts[2]) { add_line_to_segment(pts[2], segments); } } else { segments->push_back(); segments->back().fType = Segment::kQuad; segments->back().fPts[0] = pts[1]; segments->back().fPts[1] = pts[2]; } } static inline void add_cubic_segments(const SkPoint pts[4], SkPathPriv::FirstDirection dir, SegmentArray* segments) { SkSTArray<15, SkPoint, true> quads; GrPathUtils::convertCubicToQuadsConstrainToTangents(pts, SK_Scalar1, dir, &quads); int count = quads.count(); for (int q = 0; q < count; q += 3) { add_quad_segment(&quads[q], segments); } } static bool get_segments(const SkPath& path, const SkMatrix& m, SegmentArray* segments, SkPoint* fanPt, int* vCount, int* iCount) { SkPath::Iter iter(path, true); // This renderer over-emphasizes very thin path regions. We use the distance // to the path from the sample to compute coverage. Every pixel intersected // by the path will be hit and the maximum distance is sqrt(2)/2. We don't // notice that the sample may be close to a very thin area of the path and // thus should be very light. This is particularly egregious for degenerate // line paths. We detect paths that are very close to a line (zero area) and // draw nothing. DegenerateTestData degenerateData; SkPathPriv::FirstDirection dir; // get_direction can fail for some degenerate paths. if (!get_direction(path, m, &dir)) { return false; } for (;;) { SkPoint pts[4]; SkPath::Verb verb = iter.next(pts, true, true); switch (verb) { case SkPath::kMove_Verb: m.mapPoints(pts, 1); update_degenerate_test(°enerateData, pts[0]); break; case SkPath::kLine_Verb: { m.mapPoints(&pts[1], 1); update_degenerate_test(°enerateData, pts[1]); add_line_to_segment(pts[1], segments); break; } case SkPath::kQuad_Verb: m.mapPoints(pts, 3); update_degenerate_test(°enerateData, pts[1]); update_degenerate_test(°enerateData, pts[2]); add_quad_segment(pts, segments); break; case SkPath::kConic_Verb: { m.mapPoints(pts, 3); SkScalar weight = iter.conicWeight(); SkAutoConicToQuads converter; const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.25f); for (int i = 0; i < converter.countQuads(); ++i) { update_degenerate_test(°enerateData, quadPts[2*i + 1]); update_degenerate_test(°enerateData, quadPts[2*i + 2]); add_quad_segment(quadPts + 2*i, segments); } break; } case SkPath::kCubic_Verb: { m.mapPoints(pts, 4); update_degenerate_test(°enerateData, pts[1]); update_degenerate_test(°enerateData, pts[2]); update_degenerate_test(°enerateData, pts[3]); add_cubic_segments(pts, dir, segments); break; } case SkPath::kDone_Verb: if (degenerateData.isDegenerate()) { return false; } else { return compute_vectors(segments, fanPt, dir, vCount, iCount); } default: break; } } } struct Draw { Draw() : fVertexCnt(0), fIndexCnt(0) {} int fVertexCnt; int fIndexCnt; }; typedef SkTArray DrawArray; static void create_vertices(const SegmentArray& segments, const SkPoint& fanPt, const GrVertexColor& color, DrawArray* draws, GrVertexWriter& verts, uint16_t* idxs, size_t vertexStride) { Draw* draw = &draws->push_back(); // alias just to make vert/index assignments easier to read. int* v = &draw->fVertexCnt; int* i = &draw->fIndexCnt; const size_t uvOffset = sizeof(SkPoint) + color.size(); int count = segments.count(); for (int a = 0; a < count; ++a) { const Segment& sega = segments[a]; int b = (a + 1) % count; const Segment& segb = segments[b]; // Check whether adding the verts for this segment to the current draw would cause index // values to overflow. int vCount = 4; if (Segment::kLine == segb.fType) { vCount += 5; } else { vCount += 6; } if (draw->fVertexCnt + vCount > (1 << 16)) { idxs += *i; draw = &draws->push_back(); v = &draw->fVertexCnt; i = &draw->fIndexCnt; } const SkScalar negOneDists[2] = { -SK_Scalar1, -SK_Scalar1 }; // FIXME: These tris are inset in the 1 unit arc around the corner SkPoint p0 = sega.endPt(); // Position, Color, UV, D0, D1 verts.write(p0, color, SkPoint{0, 0}, negOneDists); verts.write(p0 + sega.endNorm(), color, SkPoint{0, -SK_Scalar1}, negOneDists); verts.write(p0 + segb.fMid, color, SkPoint{0, -SK_Scalar1}, negOneDists); verts.write(p0 + segb.fNorms[0], color, SkPoint{0, -SK_Scalar1}, negOneDists); idxs[*i + 0] = *v + 0; idxs[*i + 1] = *v + 2; idxs[*i + 2] = *v + 1; idxs[*i + 3] = *v + 0; idxs[*i + 4] = *v + 3; idxs[*i + 5] = *v + 2; *v += 4; *i += 6; if (Segment::kLine == segb.fType) { // we draw the line edge as a degenerate quad (u is 0, v is the // signed distance to the edge) SkPoint v1Pos = sega.endPt(); SkPoint v2Pos = segb.fPts[0]; SkScalar dist = SkPointPriv::DistanceToLineBetween(fanPt, v1Pos, v2Pos); verts.write(fanPt, color, SkPoint{0, dist}, negOneDists); verts.write(v1Pos, color, SkPoint{0, 0}, negOneDists); verts.write(v2Pos, color, SkPoint{0, 0}, negOneDists); verts.write(v1Pos + segb.fNorms[0], color, SkPoint{0, -SK_Scalar1}, negOneDists); verts.write(v2Pos + segb.fNorms[0], color, SkPoint{0, -SK_Scalar1}, negOneDists); idxs[*i + 0] = *v + 3; idxs[*i + 1] = *v + 1; idxs[*i + 2] = *v + 2; idxs[*i + 3] = *v + 4; idxs[*i + 4] = *v + 3; idxs[*i + 5] = *v + 2; *i += 6; // Draw the interior fan if it exists. // TODO: Detect and combine colinear segments. This will ensure we catch every case // with no interior, and that the resulting shared edge uses the same endpoints. if (count >= 3) { idxs[*i + 0] = *v + 0; idxs[*i + 1] = *v + 2; idxs[*i + 2] = *v + 1; *i += 3; } *v += 5; } else { void* quadVertsBegin = verts.fPtr; SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]}; SkScalar c0 = segb.fNorms[0].dot(qpts[0]); SkScalar c1 = segb.fNorms[1].dot(qpts[2]); GrVertexWriter::Skip skipUVs; verts.write(fanPt, color, skipUVs, -segb.fNorms[0].dot(fanPt) + c0, -segb.fNorms[1].dot(fanPt) + c1); verts.write(qpts[0], color, skipUVs, 0.0f, -segb.fNorms[1].dot(qpts[0]) + c1); verts.write(qpts[2], color, skipUVs, -segb.fNorms[0].dot(qpts[2]) + c0, 0.0f); verts.write(qpts[0] + segb.fNorms[0], color, skipUVs, -SK_ScalarMax/100, -SK_ScalarMax/100); verts.write(qpts[2] + segb.fNorms[1], color, skipUVs, -SK_ScalarMax/100, -SK_ScalarMax/100); SkVector midVec = segb.fNorms[0] + segb.fNorms[1]; midVec.normalize(); verts.write(qpts[1] + midVec, color, skipUVs, -SK_ScalarMax/100, -SK_ScalarMax/100); GrPathUtils::QuadUVMatrix toUV(qpts); toUV.apply(quadVertsBegin, 6, vertexStride, uvOffset); idxs[*i + 0] = *v + 3; idxs[*i + 1] = *v + 1; idxs[*i + 2] = *v + 2; idxs[*i + 3] = *v + 4; idxs[*i + 4] = *v + 3; idxs[*i + 5] = *v + 2; idxs[*i + 6] = *v + 5; idxs[*i + 7] = *v + 3; idxs[*i + 8] = *v + 4; *i += 9; // Draw the interior fan if it exists. // TODO: Detect and combine colinear segments. This will ensure we catch every case // with no interior, and that the resulting shared edge uses the same endpoints. if (count >= 3) { idxs[*i + 0] = *v + 0; idxs[*i + 1] = *v + 2; idxs[*i + 2] = *v + 1; *i += 3; } *v += 6; } } } /////////////////////////////////////////////////////////////////////////////// /* * Quadratic specified by 0=u^2-v canonical coords. u and v are the first * two components of the vertex attribute. Coverage is based on signed * distance with negative being inside, positive outside. The edge is specified in * window space (y-down). If either the third or fourth component of the interpolated * vertex coord is > 0 then the pixel is considered outside the edge. This is used to * attempt to trim to a portion of the infinite quad. * Requires shader derivative instruction support. */ class QuadEdgeEffect : public GrGeometryProcessor { public: static sk_sp Make(const SkMatrix& localMatrix, bool usesLocalCoords, bool wideColor) { return sk_sp( new QuadEdgeEffect(localMatrix, usesLocalCoords, wideColor)); } ~QuadEdgeEffect() override {} const char* name() const override { return "QuadEdge"; } class GLSLProcessor : public GrGLSLGeometryProcessor { public: GLSLProcessor() {} void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { const QuadEdgeEffect& qe = args.fGP.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(qe); GrGLSLVarying v(kHalf4_GrSLType); varyingHandler->addVarying("QuadEdge", &v); vertBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.fInQuadEdge.name()); // Setup pass through color varyingHandler->addPassThroughAttribute(qe.fInColor, args.fOutputColor); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; // Setup position this->writeOutputPosition(vertBuilder, gpArgs, qe.fInPosition.name()); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, qe.fInPosition.asShaderVar(), qe.fLocalMatrix, args.fFPCoordTransformHandler); fragBuilder->codeAppendf("half edgeAlpha;"); // keep the derivative instructions outside the conditional fragBuilder->codeAppendf("half2 duvdx = half2(dFdx(%s.xy));", v.fsIn()); fragBuilder->codeAppendf("half2 duvdy = half2(dFdy(%s.xy));", v.fsIn()); fragBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn()); // today we know z and w are in device space. We could use derivatives fragBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(), v.fsIn()); fragBuilder->codeAppendf ("} else {"); fragBuilder->codeAppendf("half2 gF = half2(2.0*%s.x*duvdx.x - duvdx.y," " 2.0*%s.x*duvdy.x - duvdy.y);", v.fsIn(), v.fsIn()); fragBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(), v.fsIn()); fragBuilder->codeAppendf("edgeAlpha = " "saturate(0.5 - edgeAlpha / length(gF));}"); fragBuilder->codeAppendf("%s = half4(edgeAlpha);", args.fOutputCoverage); } static inline void GenKey(const GrGeometryProcessor& gp, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const QuadEdgeEffect& qee = gp.cast(); b->add32(SkToBool(qee.fUsesLocalCoords && qee.fLocalMatrix.hasPerspective())); } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp, FPCoordTransformIter&& transformIter) override { const QuadEdgeEffect& qe = gp.cast(); this->setTransformDataHelper(qe.fLocalMatrix, pdman, &transformIter); } private: typedef GrGLSLGeometryProcessor INHERITED; }; void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { GLSLProcessor::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { return new GLSLProcessor(); } private: QuadEdgeEffect(const SkMatrix& localMatrix, bool usesLocalCoords, bool wideColor) : INHERITED(kQuadEdgeEffect_ClassID) , fLocalMatrix(localMatrix) , fUsesLocalCoords(usesLocalCoords) { fInPosition = {"inPosition", kFloat2_GrVertexAttribType, kFloat2_GrSLType}; fInColor = MakeColorAttribute("inColor", wideColor); fInQuadEdge = {"inQuadEdge", kFloat4_GrVertexAttribType, kHalf4_GrSLType}; this->setVertexAttributes(&fInPosition, 3); } Attribute fInPosition; Attribute fInColor; Attribute fInQuadEdge; SkMatrix fLocalMatrix; bool fUsesLocalCoords; GR_DECLARE_GEOMETRY_PROCESSOR_TEST typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect); #if GR_TEST_UTILS sk_sp QuadEdgeEffect::TestCreate(GrProcessorTestData* d) { // Doesn't work without derivative instructions. return d->caps()->shaderCaps()->shaderDerivativeSupport() ? QuadEdgeEffect::Make(GrTest::TestMatrix(d->fRandom), d->fRandom->nextBool(), d->fRandom->nextBool()) : nullptr; } #endif /////////////////////////////////////////////////////////////////////////////// GrPathRenderer::CanDrawPath GrAAConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { if (args.fCaps->shaderCaps()->shaderDerivativeSupport() && (GrAAType::kCoverage == args.fAAType) && args.fShape->style().isSimpleFill() && !args.fShape->inverseFilled() && args.fShape->knownToBeConvex()) { return CanDrawPath::kYes; } return CanDrawPath::kNo; } namespace { class AAConvexPathOp final : public GrMeshDrawOp { private: using Helper = GrSimpleMeshDrawOpHelperWithStencil; public: DEFINE_OP_CLASS_ID static std::unique_ptr Make(GrRecordingContext* context, GrPaint&& paint, const SkMatrix& viewMatrix, const SkPath& path, const GrUserStencilSettings* stencilSettings) { return Helper::FactoryHelper(context, std::move(paint), viewMatrix, path, stencilSettings); } AAConvexPathOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color, const SkMatrix& viewMatrix, const SkPath& path, const GrUserStencilSettings* stencilSettings) : INHERITED(ClassID()), fHelper(helperArgs, GrAAType::kCoverage, stencilSettings) { fPaths.emplace_back(PathData{viewMatrix, path, color}); this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes, IsZeroArea::kNo); fWideColor = !SkPMColor4fFitsInBytes(color); } const char* name() const override { return "AAConvexPathOp"; } void visitProxies(const VisitProxyFunc& func, VisitorType) const override { fHelper.visitProxies(func); } #ifdef SK_DEBUG SkString dumpInfo() const override { SkString string; string.appendf("Count: %d\n", fPaths.count()); string += fHelper.dumpInfo(); string += INHERITED::dumpInfo(); return string; } #endif FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, GrFSAAType fsaaType, GrClampType clampType) override { return fHelper.finalizeProcessors( caps, clip, fsaaType, clampType, GrProcessorAnalysisCoverage::kSingleChannel, &fPaths.back().fColor); } private: void onPrepareDraws(Target* target) override { int instanceCount = fPaths.count(); SkMatrix invert; if (fHelper.usesLocalCoords() && !fPaths.back().fViewMatrix.invert(&invert)) { return; } // Setup GrGeometryProcessor sk_sp quadProcessor( QuadEdgeEffect::Make(invert, fHelper.usesLocalCoords(), fWideColor)); const size_t kVertexStride = quadProcessor->vertexStride(); // TODO generate all segments for all paths and use one vertex buffer for (int i = 0; i < instanceCount; i++) { const PathData& args = fPaths[i]; // We use the fact that SkPath::transform path does subdivision based on // perspective. Otherwise, we apply the view matrix when copying to the // segment representation. const SkMatrix* viewMatrix = &args.fViewMatrix; // We avoid initializing the path unless we have to const SkPath* pathPtr = &args.fPath; SkTLazy tmpPath; if (viewMatrix->hasPerspective()) { SkPath* tmpPathPtr = tmpPath.init(*pathPtr); tmpPathPtr->setIsVolatile(true); tmpPathPtr->transform(*viewMatrix); viewMatrix = &SkMatrix::I(); pathPtr = tmpPathPtr; } int vertexCount; int indexCount; enum { kPreallocSegmentCnt = 512 / sizeof(Segment), kPreallocDrawCnt = 4, }; SkSTArray segments; SkPoint fanPt; if (!get_segments(*pathPtr, *viewMatrix, &segments, &fanPt, &vertexCount, &indexCount)) { continue; } sk_sp vertexBuffer; int firstVertex; GrVertexWriter verts{target->makeVertexSpace(kVertexStride, vertexCount, &vertexBuffer, &firstVertex)}; if (!verts.fPtr) { SkDebugf("Could not allocate vertices\n"); return; } sk_sp indexBuffer; int firstIndex; uint16_t *idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex); if (!idxs) { SkDebugf("Could not allocate indices\n"); return; } SkSTArray draws; GrVertexColor color(args.fColor, fWideColor); create_vertices(segments, fanPt, color, &draws, verts, idxs, kVertexStride); GrMesh* meshes = target->allocMeshes(draws.count()); for (int j = 0; j < draws.count(); ++j) { const Draw& draw = draws[j]; meshes[j].setPrimitiveType(GrPrimitiveType::kTriangles); meshes[j].setIndexed(indexBuffer, draw.fIndexCnt, firstIndex, 0, draw.fVertexCnt - 1, GrPrimitiveRestart::kNo); meshes[j].setVertexData(vertexBuffer, firstVertex); firstIndex += draw.fIndexCnt; firstVertex += draw.fVertexCnt; } target->recordDraw(quadProcessor, meshes, draws.count()); } } void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { fHelper.executeDrawsAndUploads(this, flushState, chainBounds); } CombineResult onCombineIfPossible(GrOp* t, const GrCaps& caps) override { AAConvexPathOp* that = t->cast(); if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { return CombineResult::kCannotCombine; } if (fHelper.usesLocalCoords() && !fPaths[0].fViewMatrix.cheapEqualTo(that->fPaths[0].fViewMatrix)) { return CombineResult::kCannotCombine; } fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin()); fWideColor |= that->fWideColor; return CombineResult::kMerged; } struct PathData { SkMatrix fViewMatrix; SkPath fPath; SkPMColor4f fColor; }; Helper fHelper; SkSTArray<1, PathData, true> fPaths; bool fWideColor; typedef GrMeshDrawOp INHERITED; }; } // anonymous namespace bool GrAAConvexPathRenderer::onDrawPath(const DrawPathArgs& args) { GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(), "GrAAConvexPathRenderer::onDrawPath"); SkASSERT(GrFSAAType::kUnifiedMSAA != args.fRenderTargetContext->fsaaType()); SkASSERT(!args.fShape->isEmpty()); SkPath path; args.fShape->asPath(&path); std::unique_ptr op = AAConvexPathOp::Make(args.fContext, std::move(args.fPaint), *args.fViewMatrix, path, args.fUserStencilSettings); args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op)); return true; } /////////////////////////////////////////////////////////////////////////////////////////////////// #if GR_TEST_UTILS GR_DRAW_OP_TEST_DEFINE(AAConvexPathOp) { SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random); SkPath path = GrTest::TestPathConvex(random); const GrUserStencilSettings* stencilSettings = GrGetRandomStencil(random, context); return AAConvexPathOp::Make(context, std::move(paint), viewMatrix, path, stencilSettings); } #endif