/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAALinearizingConvexPathRenderer.h" #include "GrAAConvexTessellator.h" #include "GrCaps.h" #include "GrDefaultGeoProcFactory.h" #include "GrDrawOpTest.h" #include "GrGeometryProcessor.h" #include "GrOpFlushState.h" #include "GrPathUtils.h" #include "GrProcessor.h" #include "GrRenderTargetContext.h" #include "GrShape.h" #include "GrStyle.h" #include "GrVertexWriter.h" #include "SkGeometry.h" #include "SkPathPriv.h" #include "SkString.h" #include "SkTraceEvent.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "ops/GrMeshDrawOp.h" #include "ops/GrSimpleMeshDrawOpHelper.h" static const int DEFAULT_BUFFER_SIZE = 100; // The thicker the stroke, the harder it is to produce high-quality results using tessellation. For // the time being, we simply drop back to software rendering above this stroke width. static const SkScalar kMaxStrokeWidth = 20.0; GrAALinearizingConvexPathRenderer::GrAALinearizingConvexPathRenderer() { } /////////////////////////////////////////////////////////////////////////////// GrPathRenderer::CanDrawPath GrAALinearizingConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { if (GrAAType::kCoverage != args.fAAType) { return CanDrawPath::kNo; } if (!args.fShape->knownToBeConvex()) { return CanDrawPath::kNo; } if (args.fShape->style().pathEffect()) { return CanDrawPath::kNo; } if (args.fShape->inverseFilled()) { return CanDrawPath::kNo; } if (args.fShape->bounds().width() <= 0 && args.fShape->bounds().height() <= 0) { // Stroked zero length lines should draw, but this PR doesn't handle that case return CanDrawPath::kNo; } const SkStrokeRec& stroke = args.fShape->style().strokeRec(); if (stroke.getStyle() == SkStrokeRec::kStroke_Style || stroke.getStyle() == SkStrokeRec::kStrokeAndFill_Style) { if (!args.fViewMatrix->isSimilarity()) { return CanDrawPath::kNo; } SkScalar strokeWidth = args.fViewMatrix->getMaxScale() * stroke.getWidth(); if (strokeWidth < 1.0f && stroke.getStyle() == SkStrokeRec::kStroke_Style) { return CanDrawPath::kNo; } if (strokeWidth > kMaxStrokeWidth || !args.fShape->knownToBeClosed() || stroke.getJoin() == SkPaint::Join::kRound_Join) { return CanDrawPath::kNo; } return CanDrawPath::kYes; } if (stroke.getStyle() != SkStrokeRec::kFill_Style) { return CanDrawPath::kNo; } return CanDrawPath::kYes; } // extract the result vertices and indices from the GrAAConvexTessellator static void extract_verts(const GrAAConvexTessellator& tess, void* vertData, const GrVertexColor& color, uint16_t firstIndex, uint16_t* idxs) { GrVertexWriter verts{vertData}; for (int i = 0; i < tess.numPts(); ++i) { verts.write(tess.point(i), color, tess.coverage(i)); } for (int i = 0; i < tess.numIndices(); ++i) { idxs[i] = tess.index(i) + firstIndex; } } static sk_sp create_lines_only_gp(const GrShaderCaps* shaderCaps, bool tweakAlphaForCoverage, const SkMatrix& viewMatrix, bool usesLocalCoords, bool wideColor) { using namespace GrDefaultGeoProcFactory; Coverage::Type coverageType = tweakAlphaForCoverage ? Coverage::kAttributeTweakAlpha_Type : Coverage::kAttribute_Type; LocalCoords::Type localCoordsType = usesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type; Color::Type colorType = wideColor ? Color::kPremulWideColorAttribute_Type : Color::kPremulGrColorAttribute_Type; return MakeForDeviceSpace(shaderCaps, colorType, coverageType, localCoordsType, viewMatrix); } namespace { class AAFlatteningConvexPathOp final : public GrMeshDrawOp { private: using Helper = GrSimpleMeshDrawOpHelperWithStencil; public: DEFINE_OP_CLASS_ID static std::unique_ptr Make(GrRecordingContext* context, GrPaint&& paint, const SkMatrix& viewMatrix, const SkPath& path, SkScalar strokeWidth, SkStrokeRec::Style style, SkPaint::Join join, SkScalar miterLimit, const GrUserStencilSettings* stencilSettings) { return Helper::FactoryHelper(context, std::move(paint), viewMatrix, path, strokeWidth, style, join, miterLimit, stencilSettings); } AAFlatteningConvexPathOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color, const SkMatrix& viewMatrix, const SkPath& path, SkScalar strokeWidth, SkStrokeRec::Style style, SkPaint::Join join, SkScalar miterLimit, const GrUserStencilSettings* stencilSettings) : INHERITED(ClassID()), fHelper(helperArgs, GrAAType::kCoverage, stencilSettings) { fPaths.emplace_back( PathData{color, viewMatrix, path, strokeWidth, style, join, miterLimit}); // compute bounds SkRect bounds = path.getBounds(); SkScalar w = strokeWidth; if (w > 0) { w /= 2; // If the half stroke width is < 1 then we effectively fallback to bevel joins. if (SkPaint::kMiter_Join == join && w > 1.f) { w *= miterLimit; } bounds.outset(w, w); } this->setTransformedBounds(bounds, viewMatrix, HasAABloat::kYes, IsZeroArea::kNo); fWideColor = !SkPMColor4fFitsInBytes(color); } const char* name() const override { return "AAFlatteningConvexPathOp"; } void visitProxies(const VisitProxyFunc& func, VisitorType) const override { fHelper.visitProxies(func); } #ifdef SK_DEBUG SkString dumpInfo() const override { SkString string; for (const auto& path : fPaths) { string.appendf( "Color: 0x%08x, StrokeWidth: %.2f, Style: %d, Join: %d, " "MiterLimit: %.2f\n", path.fColor.toBytes_RGBA(), path.fStrokeWidth, path.fStyle, path.fJoin, path.fMiterLimit); } string += fHelper.dumpInfo(); string += INHERITED::dumpInfo(); return string; } #endif FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, GrFSAAType fsaaType, GrClampType clampType) override { return fHelper.finalizeProcessors( caps, clip, fsaaType, clampType, GrProcessorAnalysisCoverage::kSingleChannel, &fPaths.back().fColor); } private: void recordDraw(Target* target, sk_sp gp, int vertexCount, size_t vertexStride, void* vertices, int indexCount, uint16_t* indices) const { if (vertexCount == 0 || indexCount == 0) { return; } sk_sp vertexBuffer; int firstVertex; void* verts = target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex); if (!verts) { SkDebugf("Could not allocate vertices\n"); return; } memcpy(verts, vertices, vertexCount * vertexStride); sk_sp indexBuffer; int firstIndex; uint16_t* idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex); if (!idxs) { SkDebugf("Could not allocate indices\n"); return; } memcpy(idxs, indices, indexCount * sizeof(uint16_t)); GrMesh* mesh = target->allocMesh(GrPrimitiveType::kTriangles); mesh->setIndexed(std::move(indexBuffer), indexCount, firstIndex, 0, vertexCount - 1, GrPrimitiveRestart::kNo); mesh->setVertexData(std::move(vertexBuffer), firstVertex); target->recordDraw(std::move(gp), mesh); } void onPrepareDraws(Target* target) override { // Setup GrGeometryProcessor sk_sp gp(create_lines_only_gp(target->caps().shaderCaps(), fHelper.compatibleWithAlphaAsCoverage(), this->viewMatrix(), fHelper.usesLocalCoords(), fWideColor)); if (!gp) { SkDebugf("Couldn't create a GrGeometryProcessor\n"); return; } size_t vertexStride = gp->vertexStride(); int instanceCount = fPaths.count(); int64_t vertexCount = 0; int64_t indexCount = 0; int64_t maxVertices = DEFAULT_BUFFER_SIZE; int64_t maxIndices = DEFAULT_BUFFER_SIZE; uint8_t* vertices = (uint8_t*) sk_malloc_throw(maxVertices * vertexStride); uint16_t* indices = (uint16_t*) sk_malloc_throw(maxIndices * sizeof(uint16_t)); for (int i = 0; i < instanceCount; i++) { const PathData& args = fPaths[i]; GrAAConvexTessellator tess(args.fStyle, args.fStrokeWidth, args.fJoin, args.fMiterLimit); if (!tess.tessellate(args.fViewMatrix, args.fPath)) { continue; } int currentVertices = tess.numPts(); if (vertexCount + currentVertices > static_cast(UINT16_MAX)) { // if we added the current instance, we would overflow the indices we can store in a // uint16_t. Draw what we've got so far and reset. this->recordDraw( target, gp, vertexCount, vertexStride, vertices, indexCount, indices); vertexCount = 0; indexCount = 0; } if (vertexCount + currentVertices > maxVertices) { maxVertices = SkTMax(vertexCount + currentVertices, maxVertices * 2); if (maxVertices * vertexStride > SK_MaxS32) { sk_free(vertices); sk_free(indices); return; } vertices = (uint8_t*) sk_realloc_throw(vertices, maxVertices * vertexStride); } int currentIndices = tess.numIndices(); if (indexCount + currentIndices > maxIndices) { maxIndices = SkTMax(indexCount + currentIndices, maxIndices * 2); if (maxIndices * sizeof(uint16_t) > SK_MaxS32) { sk_free(vertices); sk_free(indices); return; } indices = (uint16_t*) sk_realloc_throw(indices, maxIndices * sizeof(uint16_t)); } extract_verts(tess, vertices + vertexStride * vertexCount, GrVertexColor(args.fColor, fWideColor), vertexCount, indices + indexCount); vertexCount += currentVertices; indexCount += currentIndices; } if (vertexCount <= SK_MaxS32 && indexCount <= SK_MaxS32) { this->recordDraw(target, std::move(gp), vertexCount, vertexStride, vertices, indexCount, indices); } sk_free(vertices); sk_free(indices); } void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { fHelper.executeDrawsAndUploads(this, flushState, chainBounds); } CombineResult onCombineIfPossible(GrOp* t, const GrCaps& caps) override { AAFlatteningConvexPathOp* that = t->cast(); if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { return CombineResult::kCannotCombine; } fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin()); fWideColor |= that->fWideColor; return CombineResult::kMerged; } const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; } struct PathData { SkPMColor4f fColor; SkMatrix fViewMatrix; SkPath fPath; SkScalar fStrokeWidth; SkStrokeRec::Style fStyle; SkPaint::Join fJoin; SkScalar fMiterLimit; }; SkSTArray<1, PathData, true> fPaths; Helper fHelper; bool fWideColor; typedef GrMeshDrawOp INHERITED; }; } // anonymous namespace bool GrAALinearizingConvexPathRenderer::onDrawPath(const DrawPathArgs& args) { GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(), "GrAALinearizingConvexPathRenderer::onDrawPath"); SkASSERT(GrFSAAType::kUnifiedMSAA != args.fRenderTargetContext->fsaaType()); SkASSERT(!args.fShape->isEmpty()); SkASSERT(!args.fShape->style().pathEffect()); SkPath path; args.fShape->asPath(&path); bool fill = args.fShape->style().isSimpleFill(); const SkStrokeRec& stroke = args.fShape->style().strokeRec(); SkScalar strokeWidth = fill ? -1.0f : stroke.getWidth(); SkPaint::Join join = fill ? SkPaint::Join::kMiter_Join : stroke.getJoin(); SkScalar miterLimit = stroke.getMiter(); std::unique_ptr op = AAFlatteningConvexPathOp::Make( args.fContext, std::move(args.fPaint), *args.fViewMatrix, path, strokeWidth, stroke.getStyle(), join, miterLimit, args.fUserStencilSettings); args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op)); return true; } /////////////////////////////////////////////////////////////////////////////////////////////////// #if GR_TEST_UTILS GR_DRAW_OP_TEST_DEFINE(AAFlatteningConvexPathOp) { SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random); SkPath path = GrTest::TestPathConvex(random); SkStrokeRec::Style styles[3] = { SkStrokeRec::kFill_Style, SkStrokeRec::kStroke_Style, SkStrokeRec::kStrokeAndFill_Style }; SkStrokeRec::Style style = styles[random->nextU() % 3]; SkScalar strokeWidth = -1.f; SkPaint::Join join = SkPaint::kMiter_Join; SkScalar miterLimit = 0.5f; if (SkStrokeRec::kFill_Style != style) { strokeWidth = random->nextRangeF(1.0f, 10.0f); if (random->nextBool()) { join = SkPaint::kMiter_Join; } else { join = SkPaint::kBevel_Join; } miterLimit = random->nextRangeF(0.5f, 2.0f); } const GrUserStencilSettings* stencilSettings = GrGetRandomStencil(random, context); return AAFlatteningConvexPathOp::Make(context, std::move(paint), viewMatrix, path, strokeWidth, style, join, miterLimit, stencilSettings); } #endif