/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkPoint3_DEFINED #define SkPoint3_DEFINED #include "SkPoint.h" struct SK_API SkPoint3 { SkScalar fX, fY, fZ; static SkPoint3 Make(SkScalar x, SkScalar y, SkScalar z) { SkPoint3 pt; pt.set(x, y, z); return pt; } SkScalar x() const { return fX; } SkScalar y() const { return fY; } SkScalar z() const { return fZ; } void set(SkScalar x, SkScalar y, SkScalar z) { fX = x; fY = y; fZ = z; } friend bool operator==(const SkPoint3& a, const SkPoint3& b) { return a.fX == b.fX && a.fY == b.fY && a.fZ == b.fZ; } friend bool operator!=(const SkPoint3& a, const SkPoint3& b) { return !(a == b); } /** Returns the Euclidian distance from (0,0,0) to (x,y,z) */ static SkScalar Length(SkScalar x, SkScalar y, SkScalar z); /** Return the Euclidian distance from (0,0,0) to the point */ SkScalar length() const { return SkPoint3::Length(fX, fY, fZ); } /** Set the point (vector) to be unit-length in the same direction as it already points. If the point has a degenerate length (i.e., nearly 0) then set it to (0,0,0) and return false; otherwise return true. */ bool normalize(); /** Return a new point whose X, Y and Z coordinates are scaled. */ SkPoint3 makeScale(SkScalar scale) const { SkPoint3 p; p.set(scale * fX, scale * fY, scale * fZ); return p; } /** Scale the point's coordinates by scale. */ void scale(SkScalar value) { fX *= value; fY *= value; fZ *= value; } /** Return a new point whose X, Y and Z coordinates are the negative of the original point's */ SkPoint3 operator-() const { SkPoint3 neg; neg.fX = -fX; neg.fY = -fY; neg.fZ = -fZ; return neg; } /** Returns a new point whose coordinates are the difference between a and b (i.e., a - b) */ friend SkPoint3 operator-(const SkPoint3& a, const SkPoint3& b) { SkPoint3 v; v.set(a.fX - b.fX, a.fY - b.fY, a.fZ - b.fZ); return v; } /** Returns a new point whose coordinates are the sum of a and b (a + b) */ friend SkPoint3 operator+(const SkPoint3& a, const SkPoint3& b) { SkPoint3 v; v.set(a.fX + b.fX, a.fY + b.fY, a.fZ + b.fZ); return v; } /** Add v's coordinates to the point's */ void operator+=(const SkPoint3& v) { fX += v.fX; fY += v.fY; fZ += v.fZ; } /** Subtract v's coordinates from the point's */ void operator-=(const SkPoint3& v) { fX -= v.fX; fY -= v.fY; fZ -= v.fZ; } /** Returns true if fX, fY, and fZ are measurable values. @return true for values other than infinities and NaN */ bool isFinite() const { SkScalar accum = 0; accum *= fX; accum *= fY; accum *= fZ; // accum is either NaN or it is finite (zero). SkASSERT(0 == accum || SkScalarIsNaN(accum)); // value==value will be true iff value is not NaN // TODO: is it faster to say !accum or accum==accum? return !SkScalarIsNaN(accum); } /** Returns the dot product of a and b, treating them as 3D vectors */ static SkScalar DotProduct(const SkPoint3& a, const SkPoint3& b) { return a.fX * b.fX + a.fY * b.fY + a.fZ * b.fZ; } SkScalar dot(const SkPoint3& vec) const { return DotProduct(*this, vec); } /** Returns the cross product of a and b, treating them as 3D vectors */ static SkPoint3 CrossProduct(const SkPoint3& a, const SkPoint3& b) { SkPoint3 result; result.fX = a.fY*b.fZ - a.fZ*b.fY; result.fY = a.fZ*b.fX - a.fX*b.fZ; result.fZ = a.fX*b.fY - a.fY*b.fX; return result; } SkPoint3 cross(const SkPoint3& vec) const { return CrossProduct(*this, vec); } }; typedef SkPoint3 SkVector3; typedef SkPoint3 SkColor3f; #endif