/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDrawingManager.h" #include "GrBackendSemaphore.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrGpu.h" #include "GrMemoryPool.h" #include "GrOnFlushResourceProvider.h" #include "GrOpList.h" #include "GrRenderTargetContext.h" #include "GrRenderTargetProxy.h" #include "GrResourceAllocator.h" #include "GrResourceProvider.h" #include "GrSoftwarePathRenderer.h" #include "GrSurfaceProxyPriv.h" #include "GrTexture.h" #include "GrTextureContext.h" #include "GrTextureOpList.h" #include "GrTexturePriv.h" #include "GrTextureProxy.h" #include "GrTextureProxyPriv.h" #include "GrTracing.h" #include "SkDeferredDisplayList.h" #include "SkSurface_Gpu.h" #include "SkTTopoSort.h" #include "ccpr/GrCoverageCountingPathRenderer.h" #include "text/GrTextContext.h" GrDrawingManager::OpListDAG::OpListDAG(bool explicitlyAllocating, GrContextOptions::Enable sortOpLists) { if (GrContextOptions::Enable::kNo == sortOpLists) { fSortOpLists = false; } else if (GrContextOptions::Enable::kYes == sortOpLists) { fSortOpLists = true; } else { // By default we always enable sorting when we're explicitly allocating GPU resources fSortOpLists = explicitlyAllocating; } } GrDrawingManager::OpListDAG::~OpListDAG() {} void GrDrawingManager::OpListDAG::gatherIDs(SkSTArray<8, uint32_t, true>* idArray) const { idArray->reset(fOpLists.count()); for (int i = 0; i < fOpLists.count(); ++i) { if (fOpLists[i]) { (*idArray)[i] = fOpLists[i]->uniqueID(); } } } void GrDrawingManager::OpListDAG::reset() { fOpLists.reset(); } void GrDrawingManager::OpListDAG::removeOpList(int index) { if (!fOpLists[index]->unique()) { // TODO: Eventually this should be guaranteed unique: http://skbug.com/7111 fOpLists[index]->endFlush(); } fOpLists[index] = nullptr; } void GrDrawingManager::OpListDAG::removeOpLists(int startIndex, int stopIndex) { for (int i = startIndex; i < stopIndex; ++i) { if (!fOpLists[i]) { continue; } this->removeOpList(i); } } void GrDrawingManager::OpListDAG::add(sk_sp opList) { fOpLists.emplace_back(std::move(opList)); } void GrDrawingManager::OpListDAG::add(const SkTArray>& opLists) { fOpLists.push_back_n(opLists.count(), opLists.begin()); } void GrDrawingManager::OpListDAG::swap(SkTArray>* opLists) { SkASSERT(opLists->empty()); opLists->swap(fOpLists); } void GrDrawingManager::OpListDAG::prepForFlush() { if (fSortOpLists) { SkDEBUGCODE(bool result =) SkTTopoSort(&fOpLists); SkASSERT(result); } #ifdef SK_DEBUG // This block checks for any unnecessary splits in the opLists. If two sequential opLists // share the same backing GrSurfaceProxy it means the opList was artificially split. if (fOpLists.count()) { GrRenderTargetOpList* prevOpList = fOpLists[0]->asRenderTargetOpList(); for (int i = 1; i < fOpLists.count(); ++i) { GrRenderTargetOpList* curOpList = fOpLists[i]->asRenderTargetOpList(); if (prevOpList && curOpList) { SkASSERT(prevOpList->fTarget.get() != curOpList->fTarget.get()); } prevOpList = curOpList; } } #endif } void GrDrawingManager::OpListDAG::closeAll(const GrCaps* caps) { for (int i = 0; i < fOpLists.count(); ++i) { if (fOpLists[i]) { fOpLists[i]->makeClosed(*caps); } } } void GrDrawingManager::OpListDAG::cleanup(const GrCaps* caps) { for (int i = 0; i < fOpLists.count(); ++i) { if (!fOpLists[i]) { continue; } // no opList should receive a new command after this fOpLists[i]->makeClosed(*caps); // We shouldn't need to do this, but it turns out some clients still hold onto opLists // after a cleanup. // MDB TODO: is this still true? if (!fOpLists[i]->unique()) { // TODO: Eventually this should be guaranteed unique. // https://bugs.chromium.org/p/skia/issues/detail?id=7111 fOpLists[i]->endFlush(); } } fOpLists.reset(); } /////////////////////////////////////////////////////////////////////////////////////////////////// GrDrawingManager::GrDrawingManager(GrContext* context, const GrPathRendererChain::Options& optionsForPathRendererChain, const GrTextContext::Options& optionsForTextContext, GrSingleOwner* singleOwner, bool explicitlyAllocating, GrContextOptions::Enable sortOpLists, GrContextOptions::Enable reduceOpListSplitting) : fContext(context) , fOptionsForPathRendererChain(optionsForPathRendererChain) , fOptionsForTextContext(optionsForTextContext) , fSingleOwner(singleOwner) , fAbandoned(false) , fDAG(explicitlyAllocating, sortOpLists) , fTextContext(nullptr) , fPathRendererChain(nullptr) , fSoftwarePathRenderer(nullptr) , fFlushing(false) { if (GrContextOptions::Enable::kNo == reduceOpListSplitting) { fReduceOpListSplitting = false; } else if (GrContextOptions::Enable::kYes == reduceOpListSplitting) { fReduceOpListSplitting = true; } else { // For now, this is only turned on when explicitly enabled. Once mini-flushes are // implemented it should be enabled whenever sorting is enabled. fReduceOpListSplitting = false; // sortOpLists } } void GrDrawingManager::cleanup() { fDAG.cleanup(fContext->contextPriv().caps()); fPathRendererChain = nullptr; fSoftwarePathRenderer = nullptr; fOnFlushCBObjects.reset(); } GrDrawingManager::~GrDrawingManager() { this->cleanup(); } void GrDrawingManager::abandon() { fAbandoned = true; this->cleanup(); } void GrDrawingManager::freeGpuResources() { for (int i = fOnFlushCBObjects.count() - 1; i >= 0; --i) { if (!fOnFlushCBObjects[i]->retainOnFreeGpuResources()) { // it's safe to just do this because we're iterating in reverse fOnFlushCBObjects.removeShuffle(i); } } // a path renderer may be holding onto resources fPathRendererChain = nullptr; fSoftwarePathRenderer = nullptr; } // MDB TODO: make use of the 'proxy' parameter. GrSemaphoresSubmitted GrDrawingManager::flush(GrSurfaceProxy*, int numSemaphores, GrBackendSemaphore backendSemaphores[]) { GR_CREATE_TRACE_MARKER_CONTEXT("GrDrawingManager", "flush", fContext); if (fFlushing || this->wasAbandoned()) { return GrSemaphoresSubmitted::kNo; } SkDEBUGCODE(this->validate()); GrGpu* gpu = fContext->contextPriv().getGpu(); if (!gpu) { return GrSemaphoresSubmitted::kNo; // Can't flush while DDL recording } fFlushing = true; // Semi-usually the GrOpLists are already closed at this point, but sometimes Ganesh // needs to flush mid-draw. In that case, the SkGpuDevice's GrOpLists won't be closed // but need to be flushed anyway. Closing such GrOpLists here will mean new // GrOpLists will be created to replace them if the SkGpuDevice(s) write to them again. fDAG.closeAll(fContext->contextPriv().caps()); fActiveOpList = nullptr; fDAG.prepForFlush(); SkASSERT(SkToBool(fVertexBufferSpace) == SkToBool(fIndexBufferSpace)); if (!fVertexBufferSpace) { fVertexBufferSpace.reset(new char[GrBufferAllocPool::kDefaultBufferSize]()); fIndexBufferSpace.reset(new char[GrBufferAllocPool::kDefaultBufferSize]()); } GrOpFlushState flushState(gpu, fContext->contextPriv().resourceProvider(), &fTokenTracker, fVertexBufferSpace.get(), fIndexBufferSpace.get()); GrOnFlushResourceProvider onFlushProvider(this); // TODO: AFAICT the only reason fFlushState is on GrDrawingManager rather than on the // stack here is to preserve the flush tokens. // Prepare any onFlush op lists (e.g. atlases). if (!fOnFlushCBObjects.empty()) { fDAG.gatherIDs(&fFlushingOpListIDs); SkSTArray<4, sk_sp> renderTargetContexts; for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) { onFlushCBObject->preFlush(&onFlushProvider, fFlushingOpListIDs.begin(), fFlushingOpListIDs.count(), &renderTargetContexts); for (const sk_sp& rtc : renderTargetContexts) { sk_sp onFlushOpList = sk_ref_sp(rtc->getRTOpList()); if (!onFlushOpList) { continue; // Odd - but not a big deal } #ifdef SK_DEBUG // OnFlush callbacks are already invoked during flush, and are therefore expected to // handle resource allocation & usage on their own. (No deferred or lazy proxies!) onFlushOpList->visitProxies_debugOnly([](GrSurfaceProxy* p) { SkASSERT(!p->asTextureProxy() || !p->asTextureProxy()->texPriv().isDeferred()); SkASSERT(GrSurfaceProxy::LazyState::kNot == p->lazyInstantiationState()); }); #endif onFlushOpList->makeClosed(*fContext->contextPriv().caps()); onFlushOpList->prepare(&flushState); fOnFlushCBOpLists.push_back(std::move(onFlushOpList)); } renderTargetContexts.reset(); } } #if 0 // Enable this to print out verbose GrOp information for (int i = 0; i < fOpLists.count(); ++i) { SkDEBUGCODE(fOpLists[i]->dump();) } #endif int startIndex, stopIndex; bool flushed = false; { GrResourceAllocator alloc(fContext->contextPriv().resourceProvider(), flushState.deinstantiateProxyTracker()); for (int i = 0; i < fDAG.numOpLists(); ++i) { if (fDAG.opList(i)) { fDAG.opList(i)->gatherProxyIntervals(&alloc); } alloc.markEndOfOpList(i); } GrResourceAllocator::AssignError error = GrResourceAllocator::AssignError::kNoError; int numOpListsExecuted = 0; while (alloc.assign(&startIndex, &stopIndex, &error)) { if (GrResourceAllocator::AssignError::kFailedProxyInstantiation == error) { for (int i = startIndex; i < stopIndex; ++i) { if (fDAG.opList(i) && !fDAG.opList(i)->isFullyInstantiated()) { // If the backing surface wasn't allocated drop the entire opList. fDAG.removeOpList(i); } if (fDAG.opList(i)) { fDAG.opList(i)->purgeOpsWithUninstantiatedProxies(); } } } if (this->executeOpLists(startIndex, stopIndex, &flushState, &numOpListsExecuted)) { flushed = true; } } } #ifdef SK_DEBUG for (int i = 0; i < fDAG.numOpLists(); ++i) { // If there are any remaining opLists at this point, make sure they will not survive the // flush. Otherwise we need to call endFlush() on them. // http://skbug.com/7111 SkASSERT(!fDAG.opList(i) || fDAG.opList(i)->unique()); } #endif fDAG.reset(); #ifdef SK_DEBUG // In non-DDL mode this checks that all the flushed ops have been freed from the memory pool. // When we move to partial flushes this assert will no longer be valid. // In DDL mode this check is somewhat superfluous since the memory for most of the ops/opLists // will be stored in the DDL's GrOpMemoryPools. GrOpMemoryPool* opMemoryPool = fContext->contextPriv().opMemoryPool(); opMemoryPool->isEmpty(); #endif GrSemaphoresSubmitted result = gpu->finishFlush(numSemaphores, backendSemaphores); flushState.deinstantiateProxyTracker()->deinstantiateAllProxies(); // Give the cache a chance to purge resources that become purgeable due to flushing. if (flushed) { fContext->contextPriv().getResourceCache()->purgeAsNeeded(); } for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) { onFlushCBObject->postFlush(fTokenTracker.nextTokenToFlush(), fFlushingOpListIDs.begin(), fFlushingOpListIDs.count()); } fFlushingOpListIDs.reset(); fFlushing = false; return result; } bool GrDrawingManager::executeOpLists(int startIndex, int stopIndex, GrOpFlushState* flushState, int* numOpListsExecuted) { SkASSERT(startIndex <= stopIndex && stopIndex <= fDAG.numOpLists()); #if GR_FLUSH_TIME_OP_SPEW SkDebugf("Flushing opLists: %d to %d out of [%d, %d]\n", startIndex, stopIndex, 0, fDAG.numOpLists()); for (int i = startIndex; i < stopIndex; ++i) { if (fDAG.opList(i)) { fDAG.opList(i)->dump(true); } } #endif GrResourceProvider* resourceProvider = fContext->contextPriv().resourceProvider(); bool anyOpListsExecuted = false; for (int i = startIndex; i < stopIndex; ++i) { if (!fDAG.opList(i)) { continue; } GrOpList* opList = fDAG.opList(i); if (resourceProvider->explicitlyAllocateGPUResources()) { if (!opList->isFullyInstantiated()) { // If the backing surface wasn't allocated drop the draw of the entire opList. fDAG.removeOpList(i); continue; } } else { if (!opList->instantiate(resourceProvider)) { fDAG.removeOpList(i); continue; } } // TODO: handle this instantiation via lazy surface proxies? // Instantiate all deferred proxies (being built on worker threads) so we can upload them opList->instantiateDeferredProxies(fContext->contextPriv().resourceProvider()); opList->prepare(flushState); } // Upload all data to the GPU flushState->preExecuteDraws(); // For Vulkan, if we have too many oplists to be flushed we end up allocating a lot of resources // for each command buffer associated with the oplists. If this gets too large we can cause the // devices to go OOM. In practice we usually only hit this case in our tests, but to be safe we // put a cap on the number of oplists we will execute before flushing to the GPU to relieve some // memory pressure. static constexpr int kMaxOpListsBeforeFlush = 100; // Execute the onFlush op lists first, if any. for (sk_sp& onFlushOpList : fOnFlushCBOpLists) { if (!onFlushOpList->execute(flushState)) { SkDebugf("WARNING: onFlushOpList failed to execute.\n"); } SkASSERT(onFlushOpList->unique()); onFlushOpList = nullptr; (*numOpListsExecuted)++; if (*numOpListsExecuted >= kMaxOpListsBeforeFlush) { flushState->gpu()->finishFlush(0, nullptr); *numOpListsExecuted = 0; } } fOnFlushCBOpLists.reset(); // Execute the normal op lists. for (int i = startIndex; i < stopIndex; ++i) { if (!fDAG.opList(i)) { continue; } if (fDAG.opList(i)->execute(flushState)) { anyOpListsExecuted = true; } (*numOpListsExecuted)++; if (*numOpListsExecuted >= kMaxOpListsBeforeFlush) { flushState->gpu()->finishFlush(0, nullptr); *numOpListsExecuted = 0; } } SkASSERT(!flushState->commandBuffer()); SkASSERT(fTokenTracker.nextDrawToken() == fTokenTracker.nextTokenToFlush()); // We reset the flush state before the OpLists so that the last resources to be freed are those // that are written to in the OpLists. This helps to make sure the most recently used resources // are the last to be purged by the resource cache. flushState->reset(); fDAG.removeOpLists(startIndex, stopIndex); return anyOpListsExecuted; } GrSemaphoresSubmitted GrDrawingManager::prepareSurfaceForExternalIO( GrSurfaceProxy* proxy, int numSemaphores, GrBackendSemaphore backendSemaphores[]) { if (this->wasAbandoned()) { return GrSemaphoresSubmitted::kNo; } SkDEBUGCODE(this->validate()); SkASSERT(proxy); GrGpu* gpu = fContext->contextPriv().getGpu(); if (!gpu) { return GrSemaphoresSubmitted::kNo; // Can't flush while DDL recording } GrSemaphoresSubmitted result = GrSemaphoresSubmitted::kNo; if (proxy->priv().hasPendingIO() || numSemaphores) { result = this->flush(proxy, numSemaphores, backendSemaphores); } if (!proxy->instantiate(fContext->contextPriv().resourceProvider())) { return result; } GrSurface* surface = proxy->peekSurface(); if (auto* rt = surface->asRenderTarget()) { gpu->resolveRenderTarget(rt); } if (auto* tex = surface->asTexture()) { if (tex->texturePriv().mipMapped() == GrMipMapped::kYes && tex->texturePriv().mipMapsAreDirty()) { gpu->regenerateMipMapLevels(tex); } } SkDEBUGCODE(this->validate()); return result; } void GrDrawingManager::addOnFlushCallbackObject(GrOnFlushCallbackObject* onFlushCBObject) { fOnFlushCBObjects.push_back(onFlushCBObject); } void GrDrawingManager::moveOpListsToDDL(SkDeferredDisplayList* ddl) { SkDEBUGCODE(this->validate()); // no opList should receive a new command after this fDAG.closeAll(fContext->contextPriv().caps()); fActiveOpList = nullptr; fDAG.swap(&ddl->fOpLists); if (fPathRendererChain) { if (auto ccpr = fPathRendererChain->getCoverageCountingPathRenderer()) { ddl->fPendingPaths = ccpr->detachPendingPaths(); } } SkDEBUGCODE(this->validate()); } void GrDrawingManager::copyOpListsFromDDL(const SkDeferredDisplayList* ddl, GrRenderTargetProxy* newDest) { SkDEBUGCODE(this->validate()); if (fActiveOpList) { // This is a temporary fix for the partial-MDB world. In that world we're not // reordering so ops that (in the single opList world) would've just glommed onto the // end of the single opList but referred to a far earlier RT need to appear in their // own opList. fActiveOpList->makeClosed(*fContext->contextPriv().caps()); fActiveOpList = nullptr; } // Here we jam the proxy that backs the current replay SkSurface into the LazyProxyData. // The lazy proxy that references it (in the copied opLists) will steal its GrTexture. ddl->fLazyProxyData->fReplayDest = newDest; if (ddl->fPendingPaths.size()) { GrCoverageCountingPathRenderer* ccpr = this->getCoverageCountingPathRenderer(); ccpr->mergePendingPaths(ddl->fPendingPaths); } fDAG.add(ddl->fOpLists); SkDEBUGCODE(this->validate()); } #ifdef SK_DEBUG void GrDrawingManager::validate() const { if (fDAG.sortingOpLists() && fReduceOpListSplitting) { SkASSERT(!fActiveOpList); } else { if (fActiveOpList) { SkASSERT(!fDAG.empty()); SkASSERT(!fActiveOpList->isClosed()); SkASSERT(fActiveOpList == fDAG.back()); } for (int i = 0; i < fDAG.numOpLists(); ++i) { if (fActiveOpList != fDAG.opList(i)) { SkASSERT(fDAG.opList(i)->isClosed()); } } if (!fDAG.empty() && !fDAG.back()->isClosed()) { SkASSERT(fActiveOpList == fDAG.back()); } } } #endif sk_sp GrDrawingManager::newRTOpList(GrRenderTargetProxy* rtp, bool managedOpList) { SkDEBUGCODE(this->validate()); SkASSERT(fContext); if (fDAG.sortingOpLists() && fReduceOpListSplitting) { // In this case we need to close all the opLists that rely on the current contents of // 'rtp'. That is bc we're going to update the content of the proxy so they need to be // split in case they use both the old and new content. (This is a bit of an overkill: // they really only need to be split if they ever reference proxy's contents again but // that is hard to predict/handle). if (GrOpList* lastOpList = rtp->getLastOpList()) { lastOpList->closeThoseWhoDependOnMe(*fContext->contextPriv().caps()); } } else if (fActiveOpList) { // This is a temporary fix for the partial-MDB world. In that world we're not // reordering so ops that (in the single opList world) would've just glommed onto the // end of the single opList but referred to a far earlier RT need to appear in their // own opList. fActiveOpList->makeClosed(*fContext->contextPriv().caps()); fActiveOpList = nullptr; } auto resourceProvider = fContext->contextPriv().resourceProvider(); sk_sp opList(new GrRenderTargetOpList( resourceProvider, fContext->contextPriv().refOpMemoryPool(), rtp, fContext->contextPriv().getAuditTrail())); SkASSERT(rtp->getLastOpList() == opList.get()); if (managedOpList) { fDAG.add(opList); if (!fDAG.sortingOpLists() || !fReduceOpListSplitting) { fActiveOpList = opList.get(); } } SkDEBUGCODE(this->validate()); return opList; } sk_sp GrDrawingManager::newTextureOpList(GrTextureProxy* textureProxy) { SkDEBUGCODE(this->validate()); SkASSERT(fContext); if (fDAG.sortingOpLists() && fReduceOpListSplitting) { // In this case we need to close all the opLists that rely on the current contents of // 'texture'. That is bc we're going to update the content of the proxy so they need to // be split in case they use both the old and new content. (This is a bit of an // overkill: they really only need to be split if they ever reference proxy's contents // again but that is hard to predict/handle). if (GrOpList* lastOpList = textureProxy->getLastOpList()) { lastOpList->closeThoseWhoDependOnMe(*fContext->contextPriv().caps()); } } else if (fActiveOpList) { // This is a temporary fix for the partial-MDB world. In that world we're not // reordering so ops that (in the single opList world) would've just glommed onto the // end of the single opList but referred to a far earlier RT need to appear in their // own opList. fActiveOpList->makeClosed(*fContext->contextPriv().caps()); fActiveOpList = nullptr; } sk_sp opList(new GrTextureOpList(fContext->contextPriv().resourceProvider(), fContext->contextPriv().refOpMemoryPool(), textureProxy, fContext->contextPriv().getAuditTrail())); SkASSERT(textureProxy->getLastOpList() == opList.get()); fDAG.add(opList); if (!fDAG.sortingOpLists() || !fReduceOpListSplitting) { fActiveOpList = opList.get(); } SkDEBUGCODE(this->validate()); return opList; } GrTextContext* GrDrawingManager::getTextContext() { if (!fTextContext) { fTextContext = GrTextContext::Make(fOptionsForTextContext); } return fTextContext.get(); } /* * This method finds a path renderer that can draw the specified path on * the provided target. * Due to its expense, the software path renderer has split out so it can * can be individually allowed/disallowed via the "allowSW" boolean. */ GrPathRenderer* GrDrawingManager::getPathRenderer(const GrPathRenderer::CanDrawPathArgs& args, bool allowSW, GrPathRendererChain::DrawType drawType, GrPathRenderer::StencilSupport* stencilSupport) { if (!fPathRendererChain) { fPathRendererChain.reset(new GrPathRendererChain(fContext, fOptionsForPathRendererChain)); } GrPathRenderer* pr = fPathRendererChain->getPathRenderer(args, drawType, stencilSupport); if (!pr && allowSW) { auto swPR = this->getSoftwarePathRenderer(); if (GrPathRenderer::CanDrawPath::kNo != swPR->canDrawPath(args)) { pr = swPR; } } return pr; } GrPathRenderer* GrDrawingManager::getSoftwarePathRenderer() { if (!fSoftwarePathRenderer) { fSoftwarePathRenderer.reset( new GrSoftwarePathRenderer(fContext->contextPriv().proxyProvider(), fOptionsForPathRendererChain.fAllowPathMaskCaching)); } return fSoftwarePathRenderer.get(); } GrCoverageCountingPathRenderer* GrDrawingManager::getCoverageCountingPathRenderer() { if (!fPathRendererChain) { fPathRendererChain.reset(new GrPathRendererChain(fContext, fOptionsForPathRendererChain)); } return fPathRendererChain->getCoverageCountingPathRenderer(); } void GrDrawingManager::flushIfNecessary() { GrResourceCache* resourceCache = fContext->contextPriv().getResourceCache(); if (resourceCache && resourceCache->requestsFlush()) { this->flush(nullptr, 0, nullptr); resourceCache->purgeAsNeeded(); } } sk_sp GrDrawingManager::makeRenderTargetContext( sk_sp sProxy, sk_sp colorSpace, const SkSurfaceProps* surfaceProps, bool managedOpList) { if (this->wasAbandoned() || !sProxy->asRenderTargetProxy()) { return nullptr; } // SkSurface catches bad color space usage at creation. This check handles anything that slips // by, including internal usage. if (!SkSurface_Gpu::Valid(fContext->contextPriv().caps(), sProxy->config(), colorSpace.get())) { SkDEBUGFAIL("Invalid config and colorspace combination"); return nullptr; } sk_sp rtp(sk_ref_sp(sProxy->asRenderTargetProxy())); return sk_sp(new GrRenderTargetContext( fContext, this, std::move(rtp), std::move(colorSpace), surfaceProps, fContext->contextPriv().getAuditTrail(), fSingleOwner, managedOpList)); } sk_sp GrDrawingManager::makeTextureContext(sk_sp sProxy, sk_sp colorSpace) { if (this->wasAbandoned() || !sProxy->asTextureProxy()) { return nullptr; } // SkSurface catches bad color space usage at creation. This check handles anything that slips // by, including internal usage. if (!SkSurface_Gpu::Valid(fContext->contextPriv().caps(), sProxy->config(), colorSpace.get())) { SkDEBUGFAIL("Invalid config and colorspace combination"); return nullptr; } // GrTextureRenderTargets should always be using a GrRenderTargetContext SkASSERT(!sProxy->asRenderTargetProxy()); sk_sp textureProxy(sk_ref_sp(sProxy->asTextureProxy())); return sk_sp(new GrTextureContext(fContext, this, std::move(textureProxy), std::move(colorSpace), fContext->contextPriv().getAuditTrail(), fSingleOwner)); }