/* * Copyright 2010 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrRenderTargetOpList.h" #include "GrAuditTrail.h" #include "GrCaps.h" #include "GrGpu.h" #include "GrGpuCommandBuffer.h" #include "GrMemoryPool.h" #include "GrRect.h" #include "GrRenderTargetContext.h" #include "GrResourceAllocator.h" #include "SkExchange.h" #include "SkRectPriv.h" #include "SkTraceEvent.h" #include "ops/GrClearOp.h" #include "ops/GrCopySurfaceOp.h" //////////////////////////////////////////////////////////////////////////////// // Experimentally we have found that most combining occurs within the first 10 comparisons. static const int kMaxOpMergeDistance = 10; static const int kMaxOpChainDistance = 10; //////////////////////////////////////////////////////////////////////////////// using DstProxy = GrXferProcessor::DstProxy; //////////////////////////////////////////////////////////////////////////////// static inline bool can_reorder(const SkRect& a, const SkRect& b) { return !GrRectsOverlap(a, b); } //////////////////////////////////////////////////////////////////////////////// inline GrRenderTargetOpList::OpChain::List::List(std::unique_ptr op) : fHead(std::move(op)), fTail(fHead.get()) { this->validate(); } inline GrRenderTargetOpList::OpChain::List::List(List&& that) { *this = std::move(that); } inline GrRenderTargetOpList::OpChain::List& GrRenderTargetOpList::OpChain::List::operator=( List&& that) { fHead = std::move(that.fHead); fTail = that.fTail; that.fTail = nullptr; this->validate(); return *this; } inline std::unique_ptr GrRenderTargetOpList::OpChain::List::popHead() { SkASSERT(fHead); auto temp = fHead->cutChain(); std::swap(temp, fHead); if (!fHead) { SkASSERT(fTail == temp.get()); fTail = nullptr; } return temp; } inline std::unique_ptr GrRenderTargetOpList::OpChain::List::removeOp(GrOp* op) { #ifdef SK_DEBUG auto head = op; while (head->prevInChain()) { head = head->prevInChain(); } SkASSERT(head == fHead.get()); #endif auto prev = op->prevInChain(); if (!prev) { SkASSERT(op == fHead.get()); return this->popHead(); } auto temp = prev->cutChain(); if (auto next = temp->cutChain()) { prev->chainConcat(std::move(next)); } else { SkASSERT(fTail == op); fTail = prev; } this->validate(); return temp; } inline void GrRenderTargetOpList::OpChain::List::pushHead(std::unique_ptr op) { SkASSERT(op); SkASSERT(op->isChainHead()); SkASSERT(op->isChainTail()); if (fHead) { op->chainConcat(std::move(fHead)); fHead = std::move(op); } else { fHead = std::move(op); fTail = fHead.get(); } } inline void GrRenderTargetOpList::OpChain::List::pushTail(std::unique_ptr op) { SkASSERT(op->isChainTail()); fTail->chainConcat(std::move(op)); fTail = fTail->nextInChain(); } inline void GrRenderTargetOpList::OpChain::List::validate() const { #ifdef SK_DEBUG if (fHead) { SkASSERT(fTail); fHead->validateChain(fTail); } #endif } //////////////////////////////////////////////////////////////////////////////// GrRenderTargetOpList::OpChain::OpChain(std::unique_ptr op, GrProcessorSet::Analysis processorAnalysis, GrAppliedClip* appliedClip, const DstProxy* dstProxy) : fList{std::move(op)} , fProcessorAnalysis(processorAnalysis) , fAppliedClip(appliedClip) { if (fProcessorAnalysis.requiresDstTexture()) { SkASSERT(dstProxy && dstProxy->proxy()); fDstProxy = *dstProxy; } fBounds = fList.head()->bounds(); } void GrRenderTargetOpList::OpChain::visitProxies(const GrOp::VisitProxyFunc& func, GrOp::VisitorType visitor) const { if (fList.empty()) { return; } for (const auto& op : GrOp::ChainRange<>(fList.head())) { op.visitProxies(func, visitor); } if (fDstProxy.proxy()) { func(fDstProxy.proxy()); } if (fAppliedClip) { fAppliedClip->visitProxies(func); } } void GrRenderTargetOpList::OpChain::deleteOps(GrOpMemoryPool* pool) { while (!fList.empty()) { pool->release(fList.popHead()); } } // Concatenates two op chains and attempts to merge ops across the chains. Assumes that we know that // the two chains are chainable. Returns the new chain. GrRenderTargetOpList::OpChain::List GrRenderTargetOpList::OpChain::DoConcat( List chainA, List chainB, const GrCaps& caps, GrOpMemoryPool* pool, GrAuditTrail* auditTrail) { // We process ops in chain b from head to tail. We attempt to merge with nodes in a, starting // at chain a's tail and working toward the head. We produce one of the following outcomes: // 1) b's head is merged into an op in a. // 2) An op from chain a is merged into b's head. (In this case b's head gets processed again.) // 3) b's head is popped from chain a and added at the tail of a. // After result 3 we don't want to attempt to merge the next head of b with the new tail of a, // as we assume merges were already attempted when chain b was created. So we keep track of the // original tail of a and start our iteration of a there. We also track the bounds of the nodes // appended to chain a that will be skipped for bounds testing. If the original tail of a is // merged into an op in b (case 2) then we advance the "original tail" towards the head of a. GrOp* origATail = chainA.tail(); SkRect skipBounds = SkRectPriv::MakeLargestInverted(); do { int numMergeChecks = 0; bool merged = false; bool noSkip = (origATail == chainA.tail()); SkASSERT(noSkip == (skipBounds == SkRectPriv::MakeLargestInverted())); bool canBackwardMerge = noSkip || can_reorder(chainB.head()->bounds(), skipBounds); SkRect forwardMergeBounds = skipBounds; GrOp* a = origATail; while (a) { bool canForwardMerge = (a == chainA.tail()) || can_reorder(a->bounds(), forwardMergeBounds); if (canForwardMerge || canBackwardMerge) { auto result = a->combineIfPossible(chainB.head(), caps); SkASSERT(result != GrOp::CombineResult::kCannotCombine); merged = (result == GrOp::CombineResult::kMerged); GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n", chainB.head()->name(), chainB.head()->uniqueID(), a->name(), a->uniqueID()); } if (merged) { GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, a, chainB.head()); if (canBackwardMerge) { pool->release(chainB.popHead()); } else { // We merged the contents of b's head into a. We will replace b's head with a in // chain b. SkASSERT(canForwardMerge); if (a == origATail) { origATail = a->prevInChain(); } std::unique_ptr detachedA = chainA.removeOp(a); pool->release(chainB.popHead()); chainB.pushHead(std::move(detachedA)); if (chainA.empty()) { // We merged all the nodes in chain a to chain b. return chainB; } } break; } else { if (++numMergeChecks == kMaxOpMergeDistance) { break; } forwardMergeBounds.joinNonEmptyArg(a->bounds()); canBackwardMerge = canBackwardMerge && can_reorder(chainB.head()->bounds(), a->bounds()); a = a->prevInChain(); } } // If we weren't able to merge b's head then pop b's head from chain b and make it the new // tail of a. if (!merged) { chainA.pushTail(chainB.popHead()); skipBounds.joinNonEmptyArg(chainA.tail()->bounds()); } } while (!chainB.empty()); return chainA; } // Attempts to concatenate the given chain onto our own and merge ops across the chains. Returns // whether the operation succeeded. On success, the provided list will be returned empty. bool GrRenderTargetOpList::OpChain::tryConcat( List* list, GrProcessorSet::Analysis processorAnalysis, const DstProxy& dstProxy, const GrAppliedClip* appliedClip, const SkRect& bounds, const GrCaps& caps, GrOpMemoryPool* pool, GrAuditTrail* auditTrail) { SkASSERT(!fList.empty()); SkASSERT(!list->empty()); SkASSERT(fProcessorAnalysis.requiresDstTexture() == SkToBool(fDstProxy.proxy())); SkASSERT(processorAnalysis.requiresDstTexture() == SkToBool(dstProxy.proxy())); // All returns use explicit tuple constructor rather than {a, b} to work around old GCC bug. if (fList.head()->classID() != list->head()->classID() || SkToBool(fAppliedClip) != SkToBool(appliedClip) || (fAppliedClip && *fAppliedClip != *appliedClip) || (fProcessorAnalysis.requiresNonOverlappingDraws() != processorAnalysis.requiresNonOverlappingDraws()) || (fProcessorAnalysis.requiresNonOverlappingDraws() && // Non-overlaping draws are only required when Ganesh will either insert a barrier, // or read back a new dst texture between draws. In either case, we can neither // chain nor combine overlapping Ops. GrRectsTouchOrOverlap(fBounds, bounds)) || (fProcessorAnalysis.requiresDstTexture() != processorAnalysis.requiresDstTexture()) || (fProcessorAnalysis.requiresDstTexture() && fDstProxy != dstProxy)) { return false; } SkDEBUGCODE(bool first = true;) do { switch (fList.tail()->combineIfPossible(list->head(), caps)) { case GrOp::CombineResult::kCannotCombine: // If an op supports chaining then it is required that chaining is transitive and // that if any two ops in two different chains can merge then the two chains // may also be chained together. Thus, we should only hit this on the first // iteration. SkASSERT(first); return false; case GrOp::CombineResult::kMayChain: fList = DoConcat(std::move(fList), skstd::exchange(*list, List()), caps, pool, auditTrail); // The above exchange cleared out 'list'. The list needs to be empty now for the // loop to terminate. SkASSERT(list->empty()); break; case GrOp::CombineResult::kMerged: { GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n", list->tail()->name(), list->tail()->uniqueID(), list->head()->name(), list->head()->uniqueID()); GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, fList.tail(), list->head()); pool->release(list->popHead()); break; } } SkDEBUGCODE(first = false); } while (!list->empty()); // The new ops were successfully merged and/or chained onto our own. fBounds.joinPossiblyEmptyRect(bounds); return true; } bool GrRenderTargetOpList::OpChain::prependChain(OpChain* that, const GrCaps& caps, GrOpMemoryPool* pool, GrAuditTrail* auditTrail) { if (!that->tryConcat( &fList, fProcessorAnalysis, fDstProxy, fAppliedClip, fBounds, caps, pool, auditTrail)) { this->validate(); // append failed return false; } // 'that' owns the combined chain. Move it into 'this'. SkASSERT(fList.empty()); fList = std::move(that->fList); fBounds = that->fBounds; that->fDstProxy.setProxy(nullptr); if (that->fAppliedClip) { for (int i = 0; i < that->fAppliedClip->numClipCoverageFragmentProcessors(); ++i) { that->fAppliedClip->detachClipCoverageFragmentProcessor(i); } } this->validate(); return true; } std::unique_ptr GrRenderTargetOpList::OpChain::appendOp( std::unique_ptr op, GrProcessorSet::Analysis processorAnalysis, const DstProxy* dstProxy, const GrAppliedClip* appliedClip, const GrCaps& caps, GrOpMemoryPool* pool, GrAuditTrail* auditTrail) { const GrXferProcessor::DstProxy noDstProxy; if (!dstProxy) { dstProxy = &noDstProxy; } SkASSERT(op->isChainHead() && op->isChainTail()); SkRect opBounds = op->bounds(); List chain(std::move(op)); if (!this->tryConcat( &chain, processorAnalysis, *dstProxy, appliedClip, opBounds, caps, pool, auditTrail)) { // append failed, give the op back to the caller. this->validate(); return chain.popHead(); } SkASSERT(chain.empty()); this->validate(); return nullptr; } inline void GrRenderTargetOpList::OpChain::validate() const { #ifdef SK_DEBUG fList.validate(); for (const auto& op : GrOp::ChainRange<>(fList.head())) { // Not using SkRect::contains because we allow empty rects. SkASSERT(fBounds.fLeft <= op.bounds().fLeft && fBounds.fTop <= op.bounds().fTop && fBounds.fRight >= op.bounds().fRight && fBounds.fBottom >= op.bounds().fBottom); } #endif } //////////////////////////////////////////////////////////////////////////////// GrRenderTargetOpList::GrRenderTargetOpList(GrResourceProvider* resourceProvider, sk_sp opMemoryPool, GrRenderTargetProxy* proxy, GrAuditTrail* auditTrail) : INHERITED(resourceProvider, std::move(opMemoryPool), proxy, auditTrail) , fLastClipStackGenID(SK_InvalidUniqueID) SkDEBUGCODE(, fNumClips(0)) { } void GrRenderTargetOpList::deleteOps() { for (auto& chain : fOpChains) { chain.deleteOps(fOpMemoryPool.get()); } fOpChains.reset(); } GrRenderTargetOpList::~GrRenderTargetOpList() { this->deleteOps(); } //////////////////////////////////////////////////////////////////////////////// #ifdef SK_DEBUG void GrRenderTargetOpList::dump(bool printDependencies) const { INHERITED::dump(printDependencies); SkDebugf("ops (%d):\n", fOpChains.count()); for (int i = 0; i < fOpChains.count(); ++i) { SkDebugf("*******************************\n"); if (!fOpChains[i].head()) { SkDebugf("%d: \n", i); } else { SkDebugf("%d: %s\n", i, fOpChains[i].head()->name()); SkRect bounds = fOpChains[i].bounds(); SkDebugf("ClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom); for (const auto& op : GrOp::ChainRange<>(fOpChains[i].head())) { SkString info = SkTabString(op.dumpInfo(), 1); SkDebugf("%s\n", info.c_str()); bounds = op.bounds(); SkDebugf("\tClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom); } } } } void GrRenderTargetOpList::visitProxies_debugOnly(const GrOp::VisitProxyFunc& func) const { for (const OpChain& chain : fOpChains) { chain.visitProxies(func, GrOp::VisitorType::kOther); } } #endif void GrRenderTargetOpList::onPrepare(GrOpFlushState* flushState) { SkASSERT(fTarget.get()->peekRenderTarget()); SkASSERT(this->isClosed()); #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK TRACE_EVENT0("skia", TRACE_FUNC); #endif // Loop over the ops that haven't yet been prepared. for (const auto& chain : fOpChains) { if (chain.head()) { #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK TRACE_EVENT0("skia", chain.head()->name()); #endif GrOpFlushState::OpArgs opArgs = { chain.head(), fTarget.get()->asRenderTargetProxy(), chain.appliedClip(), chain.dstProxy() }; flushState->setOpArgs(&opArgs); chain.head()->prepare(flushState); flushState->setOpArgs(nullptr); } } } static GrGpuRTCommandBuffer* create_command_buffer(GrGpu* gpu, GrRenderTarget* rt, GrSurfaceOrigin origin, const SkRect& bounds, GrLoadOp colorLoadOp, const SkPMColor4f& loadClearColor, GrLoadOp stencilLoadOp) { const GrGpuRTCommandBuffer::LoadAndStoreInfo kColorLoadStoreInfo { colorLoadOp, GrStoreOp::kStore, loadClearColor }; // TODO: // We would like to (at this level) only ever clear & discard. We would need // to stop splitting up higher level opLists for copyOps to achieve that. // Note: we would still need SB loads and stores but they would happen at a // lower level (inside the VK command buffer). const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo stencilLoadAndStoreInfo { stencilLoadOp, GrStoreOp::kStore, }; return gpu->getCommandBuffer(rt, origin, bounds, kColorLoadStoreInfo, stencilLoadAndStoreInfo); } // TODO: this is where GrOp::renderTarget is used (which is fine since it // is at flush time). However, we need to store the RenderTargetProxy in the // Ops and instantiate them here. bool GrRenderTargetOpList::onExecute(GrOpFlushState* flushState) { // TODO: Forcing the execution of the discard here isn't ideal since it will cause us to do a // discard and then store the data back in memory so that the load op on future draws doesn't // think the memory is unitialized. Ideally we would want a system where we are tracking whether // the proxy itself has valid data or not, and then use that as a signal on whether we should be // loading or discarding. In that world we wouldni;t need to worry about executing oplists with // no ops just to do a discard. if (fOpChains.empty() && GrLoadOp::kClear != fColorLoadOp && GrLoadOp::kDiscard != fColorLoadOp) { return false; } SkASSERT(fTarget.get()->peekRenderTarget()); TRACE_EVENT0("skia", TRACE_FUNC); // TODO: at the very least, we want the stencil store op to always be discard (at this // level). In Vulkan, sub-command buffers would still need to load & store the stencil buffer. // Make sure load ops are not kClear if the GPU needs to use draws for clears SkASSERT(fColorLoadOp != GrLoadOp::kClear || !flushState->gpu()->caps()->performColorClearsAsDraws()); SkASSERT(fStencilLoadOp != GrLoadOp::kClear || !flushState->gpu()->caps()->performStencilClearsAsDraws()); GrGpuRTCommandBuffer* commandBuffer = create_command_buffer( flushState->gpu(), fTarget.get()->peekRenderTarget(), fTarget.get()->origin(), fTarget.get()->getBoundsRect(), fColorLoadOp, fLoadClearColor, fStencilLoadOp); flushState->setCommandBuffer(commandBuffer); commandBuffer->begin(); // Draw all the generated geometry. for (const auto& chain : fOpChains) { if (!chain.head()) { continue; } #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK TRACE_EVENT0("skia", chain.head()->name()); #endif GrOpFlushState::OpArgs opArgs { chain.head(), fTarget.get()->asRenderTargetProxy(), chain.appliedClip(), chain.dstProxy() }; flushState->setOpArgs(&opArgs); chain.head()->execute(flushState, chain.bounds()); flushState->setOpArgs(nullptr); } commandBuffer->end(); flushState->gpu()->submit(commandBuffer); flushState->setCommandBuffer(nullptr); return true; } void GrRenderTargetOpList::endFlush() { fLastClipStackGenID = SK_InvalidUniqueID; this->deleteOps(); fClipAllocator.reset(); INHERITED::endFlush(); } void GrRenderTargetOpList::discard() { // Discard calls to in-progress opLists are ignored. Calls at the start update the // opLists' color & stencil load ops. if (this->isEmpty()) { fColorLoadOp = GrLoadOp::kDiscard; fStencilLoadOp = GrLoadOp::kDiscard; } } void GrRenderTargetOpList::setStencilLoadOp(GrLoadOp op) { fStencilLoadOp = op; } void GrRenderTargetOpList::setColorLoadOp(GrLoadOp op, const SkPMColor4f& color) { fColorLoadOp = op; fLoadClearColor = color; } bool GrRenderTargetOpList::resetForFullscreenClear() { // Mark the color load op as discard (this may be followed by a clearColorOnLoad call to make // the load op kClear, or it may be followed by an explicit op). In the event of an absClear() // after a regular clear(), we could end up with a clear load op and a real clear op in the list // if the load op were not reset here. fColorLoadOp = GrLoadOp::kDiscard; // Regardless of how the clear is implemented (native clear or a fullscreen quad), all prior ops // would be overwritten, so discard them entirely. The one exception is if the opList is marked // as needing a stencil buffer then there may be a prior op that writes to the stencil buffer. // Although the clear will ignore the stencil buffer, following draw ops may not so we can't get // rid of all the preceding ops. Beware! If we ever add any ops that have a side effect beyond // modifying the stencil buffer we will need a more elaborate tracking system (skbug.com/7002). if (this->isEmpty() || !fTarget.get()->asRenderTargetProxy()->needsStencil()) { this->deleteOps(); fDeferredProxies.reset(); // If the opList is using a render target which wraps a vulkan command buffer, we can't do a // clear load since we cannot change the render pass that we are using. Thus we fall back to // making a clear op in this case. return !fTarget.get()->asRenderTargetProxy()->wrapsVkSecondaryCB(); } // Could not empty the list, so an op must be added to handle the clear return false; } //////////////////////////////////////////////////////////////////////////////// // This closely parallels GrTextureOpList::copySurface but renderTargetOpLists // also store the applied clip and dest proxy with the op bool GrRenderTargetOpList::copySurface(GrContext* context, GrSurfaceProxy* dst, GrSurfaceProxy* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(dst->asRenderTargetProxy() == fTarget.get()); std::unique_ptr op = GrCopySurfaceOp::Make(context, dst, src, srcRect, dstPoint); if (!op) { return false; } this->addOp(std::move(op), *context->contextPriv().caps()); return true; } void GrRenderTargetOpList::purgeOpsWithUninstantiatedProxies() { bool hasUninstantiatedProxy = false; auto checkInstantiation = [&hasUninstantiatedProxy](GrSurfaceProxy* p) { if (!p->isInstantiated()) { hasUninstantiatedProxy = true; } }; for (OpChain& recordedOp : fOpChains) { hasUninstantiatedProxy = false; recordedOp.visitProxies(checkInstantiation, GrOp::VisitorType::kOther); if (hasUninstantiatedProxy) { // When instantiation of the proxy fails we drop the Op recordedOp.deleteOps(fOpMemoryPool.get()); } } } void GrRenderTargetOpList::gatherProxyIntervals(GrResourceAllocator* alloc) const { unsigned int cur = alloc->numOps(); for (int i = 0; i < fDeferredProxies.count(); ++i) { SkASSERT(!fDeferredProxies[i]->isInstantiated()); // We give all the deferred proxies a write usage at the very start of flushing. This // locks them out of being reused for the entire flush until they are read - and then // they can be recycled. This is a bit unfortunate because a flush can proceed in waves // with sub-flushes. The deferred proxies only need to be pinned from the start of // the sub-flush in which they appear. alloc->addInterval(fDeferredProxies[i], 0, 0); } // Add the interval for all the writes to this opList's target if (fOpChains.count()) { alloc->addInterval(fTarget.get(), cur, cur + fOpChains.count() - 1); } else { // This can happen if there is a loadOp (e.g., a clear) but no other draws. In this case we // still need to add an interval for the destination so we create a fake op# for // the missing clear op. alloc->addInterval(fTarget.get()); alloc->incOps(); } auto gather = [ alloc SkDEBUGCODE(, this) ] (GrSurfaceProxy* p) { alloc->addInterval(p SkDEBUGCODE(, fTarget.get() == p)); }; for (const OpChain& recordedOp : fOpChains) { // only diff from the GrTextureOpList version recordedOp.visitProxies(gather, GrOp::VisitorType::kAllocatorGather); // Even though the op may have been moved we still need to increment the op count to // keep all the math consistent. alloc->incOps(); } } void GrRenderTargetOpList::recordOp( std::unique_ptr op, GrProcessorSet::Analysis processorAnalysis, GrAppliedClip* clip, const DstProxy* dstProxy, const GrCaps& caps) { SkDEBUGCODE(op->validate();) SkASSERT(processorAnalysis.requiresDstTexture() == (dstProxy && dstProxy->proxy())); SkASSERT(fTarget.get()); // A closed GrOpList should never receive new/more ops SkASSERT(!this->isClosed()); if (!op->bounds().isFinite()) { fOpMemoryPool->release(std::move(op)); return; } // Check if there is an op we can combine with by linearly searching back until we either // 1) check every op // 2) intersect with something // 3) find a 'blocker' GR_AUDIT_TRAIL_ADD_OP(fAuditTrail, op.get(), fTarget.get()->uniqueID()); GrOP_INFO("opList: %d Recording (%s, opID: %u)\n" "\tBounds [L: %.2f, T: %.2f R: %.2f B: %.2f]\n", this->uniqueID(), op->name(), op->uniqueID(), op->bounds().fLeft, op->bounds().fTop, op->bounds().fRight, op->bounds().fBottom); GrOP_INFO(SkTabString(op->dumpInfo(), 1).c_str()); GrOP_INFO("\tOutcome:\n"); int maxCandidates = SkTMin(kMaxOpChainDistance, fOpChains.count()); if (maxCandidates) { int i = 0; while (true) { OpChain& candidate = fOpChains.fromBack(i); op = candidate.appendOp(std::move(op), processorAnalysis, dstProxy, clip, caps, fOpMemoryPool.get(), fAuditTrail); if (!op) { return; } // Stop going backwards if we would cause a painter's order violation. if (!can_reorder(candidate.bounds(), op->bounds())) { GrOP_INFO("\t\tBackward: Intersects with chain (%s, head opID: %u)\n", candidate.head()->name(), candidate.head()->uniqueID()); break; } if (++i == maxCandidates) { GrOP_INFO("\t\tBackward: Reached max lookback or beginning of op array %d\n", i); break; } } } else { GrOP_INFO("\t\tBackward: FirstOp\n"); } if (clip) { clip = fClipAllocator.make(std::move(*clip)); SkDEBUGCODE(fNumClips++;) } fOpChains.emplace_back(std::move(op), processorAnalysis, clip, dstProxy); } void GrRenderTargetOpList::forwardCombine(const GrCaps& caps) { SkASSERT(!this->isClosed()); GrOP_INFO("opList: %d ForwardCombine %d ops:\n", this->uniqueID(), fOpChains.count()); for (int i = 0; i < fOpChains.count() - 1; ++i) { OpChain& chain = fOpChains[i]; int maxCandidateIdx = SkTMin(i + kMaxOpChainDistance, fOpChains.count() - 1); int j = i + 1; while (true) { OpChain& candidate = fOpChains[j]; if (candidate.prependChain(&chain, caps, fOpMemoryPool.get(), fAuditTrail)) { break; } // Stop traversing if we would cause a painter's order violation. if (!can_reorder(chain.bounds(), candidate.bounds())) { GrOP_INFO( "\t\t%d: chain (%s head opID: %u) -> " "Intersects with chain (%s, head opID: %u)\n", i, chain.head()->name(), chain.head()->uniqueID(), candidate.head()->name(), candidate.head()->uniqueID()); break; } if (++j > maxCandidateIdx) { GrOP_INFO("\t\t%d: chain (%s opID: %u) -> Reached max lookahead or end of array\n", i, chain.head()->name(), chain.head()->uniqueID()); break; } } } }