/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrVkPipeline.h" #include "GrGeometryProcessor.h" #include "GrPipeline.h" #include "GrStencilSettings.h" #include "GrVkCommandBuffer.h" #include "GrVkGpu.h" #include "GrVkRenderTarget.h" #include "GrVkUtil.h" static inline VkFormat attrib_type_to_vkformat(GrVertexAttribType type) { switch (type) { case kFloat_GrVertexAttribType: return VK_FORMAT_R32_SFLOAT; case kFloat2_GrVertexAttribType: return VK_FORMAT_R32G32_SFLOAT; case kFloat3_GrVertexAttribType: return VK_FORMAT_R32G32B32_SFLOAT; case kFloat4_GrVertexAttribType: return VK_FORMAT_R32G32B32A32_SFLOAT; case kHalf_GrVertexAttribType: return VK_FORMAT_R16_SFLOAT; case kHalf2_GrVertexAttribType: return VK_FORMAT_R16G16_SFLOAT; case kHalf3_GrVertexAttribType: return VK_FORMAT_R16G16B16_SFLOAT; case kHalf4_GrVertexAttribType: return VK_FORMAT_R16G16B16A16_SFLOAT; case kInt2_GrVertexAttribType: return VK_FORMAT_R32G32_SINT; case kInt3_GrVertexAttribType: return VK_FORMAT_R32G32B32_SINT; case kInt4_GrVertexAttribType: return VK_FORMAT_R32G32B32A32_SINT; case kByte_GrVertexAttribType: return VK_FORMAT_R8_SINT; case kByte2_GrVertexAttribType: return VK_FORMAT_R8G8_SINT; case kByte3_GrVertexAttribType: return VK_FORMAT_R8G8B8_SINT; case kByte4_GrVertexAttribType: return VK_FORMAT_R8G8B8A8_SINT; case kUByte_GrVertexAttribType: return VK_FORMAT_R8_UINT; case kUByte2_GrVertexAttribType: return VK_FORMAT_R8G8_UINT; case kUByte3_GrVertexAttribType: return VK_FORMAT_R8G8B8_UINT; case kUByte4_GrVertexAttribType: return VK_FORMAT_R8G8B8A8_UINT; case kUByte_norm_GrVertexAttribType: return VK_FORMAT_R8_UNORM; case kUByte4_norm_GrVertexAttribType: return VK_FORMAT_R8G8B8A8_UNORM; case kShort2_GrVertexAttribType: return VK_FORMAT_R16G16_SINT; case kShort4_GrVertexAttribType: return VK_FORMAT_R16G16B16A16_SINT; case kUShort2_GrVertexAttribType: return VK_FORMAT_R16G16_UINT; case kUShort2_norm_GrVertexAttribType: return VK_FORMAT_R16G16_UNORM; case kInt_GrVertexAttribType: return VK_FORMAT_R32_SINT; case kUint_GrVertexAttribType: return VK_FORMAT_R32_UINT; } SK_ABORT("Unknown vertex attrib type"); return VK_FORMAT_UNDEFINED; } static void setup_vertex_input_state(const GrPrimitiveProcessor& primProc, VkPipelineVertexInputStateCreateInfo* vertexInputInfo, SkSTArray<2, VkVertexInputBindingDescription, true>* bindingDescs, VkVertexInputAttributeDescription* attributeDesc) { uint32_t vertexBinding = 0, instanceBinding = 0; int nextBinding = bindingDescs->count(); if (primProc.hasVertexAttributes()) { vertexBinding = nextBinding++; } if (primProc.hasInstanceAttributes()) { instanceBinding = nextBinding; } // setup attribute descriptions int vaCount = primProc.numVertexAttributes(); int attribIndex = 0; size_t vertexAttributeOffset = 0; for (const auto& attrib : primProc.vertexAttributes()) { VkVertexInputAttributeDescription& vkAttrib = attributeDesc[attribIndex]; vkAttrib.location = attribIndex++; // for now assume location = attribIndex vkAttrib.binding = vertexBinding; vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType()); vkAttrib.offset = vertexAttributeOffset; vertexAttributeOffset += attrib.sizeAlign4(); } SkASSERT(vertexAttributeOffset == primProc.vertexStride()); int iaCount = primProc.numInstanceAttributes(); size_t instanceAttributeOffset = 0; for (const auto& attrib : primProc.instanceAttributes()) { VkVertexInputAttributeDescription& vkAttrib = attributeDesc[attribIndex]; vkAttrib.location = attribIndex++; // for now assume location = attribIndex vkAttrib.binding = instanceBinding; vkAttrib.format = attrib_type_to_vkformat(attrib.cpuType()); vkAttrib.offset = instanceAttributeOffset; instanceAttributeOffset += attrib.sizeAlign4(); } SkASSERT(instanceAttributeOffset == primProc.instanceStride()); if (primProc.hasVertexAttributes()) { bindingDescs->push_back() = { vertexBinding, (uint32_t) vertexAttributeOffset, VK_VERTEX_INPUT_RATE_VERTEX }; } if (primProc.hasInstanceAttributes()) { bindingDescs->push_back() = { instanceBinding, (uint32_t) instanceAttributeOffset, VK_VERTEX_INPUT_RATE_INSTANCE }; } memset(vertexInputInfo, 0, sizeof(VkPipelineVertexInputStateCreateInfo)); vertexInputInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertexInputInfo->pNext = nullptr; vertexInputInfo->flags = 0; vertexInputInfo->vertexBindingDescriptionCount = bindingDescs->count(); vertexInputInfo->pVertexBindingDescriptions = bindingDescs->begin(); vertexInputInfo->vertexAttributeDescriptionCount = vaCount + iaCount; vertexInputInfo->pVertexAttributeDescriptions = attributeDesc; } static VkPrimitiveTopology gr_primitive_type_to_vk_topology(GrPrimitiveType primitiveType) { switch (primitiveType) { case GrPrimitiveType::kTriangles: return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; case GrPrimitiveType::kTriangleStrip: return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; case GrPrimitiveType::kPoints: return VK_PRIMITIVE_TOPOLOGY_POINT_LIST; case GrPrimitiveType::kLines: return VK_PRIMITIVE_TOPOLOGY_LINE_LIST; case GrPrimitiveType::kLineStrip: return VK_PRIMITIVE_TOPOLOGY_LINE_STRIP; case GrPrimitiveType::kLinesAdjacency: return VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY; } SK_ABORT("invalid GrPrimitiveType"); return VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; } static void setup_input_assembly_state(GrPrimitiveType primitiveType, VkPipelineInputAssemblyStateCreateInfo* inputAssemblyInfo) { memset(inputAssemblyInfo, 0, sizeof(VkPipelineInputAssemblyStateCreateInfo)); inputAssemblyInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssemblyInfo->pNext = nullptr; inputAssemblyInfo->flags = 0; inputAssemblyInfo->primitiveRestartEnable = false; inputAssemblyInfo->topology = gr_primitive_type_to_vk_topology(primitiveType); } static VkStencilOp stencil_op_to_vk_stencil_op(GrStencilOp op) { static const VkStencilOp gTable[] = { VK_STENCIL_OP_KEEP, // kKeep VK_STENCIL_OP_ZERO, // kZero VK_STENCIL_OP_REPLACE, // kReplace VK_STENCIL_OP_INVERT, // kInvert VK_STENCIL_OP_INCREMENT_AND_WRAP, // kIncWrap VK_STENCIL_OP_DECREMENT_AND_WRAP, // kDecWrap VK_STENCIL_OP_INCREMENT_AND_CLAMP, // kIncClamp VK_STENCIL_OP_DECREMENT_AND_CLAMP, // kDecClamp }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kGrStencilOpCount); GR_STATIC_ASSERT(0 == (int)GrStencilOp::kKeep); GR_STATIC_ASSERT(1 == (int)GrStencilOp::kZero); GR_STATIC_ASSERT(2 == (int)GrStencilOp::kReplace); GR_STATIC_ASSERT(3 == (int)GrStencilOp::kInvert); GR_STATIC_ASSERT(4 == (int)GrStencilOp::kIncWrap); GR_STATIC_ASSERT(5 == (int)GrStencilOp::kDecWrap); GR_STATIC_ASSERT(6 == (int)GrStencilOp::kIncClamp); GR_STATIC_ASSERT(7 == (int)GrStencilOp::kDecClamp); SkASSERT(op < (GrStencilOp)kGrStencilOpCount); return gTable[(int)op]; } static VkCompareOp stencil_func_to_vk_compare_op(GrStencilTest test) { static const VkCompareOp gTable[] = { VK_COMPARE_OP_ALWAYS, // kAlways VK_COMPARE_OP_NEVER, // kNever VK_COMPARE_OP_GREATER, // kGreater VK_COMPARE_OP_GREATER_OR_EQUAL, // kGEqual VK_COMPARE_OP_LESS, // kLess VK_COMPARE_OP_LESS_OR_EQUAL, // kLEqual VK_COMPARE_OP_EQUAL, // kEqual VK_COMPARE_OP_NOT_EQUAL, // kNotEqual }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kGrStencilTestCount); GR_STATIC_ASSERT(0 == (int)GrStencilTest::kAlways); GR_STATIC_ASSERT(1 == (int)GrStencilTest::kNever); GR_STATIC_ASSERT(2 == (int)GrStencilTest::kGreater); GR_STATIC_ASSERT(3 == (int)GrStencilTest::kGEqual); GR_STATIC_ASSERT(4 == (int)GrStencilTest::kLess); GR_STATIC_ASSERT(5 == (int)GrStencilTest::kLEqual); GR_STATIC_ASSERT(6 == (int)GrStencilTest::kEqual); GR_STATIC_ASSERT(7 == (int)GrStencilTest::kNotEqual); SkASSERT(test < (GrStencilTest)kGrStencilTestCount); return gTable[(int)test]; } static void setup_depth_stencil_state(const GrStencilSettings& stencilSettings, VkPipelineDepthStencilStateCreateInfo* stencilInfo) { memset(stencilInfo, 0, sizeof(VkPipelineDepthStencilStateCreateInfo)); stencilInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; stencilInfo->pNext = nullptr; stencilInfo->flags = 0; // set depth testing defaults stencilInfo->depthTestEnable = VK_FALSE; stencilInfo->depthWriteEnable = VK_FALSE; stencilInfo->depthCompareOp = VK_COMPARE_OP_ALWAYS; stencilInfo->depthBoundsTestEnable = VK_FALSE; stencilInfo->stencilTestEnable = !stencilSettings.isDisabled(); if (!stencilSettings.isDisabled()) { // Set front face const GrStencilSettings::Face& front = stencilSettings.front(); stencilInfo->front.failOp = stencil_op_to_vk_stencil_op(front.fFailOp); stencilInfo->front.passOp = stencil_op_to_vk_stencil_op(front.fPassOp); stencilInfo->front.depthFailOp = stencilInfo->front.failOp; stencilInfo->front.compareOp = stencil_func_to_vk_compare_op(front.fTest); stencilInfo->front.compareMask = front.fTestMask; stencilInfo->front.writeMask = front.fWriteMask; stencilInfo->front.reference = front.fRef; // Set back face if (!stencilSettings.isTwoSided()) { stencilInfo->back = stencilInfo->front; } else { const GrStencilSettings::Face& back = stencilSettings.back(); stencilInfo->back.failOp = stencil_op_to_vk_stencil_op(back.fFailOp); stencilInfo->back.passOp = stencil_op_to_vk_stencil_op(back.fPassOp); stencilInfo->back.depthFailOp = stencilInfo->front.failOp; stencilInfo->back.compareOp = stencil_func_to_vk_compare_op(back.fTest); stencilInfo->back.compareMask = back.fTestMask; stencilInfo->back.writeMask = back.fWriteMask; stencilInfo->back.reference = back.fRef; } } stencilInfo->minDepthBounds = 0.0f; stencilInfo->maxDepthBounds = 1.0f; } static void setup_viewport_scissor_state(VkPipelineViewportStateCreateInfo* viewportInfo) { memset(viewportInfo, 0, sizeof(VkPipelineViewportStateCreateInfo)); viewportInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewportInfo->pNext = nullptr; viewportInfo->flags = 0; viewportInfo->viewportCount = 1; viewportInfo->pViewports = nullptr; // This is set dynamically viewportInfo->scissorCount = 1; viewportInfo->pScissors = nullptr; // This is set dynamically SkASSERT(viewportInfo->viewportCount == viewportInfo->scissorCount); } static void setup_multisample_state(int numColorSamples, const GrPrimitiveProcessor& primProc, const GrPipeline& pipeline, const GrCaps* caps, VkPipelineMultisampleStateCreateInfo* multisampleInfo) { memset(multisampleInfo, 0, sizeof(VkPipelineMultisampleStateCreateInfo)); multisampleInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisampleInfo->pNext = nullptr; multisampleInfo->flags = 0; SkAssertResult(GrSampleCountToVkSampleCount(numColorSamples, &multisampleInfo->rasterizationSamples)); multisampleInfo->sampleShadingEnable = VK_FALSE; multisampleInfo->minSampleShading = 0.0f; multisampleInfo->pSampleMask = nullptr; multisampleInfo->alphaToCoverageEnable = VK_FALSE; multisampleInfo->alphaToOneEnable = VK_FALSE; } static VkBlendFactor blend_coeff_to_vk_blend(GrBlendCoeff coeff) { static const VkBlendFactor gTable[] = { VK_BLEND_FACTOR_ZERO, // kZero_GrBlendCoeff VK_BLEND_FACTOR_ONE, // kOne_GrBlendCoeff VK_BLEND_FACTOR_SRC_COLOR, // kSC_GrBlendCoeff VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, // kISC_GrBlendCoeff VK_BLEND_FACTOR_DST_COLOR, // kDC_GrBlendCoeff VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, // kIDC_GrBlendCoeff VK_BLEND_FACTOR_SRC_ALPHA, // kSA_GrBlendCoeff VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, // kISA_GrBlendCoeff VK_BLEND_FACTOR_DST_ALPHA, // kDA_GrBlendCoeff VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA, // kIDA_GrBlendCoeff VK_BLEND_FACTOR_CONSTANT_COLOR, // kConstC_GrBlendCoeff VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, // kIConstC_GrBlendCoeff VK_BLEND_FACTOR_CONSTANT_ALPHA, // kConstA_GrBlendCoeff VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, // kIConstA_GrBlendCoeff VK_BLEND_FACTOR_SRC1_COLOR, // kS2C_GrBlendCoeff VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, // kIS2C_GrBlendCoeff VK_BLEND_FACTOR_SRC1_ALPHA, // kS2A_GrBlendCoeff VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, // kIS2A_GrBlendCoeff VK_BLEND_FACTOR_ZERO, // kIllegal_GrBlendCoeff }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kGrBlendCoeffCnt); GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff); GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff); GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff); GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff); GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff); GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff); GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff); GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff); GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff); GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff); GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff); GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff); GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff); GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff); GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff); GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff); GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff); GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff); SkASSERT((unsigned)coeff < kGrBlendCoeffCnt); return gTable[coeff]; } static VkBlendOp blend_equation_to_vk_blend_op(GrBlendEquation equation) { static const VkBlendOp gTable[] = { // Basic blend ops VK_BLEND_OP_ADD, VK_BLEND_OP_SUBTRACT, VK_BLEND_OP_REVERSE_SUBTRACT, // Advanced blend ops VK_BLEND_OP_SCREEN_EXT, VK_BLEND_OP_OVERLAY_EXT, VK_BLEND_OP_DARKEN_EXT, VK_BLEND_OP_LIGHTEN_EXT, VK_BLEND_OP_COLORDODGE_EXT, VK_BLEND_OP_COLORBURN_EXT, VK_BLEND_OP_HARDLIGHT_EXT, VK_BLEND_OP_SOFTLIGHT_EXT, VK_BLEND_OP_DIFFERENCE_EXT, VK_BLEND_OP_EXCLUSION_EXT, VK_BLEND_OP_MULTIPLY_EXT, VK_BLEND_OP_HSL_HUE_EXT, VK_BLEND_OP_HSL_SATURATION_EXT, VK_BLEND_OP_HSL_COLOR_EXT, VK_BLEND_OP_HSL_LUMINOSITY_EXT, // Illegal. VK_BLEND_OP_ADD, }; GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation); GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation); GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation); GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation); GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation); GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation); GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation); GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation); GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation); GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation); GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation); GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation); GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation); GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation); GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation); GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation); GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation); GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation); GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kGrBlendEquationCnt); SkASSERT((unsigned)equation < kGrBlendCoeffCnt); return gTable[equation]; } static bool blend_coeff_refs_constant(GrBlendCoeff coeff) { static const bool gCoeffReferencesBlendConst[] = { false, false, false, false, false, false, false, false, false, false, true, true, true, true, // extended blend coeffs false, false, false, false, // Illegal false, }; return gCoeffReferencesBlendConst[coeff]; GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst)); // Individual enum asserts already made in blend_coeff_to_vk_blend } static void setup_color_blend_state(const GrPipeline& pipeline, VkPipelineColorBlendStateCreateInfo* colorBlendInfo, VkPipelineColorBlendAttachmentState* attachmentState) { GrXferProcessor::BlendInfo blendInfo; pipeline.getXferProcessor().getBlendInfo(&blendInfo); GrBlendEquation equation = blendInfo.fEquation; GrBlendCoeff srcCoeff = blendInfo.fSrcBlend; GrBlendCoeff dstCoeff = blendInfo.fDstBlend; bool blendOff = (kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) && kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff; memset(attachmentState, 0, sizeof(VkPipelineColorBlendAttachmentState)); attachmentState->blendEnable = !blendOff; if (!blendOff) { attachmentState->srcColorBlendFactor = blend_coeff_to_vk_blend(srcCoeff); attachmentState->dstColorBlendFactor = blend_coeff_to_vk_blend(dstCoeff); attachmentState->colorBlendOp = blend_equation_to_vk_blend_op(equation); attachmentState->srcAlphaBlendFactor = blend_coeff_to_vk_blend(srcCoeff); attachmentState->dstAlphaBlendFactor = blend_coeff_to_vk_blend(dstCoeff); attachmentState->alphaBlendOp = blend_equation_to_vk_blend_op(equation); } if (!blendInfo.fWriteColor) { attachmentState->colorWriteMask = 0; } else { attachmentState->colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; } memset(colorBlendInfo, 0, sizeof(VkPipelineColorBlendStateCreateInfo)); colorBlendInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlendInfo->pNext = nullptr; colorBlendInfo->flags = 0; colorBlendInfo->logicOpEnable = VK_FALSE; colorBlendInfo->attachmentCount = 1; colorBlendInfo->pAttachments = attachmentState; // colorBlendInfo->blendConstants is set dynamically } static void setup_raster_state(const GrPipeline& pipeline, const GrCaps* caps, VkPipelineRasterizationStateCreateInfo* rasterInfo) { memset(rasterInfo, 0, sizeof(VkPipelineRasterizationStateCreateInfo)); rasterInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterInfo->pNext = nullptr; rasterInfo->flags = 0; rasterInfo->depthClampEnable = VK_FALSE; rasterInfo->rasterizerDiscardEnable = VK_FALSE; rasterInfo->polygonMode = caps->wireframeMode() ? VK_POLYGON_MODE_LINE : VK_POLYGON_MODE_FILL; rasterInfo->cullMode = VK_CULL_MODE_NONE; rasterInfo->frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; rasterInfo->depthBiasEnable = VK_FALSE; rasterInfo->depthBiasConstantFactor = 0.0f; rasterInfo->depthBiasClamp = 0.0f; rasterInfo->depthBiasSlopeFactor = 0.0f; rasterInfo->lineWidth = 1.0f; } static void setup_dynamic_state(VkPipelineDynamicStateCreateInfo* dynamicInfo, VkDynamicState* dynamicStates) { memset(dynamicInfo, 0, sizeof(VkPipelineDynamicStateCreateInfo)); dynamicInfo->sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicInfo->pNext = VK_NULL_HANDLE; dynamicInfo->flags = 0; dynamicStates[0] = VK_DYNAMIC_STATE_VIEWPORT; dynamicStates[1] = VK_DYNAMIC_STATE_SCISSOR; dynamicStates[2] = VK_DYNAMIC_STATE_BLEND_CONSTANTS; dynamicInfo->dynamicStateCount = 3; dynamicInfo->pDynamicStates = dynamicStates; } GrVkPipeline* GrVkPipeline::Create(GrVkGpu* gpu, int numColorSamples, const GrPrimitiveProcessor& primProc, const GrPipeline& pipeline, const GrStencilSettings& stencil, VkPipelineShaderStageCreateInfo* shaderStageInfo, int shaderStageCount, GrPrimitiveType primitiveType, VkRenderPass compatibleRenderPass, VkPipelineLayout layout, VkPipelineCache cache) { VkPipelineVertexInputStateCreateInfo vertexInputInfo; SkSTArray<2, VkVertexInputBindingDescription, true> bindingDescs; SkSTArray<16, VkVertexInputAttributeDescription> attributeDesc; int totalAttributeCnt = primProc.numVertexAttributes() + primProc.numInstanceAttributes(); SkASSERT(totalAttributeCnt <= gpu->vkCaps().maxVertexAttributes()); VkVertexInputAttributeDescription* pAttribs = attributeDesc.push_back_n(totalAttributeCnt); setup_vertex_input_state(primProc, &vertexInputInfo, &bindingDescs, pAttribs); VkPipelineInputAssemblyStateCreateInfo inputAssemblyInfo; setup_input_assembly_state(primitiveType, &inputAssemblyInfo); VkPipelineDepthStencilStateCreateInfo depthStencilInfo; setup_depth_stencil_state(stencil, &depthStencilInfo); VkPipelineViewportStateCreateInfo viewportInfo; setup_viewport_scissor_state(&viewportInfo); VkPipelineMultisampleStateCreateInfo multisampleInfo; setup_multisample_state(numColorSamples, primProc, pipeline, gpu->caps(), &multisampleInfo); // We will only have one color attachment per pipeline. VkPipelineColorBlendAttachmentState attachmentStates[1]; VkPipelineColorBlendStateCreateInfo colorBlendInfo; setup_color_blend_state(pipeline, &colorBlendInfo, attachmentStates); VkPipelineRasterizationStateCreateInfo rasterInfo; setup_raster_state(pipeline, gpu->caps(), &rasterInfo); VkDynamicState dynamicStates[3]; VkPipelineDynamicStateCreateInfo dynamicInfo; setup_dynamic_state(&dynamicInfo, dynamicStates); VkGraphicsPipelineCreateInfo pipelineCreateInfo; memset(&pipelineCreateInfo, 0, sizeof(VkGraphicsPipelineCreateInfo)); pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineCreateInfo.pNext = nullptr; pipelineCreateInfo.flags = 0; pipelineCreateInfo.stageCount = shaderStageCount; pipelineCreateInfo.pStages = shaderStageInfo; pipelineCreateInfo.pVertexInputState = &vertexInputInfo; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyInfo; pipelineCreateInfo.pTessellationState = nullptr; pipelineCreateInfo.pViewportState = &viewportInfo; pipelineCreateInfo.pRasterizationState = &rasterInfo; pipelineCreateInfo.pMultisampleState = &multisampleInfo; pipelineCreateInfo.pDepthStencilState = &depthStencilInfo; pipelineCreateInfo.pColorBlendState = &colorBlendInfo; pipelineCreateInfo.pDynamicState = &dynamicInfo; pipelineCreateInfo.layout = layout; pipelineCreateInfo.renderPass = compatibleRenderPass; pipelineCreateInfo.subpass = 0; pipelineCreateInfo.basePipelineHandle = VK_NULL_HANDLE; pipelineCreateInfo.basePipelineIndex = -1; VkPipeline vkPipeline; VkResult err = GR_VK_CALL(gpu->vkInterface(), CreateGraphicsPipelines(gpu->device(), cache, 1, &pipelineCreateInfo, nullptr, &vkPipeline)); if (err) { SkDebugf("Failed to create pipeline. Error: %d\n", err); return nullptr; } return new GrVkPipeline(vkPipeline); } void GrVkPipeline::freeGPUData(GrVkGpu* gpu) const { GR_VK_CALL(gpu->vkInterface(), DestroyPipeline(gpu->device(), fPipeline, nullptr)); } void GrVkPipeline::SetDynamicScissorRectState(GrVkGpu* gpu, GrVkCommandBuffer* cmdBuffer, const GrRenderTarget* renderTarget, GrSurfaceOrigin rtOrigin, SkIRect scissorRect) { if (!scissorRect.intersect(SkIRect::MakeWH(renderTarget->width(), renderTarget->height()))) { scissorRect.setEmpty(); } VkRect2D scissor; scissor.offset.x = scissorRect.fLeft; scissor.extent.width = scissorRect.width(); if (kTopLeft_GrSurfaceOrigin == rtOrigin) { scissor.offset.y = scissorRect.fTop; } else { SkASSERT(kBottomLeft_GrSurfaceOrigin == rtOrigin); scissor.offset.y = renderTarget->height() - scissorRect.fBottom; } scissor.extent.height = scissorRect.height(); SkASSERT(scissor.offset.x >= 0); SkASSERT(scissor.offset.y >= 0); cmdBuffer->setScissor(gpu, 0, 1, &scissor); } void GrVkPipeline::SetDynamicViewportState(GrVkGpu* gpu, GrVkCommandBuffer* cmdBuffer, const GrRenderTarget* renderTarget) { // We always use one viewport the size of the RT VkViewport viewport; viewport.x = 0.0f; viewport.y = 0.0f; viewport.width = SkIntToScalar(renderTarget->width()); viewport.height = SkIntToScalar(renderTarget->height()); viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; cmdBuffer->setViewport(gpu, 0, 1, &viewport); } void GrVkPipeline::SetDynamicBlendConstantState(GrVkGpu* gpu, GrVkCommandBuffer* cmdBuffer, GrPixelConfig pixelConfig, const GrXferProcessor& xferProcessor) { GrXferProcessor::BlendInfo blendInfo; xferProcessor.getBlendInfo(&blendInfo); GrBlendCoeff srcCoeff = blendInfo.fSrcBlend; GrBlendCoeff dstCoeff = blendInfo.fDstBlend; float floatColors[4]; if (blend_coeff_refs_constant(srcCoeff) || blend_coeff_refs_constant(dstCoeff)) { // Swizzle the blend to match what the shader will output. const GrSwizzle& swizzle = gpu->caps()->shaderCaps()->configOutputSwizzle(pixelConfig); SkPMColor4f blendConst = swizzle.applyTo(blendInfo.fBlendConstant); floatColors[0] = blendConst.fR; floatColors[1] = blendConst.fG; floatColors[2] = blendConst.fB; floatColors[3] = blendConst.fA; } else { memset(floatColors, 0, 4 * sizeof(float)); } cmdBuffer->setBlendConstants(gpu, floatColors); }