// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "PixelProcessor.hpp" #include "Surface.hpp" #include "Primitive.hpp" #include "Pipeline/PixelProgram.hpp" #include "Pipeline/PixelShader.hpp" #include "Pipeline/Constants.hpp" #include "Vulkan/VkDebug.hpp" #include namespace sw { extern bool complementaryDepthBuffer; extern TransparencyAntialiasing transparencyAntialiasing; extern bool perspectiveCorrection; bool precachePixel = false; unsigned int PixelProcessor::States::computeHash() { unsigned int *state = (unsigned int*)this; unsigned int hash = 0; for(unsigned int i = 0; i < sizeof(States) / 4; i++) { hash ^= state[i]; } return hash; } PixelProcessor::State::State() { memset(this, 0, sizeof(State)); } bool PixelProcessor::State::operator==(const State &state) const { if(hash != state.hash) { return false; } return memcmp(static_cast(this), static_cast(&state), sizeof(States)) == 0; } PixelProcessor::UniformBufferInfo::UniformBufferInfo() { buffer = nullptr; offset = 0; } PixelProcessor::PixelProcessor(Context *context) : context(context) { routineCache = nullptr; setRoutineCacheSize(1024); } PixelProcessor::~PixelProcessor() { delete routineCache; routineCache = nullptr; } void PixelProcessor::setFloatConstant(unsigned int index, const float value[4]) { if(index < FRAGMENT_UNIFORM_VECTORS) { c[index][0] = value[0]; c[index][1] = value[1]; c[index][2] = value[2]; c[index][3] = value[3]; } else ASSERT(false); } void PixelProcessor::setIntegerConstant(unsigned int index, const int value[4]) { if(index < 16) { i[index][0] = value[0]; i[index][1] = value[1]; i[index][2] = value[2]; i[index][3] = value[3]; } else ASSERT(false); } void PixelProcessor::setBooleanConstant(unsigned int index, int boolean) { if(index < 16) { b[index] = boolean != 0; } else ASSERT(false); } void PixelProcessor::setUniformBuffer(int index, sw::Resource* buffer, int offset) { uniformBufferInfo[index].buffer = buffer; uniformBufferInfo[index].offset = offset; } void PixelProcessor::lockUniformBuffers(byte** u, sw::Resource* uniformBuffers[]) { for(int i = 0; i < MAX_UNIFORM_BUFFER_BINDINGS; ++i) { u[i] = uniformBufferInfo[i].buffer ? static_cast(uniformBufferInfo[i].buffer->lock(PUBLIC, PRIVATE)) + uniformBufferInfo[i].offset : nullptr; uniformBuffers[i] = uniformBufferInfo[i].buffer; } } void PixelProcessor::setRenderTarget(int index, Surface *renderTarget, unsigned int layer) { context->renderTarget[index] = renderTarget; context->renderTargetLayer[index] = layer; } void PixelProcessor::setDepthBuffer(Surface *depthBuffer, unsigned int layer) { context->depthBuffer = depthBuffer; context->depthBufferLayer = layer; } void PixelProcessor::setStencilBuffer(Surface *stencilBuffer, unsigned int layer) { context->stencilBuffer = stencilBuffer; context->stencilBufferLayer = layer; } void PixelProcessor::setTextureFilter(unsigned int sampler, FilterType textureFilter) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setTextureFilter(textureFilter); } else ASSERT(false); } void PixelProcessor::setMipmapFilter(unsigned int sampler, MipmapType mipmapFilter) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMipmapFilter(mipmapFilter); } else ASSERT(false); } void PixelProcessor::setGatherEnable(unsigned int sampler, bool enable) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setGatherEnable(enable); } else ASSERT(false); } void PixelProcessor::setAddressingModeU(unsigned int sampler, AddressingMode addressMode) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setAddressingModeU(addressMode); } else ASSERT(false); } void PixelProcessor::setAddressingModeV(unsigned int sampler, AddressingMode addressMode) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setAddressingModeV(addressMode); } else ASSERT(false); } void PixelProcessor::setAddressingModeW(unsigned int sampler, AddressingMode addressMode) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setAddressingModeW(addressMode); } else ASSERT(false); } void PixelProcessor::setReadSRGB(unsigned int sampler, bool sRGB) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setReadSRGB(sRGB); } else ASSERT(false); } void PixelProcessor::setMipmapLOD(unsigned int sampler, float bias) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMipmapLOD(bias); } else ASSERT(false); } void PixelProcessor::setBorderColor(unsigned int sampler, const Color &borderColor) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setBorderColor(borderColor); } else ASSERT(false); } void PixelProcessor::setMaxAnisotropy(unsigned int sampler, float maxAnisotropy) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMaxAnisotropy(maxAnisotropy); } else ASSERT(false); } void PixelProcessor::setHighPrecisionFiltering(unsigned int sampler, bool highPrecisionFiltering) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setHighPrecisionFiltering(highPrecisionFiltering); } else ASSERT(false); } void PixelProcessor::setSwizzleR(unsigned int sampler, SwizzleType swizzleR) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setSwizzleR(swizzleR); } else ASSERT(false); } void PixelProcessor::setSwizzleG(unsigned int sampler, SwizzleType swizzleG) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setSwizzleG(swizzleG); } else ASSERT(false); } void PixelProcessor::setSwizzleB(unsigned int sampler, SwizzleType swizzleB) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setSwizzleB(swizzleB); } else ASSERT(false); } void PixelProcessor::setSwizzleA(unsigned int sampler, SwizzleType swizzleA) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setSwizzleA(swizzleA); } else ASSERT(false); } void PixelProcessor::setCompareFunc(unsigned int sampler, CompareFunc compFunc) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setCompareFunc(compFunc); } else ASSERT(false); } void PixelProcessor::setBaseLevel(unsigned int sampler, int baseLevel) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setBaseLevel(baseLevel); } else ASSERT(false); } void PixelProcessor::setMaxLevel(unsigned int sampler, int maxLevel) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMaxLevel(maxLevel); } else ASSERT(false); } void PixelProcessor::setMinLod(unsigned int sampler, float minLod) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMinLod(minLod); } else ASSERT(false); } void PixelProcessor::setMaxLod(unsigned int sampler, float maxLod) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMaxLod(maxLod); } else ASSERT(false); } void PixelProcessor::setWriteSRGB(bool sRGB) { context->setWriteSRGB(sRGB); } void PixelProcessor::setColorLogicOpEnabled(bool colorLogicOpEnabled) { context->setColorLogicOpEnabled(colorLogicOpEnabled); } void PixelProcessor::setLogicalOperation(VkLogicOp logicalOperation) { context->setLogicalOperation(logicalOperation); } void PixelProcessor::setDepthBufferEnable(bool depthBufferEnable) { context->setDepthBufferEnable(depthBufferEnable); } void PixelProcessor::setDepthCompare(VkCompareOp depthCompareMode) { context->depthCompareMode = depthCompareMode; } void PixelProcessor::setAlphaCompare(VkCompareOp alphaCompareMode) { context->alphaCompareMode = alphaCompareMode; } void PixelProcessor::setDepthWriteEnable(bool depthWriteEnable) { context->depthWriteEnable = depthWriteEnable; } void PixelProcessor::setAlphaTestEnable(bool alphaTestEnable) { context->alphaTestEnable = alphaTestEnable; } void PixelProcessor::setCullMode(CullMode cullMode, bool frontFacingCCW) { context->cullMode = cullMode; context->frontFacingCCW = frontFacingCCW; } void PixelProcessor::setColorWriteMask(int index, int rgbaMask) { context->setColorWriteMask(index, rgbaMask); } void PixelProcessor::setStencilEnable(bool stencilEnable) { context->stencilEnable = stencilEnable; } void PixelProcessor::setStencilCompare(VkCompareOp stencilCompareMode) { context->stencilCompareMode = stencilCompareMode; } void PixelProcessor::setStencilReference(int stencilReference) { context->stencilReference = stencilReference; stencil.set(stencilReference, context->stencilMask, context->stencilWriteMask); } void PixelProcessor::setStencilReferenceCCW(int stencilReferenceCCW) { context->stencilReferenceCCW = stencilReferenceCCW; stencilCCW.set(stencilReferenceCCW, context->stencilMaskCCW, context->stencilWriteMaskCCW); } void PixelProcessor::setStencilMask(int stencilMask) { context->stencilMask = stencilMask; stencil.set(context->stencilReference, stencilMask, context->stencilWriteMask); } void PixelProcessor::setStencilMaskCCW(int stencilMaskCCW) { context->stencilMaskCCW = stencilMaskCCW; stencilCCW.set(context->stencilReferenceCCW, stencilMaskCCW, context->stencilWriteMaskCCW); } void PixelProcessor::setStencilFailOperation(VkStencilOp stencilFailOperation) { context->stencilFailOperation = stencilFailOperation; } void PixelProcessor::setStencilPassOperation(VkStencilOp stencilPassOperation) { context->stencilPassOperation = stencilPassOperation; } void PixelProcessor::setStencilZFailOperation(VkStencilOp stencilZFailOperation) { context->stencilZFailOperation = stencilZFailOperation; } void PixelProcessor::setStencilWriteMask(int stencilWriteMask) { context->stencilWriteMask = stencilWriteMask; stencil.set(context->stencilReference, context->stencilMask, stencilWriteMask); } void PixelProcessor::setStencilWriteMaskCCW(int stencilWriteMaskCCW) { context->stencilWriteMaskCCW = stencilWriteMaskCCW; stencilCCW.set(context->stencilReferenceCCW, context->stencilMaskCCW, stencilWriteMaskCCW); } void PixelProcessor::setTwoSidedStencil(bool enable) { context->twoSidedStencil = enable; } void PixelProcessor::setStencilCompareCCW(VkCompareOp stencilCompareMode) { context->stencilCompareModeCCW = stencilCompareMode; } void PixelProcessor::setStencilFailOperationCCW(VkStencilOp stencilFailOperation) { context->stencilFailOperationCCW = stencilFailOperation; } void PixelProcessor::setStencilPassOperationCCW(VkStencilOp stencilPassOperation) { context->stencilPassOperationCCW = stencilPassOperation; } void PixelProcessor::setStencilZFailOperationCCW(VkStencilOp stencilZFailOperation) { context->stencilZFailOperationCCW = stencilZFailOperation; } void PixelProcessor::setBlendConstant(const Color &blendConstant) { // FIXME: Compact into generic function // FIXME: Clamp short blendConstantR = iround(65535 * blendConstant.r); short blendConstantG = iround(65535 * blendConstant.g); short blendConstantB = iround(65535 * blendConstant.b); short blendConstantA = iround(65535 * blendConstant.a); factor.blendConstant4W[0][0] = blendConstantR; factor.blendConstant4W[0][1] = blendConstantR; factor.blendConstant4W[0][2] = blendConstantR; factor.blendConstant4W[0][3] = blendConstantR; factor.blendConstant4W[1][0] = blendConstantG; factor.blendConstant4W[1][1] = blendConstantG; factor.blendConstant4W[1][2] = blendConstantG; factor.blendConstant4W[1][3] = blendConstantG; factor.blendConstant4W[2][0] = blendConstantB; factor.blendConstant4W[2][1] = blendConstantB; factor.blendConstant4W[2][2] = blendConstantB; factor.blendConstant4W[2][3] = blendConstantB; factor.blendConstant4W[3][0] = blendConstantA; factor.blendConstant4W[3][1] = blendConstantA; factor.blendConstant4W[3][2] = blendConstantA; factor.blendConstant4W[3][3] = blendConstantA; // FIXME: Compact into generic function // FIXME: Clamp short invBlendConstantR = iround(65535 * (1 - blendConstant.r)); short invBlendConstantG = iround(65535 * (1 - blendConstant.g)); short invBlendConstantB = iround(65535 * (1 - blendConstant.b)); short invBlendConstantA = iround(65535 * (1 - blendConstant.a)); factor.invBlendConstant4W[0][0] = invBlendConstantR; factor.invBlendConstant4W[0][1] = invBlendConstantR; factor.invBlendConstant4W[0][2] = invBlendConstantR; factor.invBlendConstant4W[0][3] = invBlendConstantR; factor.invBlendConstant4W[1][0] = invBlendConstantG; factor.invBlendConstant4W[1][1] = invBlendConstantG; factor.invBlendConstant4W[1][2] = invBlendConstantG; factor.invBlendConstant4W[1][3] = invBlendConstantG; factor.invBlendConstant4W[2][0] = invBlendConstantB; factor.invBlendConstant4W[2][1] = invBlendConstantB; factor.invBlendConstant4W[2][2] = invBlendConstantB; factor.invBlendConstant4W[2][3] = invBlendConstantB; factor.invBlendConstant4W[3][0] = invBlendConstantA; factor.invBlendConstant4W[3][1] = invBlendConstantA; factor.invBlendConstant4W[3][2] = invBlendConstantA; factor.invBlendConstant4W[3][3] = invBlendConstantA; factor.blendConstant4F[0][0] = blendConstant.r; factor.blendConstant4F[0][1] = blendConstant.r; factor.blendConstant4F[0][2] = blendConstant.r; factor.blendConstant4F[0][3] = blendConstant.r; factor.blendConstant4F[1][0] = blendConstant.g; factor.blendConstant4F[1][1] = blendConstant.g; factor.blendConstant4F[1][2] = blendConstant.g; factor.blendConstant4F[1][3] = blendConstant.g; factor.blendConstant4F[2][0] = blendConstant.b; factor.blendConstant4F[2][1] = blendConstant.b; factor.blendConstant4F[2][2] = blendConstant.b; factor.blendConstant4F[2][3] = blendConstant.b; factor.blendConstant4F[3][0] = blendConstant.a; factor.blendConstant4F[3][1] = blendConstant.a; factor.blendConstant4F[3][2] = blendConstant.a; factor.blendConstant4F[3][3] = blendConstant.a; factor.invBlendConstant4F[0][0] = 1 - blendConstant.r; factor.invBlendConstant4F[0][1] = 1 - blendConstant.r; factor.invBlendConstant4F[0][2] = 1 - blendConstant.r; factor.invBlendConstant4F[0][3] = 1 - blendConstant.r; factor.invBlendConstant4F[1][0] = 1 - blendConstant.g; factor.invBlendConstant4F[1][1] = 1 - blendConstant.g; factor.invBlendConstant4F[1][2] = 1 - blendConstant.g; factor.invBlendConstant4F[1][3] = 1 - blendConstant.g; factor.invBlendConstant4F[2][0] = 1 - blendConstant.b; factor.invBlendConstant4F[2][1] = 1 - blendConstant.b; factor.invBlendConstant4F[2][2] = 1 - blendConstant.b; factor.invBlendConstant4F[2][3] = 1 - blendConstant.b; factor.invBlendConstant4F[3][0] = 1 - blendConstant.a; factor.invBlendConstant4F[3][1] = 1 - blendConstant.a; factor.invBlendConstant4F[3][2] = 1 - blendConstant.a; factor.invBlendConstant4F[3][3] = 1 - blendConstant.a; } void PixelProcessor::setAlphaBlendEnable(bool alphaBlendEnable) { context->setAlphaBlendEnable(alphaBlendEnable); } void PixelProcessor::setSourceBlendFactor(VkBlendFactor sourceBlendFactor) { context->setSourceBlendFactor(sourceBlendFactor); } void PixelProcessor::setDestBlendFactor(VkBlendFactor destBlendFactor) { context->setDestBlendFactor(destBlendFactor); } void PixelProcessor::setBlendOperation(VkBlendOp blendOperation) { context->setBlendOperation(blendOperation); } void PixelProcessor::setSeparateAlphaBlendEnable(bool separateAlphaBlendEnable) { context->setSeparateAlphaBlendEnable(separateAlphaBlendEnable); } void PixelProcessor::setSourceBlendFactorAlpha(VkBlendFactor sourceBlendFactorAlpha) { context->setSourceBlendFactorAlpha(sourceBlendFactorAlpha); } void PixelProcessor::setDestBlendFactorAlpha(VkBlendFactor destBlendFactorAlpha) { context->setDestBlendFactorAlpha(destBlendFactorAlpha); } void PixelProcessor::setBlendOperationAlpha(VkBlendOp blendOperationAlpha) { context->setBlendOperationAlpha(blendOperationAlpha); } void PixelProcessor::setAlphaReference(float alphaReference) { context->alphaReference = alphaReference; factor.alphaReference4[0] = (word)iround(alphaReference * 0x1000 / 0xFF); factor.alphaReference4[1] = (word)iround(alphaReference * 0x1000 / 0xFF); factor.alphaReference4[2] = (word)iround(alphaReference * 0x1000 / 0xFF); factor.alphaReference4[3] = (word)iround(alphaReference * 0x1000 / 0xFF); } void PixelProcessor::setPerspectiveCorrection(bool perspectiveEnable) { perspectiveCorrection = perspectiveEnable; } void PixelProcessor::setOcclusionEnabled(bool enable) { context->occlusionEnabled = enable; } void PixelProcessor::setRoutineCacheSize(int cacheSize) { delete routineCache; routineCache = new RoutineCache(clamp(cacheSize, 1, 65536), precachePixel ? "sw-pixel" : 0); } const PixelProcessor::State PixelProcessor::update() const { State state; if(context->pixelShader) { state.shaderID = context->pixelShader->getSerialID(); } else { state.shaderID = 0; } state.depthOverride = context->pixelShader && context->pixelShader->depthOverride(); state.shaderContainsKill = context->pixelShader ? context->pixelShader->containsKill() : false; if(context->alphaTestActive()) { state.alphaCompareMode = context->alphaCompareMode; state.transparencyAntialiasing = context->getMultiSampleCount() > 1 ? transparencyAntialiasing : TRANSPARENCY_NONE; } state.depthWriteEnable = context->depthWriteActive(); if(context->stencilActive()) { state.stencilActive = true; state.stencilCompareMode = context->stencilCompareMode; state.stencilFailOperation = context->stencilFailOperation; state.stencilPassOperation = context->stencilPassOperation; state.stencilZFailOperation = context->stencilZFailOperation; state.noStencilMask = (context->stencilMask == 0xFF); state.noStencilWriteMask = (context->stencilWriteMask == 0xFF); state.stencilWriteMasked = (context->stencilWriteMask == 0x00); state.twoSidedStencil = context->twoSidedStencil; state.stencilCompareModeCCW = context->twoSidedStencil ? context->stencilCompareModeCCW : state.stencilCompareMode; state.stencilFailOperationCCW = context->twoSidedStencil ? context->stencilFailOperationCCW : state.stencilFailOperation; state.stencilPassOperationCCW = context->twoSidedStencil ? context->stencilPassOperationCCW : state.stencilPassOperation; state.stencilZFailOperationCCW = context->twoSidedStencil ? context->stencilZFailOperationCCW : state.stencilZFailOperation; state.noStencilMaskCCW = context->twoSidedStencil ? (context->stencilMaskCCW == 0xFF) : state.noStencilMask; state.noStencilWriteMaskCCW = context->twoSidedStencil ? (context->stencilWriteMaskCCW == 0xFF) : state.noStencilWriteMask; state.stencilWriteMaskedCCW = context->twoSidedStencil ? (context->stencilWriteMaskCCW == 0x00) : state.stencilWriteMasked; } if(context->depthBufferActive()) { state.depthTestActive = true; state.depthCompareMode = context->depthCompareMode; state.quadLayoutDepthBuffer = Surface::hasQuadLayout(context->depthBuffer->getInternalFormat()); } state.occlusionEnabled = context->occlusionEnabled; state.perspective = context->perspectiveActive(); state.depthClamp = (context->depthBias != 0.0f) || (context->slopeDepthBias != 0.0f); if(context->alphaBlendActive()) { state.alphaBlendActive = true; state.sourceBlendFactor = context->sourceBlendFactor(); state.destBlendFactor = context->destBlendFactor(); state.blendOperation = context->blendOperation(); state.sourceBlendFactorAlpha = context->sourceBlendFactorAlpha(); state.destBlendFactorAlpha = context->destBlendFactorAlpha(); state.blendOperationAlpha = context->blendOperationAlpha(); } state.logicalOperation = context->colorLogicOp(); for(int i = 0; i < RENDERTARGETS; i++) { state.colorWriteMask |= context->colorWriteActive(i) << (4 * i); state.targetFormat[i] = context->renderTargetInternalFormat(i); } state.writeSRGB = context->writeSRGB && context->renderTarget[0] && Surface::isSRGBwritable(context->renderTarget[0]->getExternalFormat()); state.multiSample = context->getMultiSampleCount(); state.multiSampleMask = context->multiSampleMask; if(state.multiSample > 1 && context->pixelShader) { state.centroid = context->pixelShader->containsCentroid(); } state.frontFaceCCW = context->frontFacingCCW; for(unsigned int i = 0; i < 16; i++) { if(context->pixelShader) { if(context->pixelShader->usesSampler(i)) { state.sampler[i] = context->sampler[i].samplerState(); } } } const bool point = context->isDrawPoint(); for(int interpolant = 0; interpolant < MAX_FRAGMENT_INPUTS; interpolant++) { for(int component = 0; component < 4; component++) { const Shader::Semantic &semantic = context->pixelShader->getInput(interpolant, component); if(semantic.active()) { bool flat = point; switch(semantic.usage) { case Shader::USAGE_TEXCOORD: flat = false; break; case Shader::USAGE_COLOR: flat = semantic.flat || point; break; } state.interpolant[interpolant].component |= 1 << component; if(flat) { state.interpolant[interpolant].flat |= 1 << component; } } } } if(state.centroid) { for(int interpolant = 0; interpolant < MAX_FRAGMENT_INPUTS; interpolant++) { for(int component = 0; component < 4; component++) { state.interpolant[interpolant].centroid = context->pixelShader->getInput(interpolant, 0).centroid; } } } state.hash = state.computeHash(); return state; } Routine *PixelProcessor::routine(const State &state) { Routine *routine = routineCache->query(state); if(!routine) { const bool integerPipeline = (context->pixelShaderModel() <= 0x0104); QuadRasterizer *generator = new PixelProgram(state, context->pixelShader); generator->generate(); routine = (*generator)("PixelRoutine_%0.8X", state.shaderID); delete generator; routineCache->add(state, routine); } return routine; } }