// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "VertexProcessor.hpp" #include "Pipeline/VertexProgram.hpp" #include "Pipeline/VertexShader.hpp" #include "Pipeline/PixelShader.hpp" #include "Pipeline/Constants.hpp" #include "System/Math.hpp" #include "Vulkan/VkDebug.hpp" #include namespace sw { bool precacheVertex = false; void VertexCache::clear() { for(int i = 0; i < 16; i++) { tag[i] = 0x80000000; } } unsigned int VertexProcessor::States::computeHash() { unsigned int *state = (unsigned int*)this; unsigned int hash = 0; for(unsigned int i = 0; i < sizeof(States) / 4; i++) { hash ^= state[i]; } return hash; } VertexProcessor::State::State() { memset(this, 0, sizeof(State)); } bool VertexProcessor::State::operator==(const State &state) const { if(hash != state.hash) { return false; } return memcmp(static_cast(this), static_cast(&state), sizeof(States)) == 0; } VertexProcessor::TransformFeedbackInfo::TransformFeedbackInfo() { buffer = nullptr; offset = 0; reg = 0; row = 0; col = 0; stride = 0; } VertexProcessor::UniformBufferInfo::UniformBufferInfo() { buffer = nullptr; offset = 0; } VertexProcessor::VertexProcessor(Context *context) : context(context) { routineCache = nullptr; setRoutineCacheSize(1024); } VertexProcessor::~VertexProcessor() { delete routineCache; routineCache = nullptr; } void VertexProcessor::setInputStream(int index, const Stream &stream) { context->input[index] = stream; } void VertexProcessor::resetInputStreams() { for(int i = 0; i < MAX_VERTEX_INPUTS; i++) { context->input[i].defaults(); } } void VertexProcessor::setFloatConstant(unsigned int index, const float value[4]) { if(index < VERTEX_UNIFORM_VECTORS) { c[index][0] = value[0]; c[index][1] = value[1]; c[index][2] = value[2]; c[index][3] = value[3]; } else ASSERT(false); } void VertexProcessor::setIntegerConstant(unsigned int index, const int integer[4]) { if(index < 16) { i[index][0] = integer[0]; i[index][1] = integer[1]; i[index][2] = integer[2]; i[index][3] = integer[3]; } else ASSERT(false); } void VertexProcessor::setBooleanConstant(unsigned int index, int boolean) { if(index < 16) { b[index] = boolean != 0; } else ASSERT(false); } void VertexProcessor::setUniformBuffer(int index, sw::Resource* buffer, int offset) { uniformBufferInfo[index].buffer = buffer; uniformBufferInfo[index].offset = offset; } void VertexProcessor::lockUniformBuffers(byte** u, sw::Resource* uniformBuffers[]) { for(int i = 0; i < MAX_UNIFORM_BUFFER_BINDINGS; ++i) { u[i] = uniformBufferInfo[i].buffer ? static_cast(uniformBufferInfo[i].buffer->lock(PUBLIC, PRIVATE)) + uniformBufferInfo[i].offset : nullptr; uniformBuffers[i] = uniformBufferInfo[i].buffer; } } void VertexProcessor::setTransformFeedbackBuffer(int index, sw::Resource* buffer, int offset, unsigned int reg, unsigned int row, unsigned int col, unsigned int stride) { transformFeedbackInfo[index].buffer = buffer; transformFeedbackInfo[index].offset = offset; transformFeedbackInfo[index].reg = reg; transformFeedbackInfo[index].row = row; transformFeedbackInfo[index].col = col; transformFeedbackInfo[index].stride = stride; } void VertexProcessor::lockTransformFeedbackBuffers(byte** t, unsigned int* v, unsigned int* r, unsigned int* c, unsigned int* s, sw::Resource* transformFeedbackBuffers[]) { for(int i = 0; i < MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS; ++i) { t[i] = transformFeedbackInfo[i].buffer ? static_cast(transformFeedbackInfo[i].buffer->lock(PUBLIC, PRIVATE)) + transformFeedbackInfo[i].offset : nullptr; transformFeedbackBuffers[i] = transformFeedbackInfo[i].buffer; v[i] = transformFeedbackInfo[i].reg; r[i] = transformFeedbackInfo[i].row; c[i] = transformFeedbackInfo[i].col; s[i] = transformFeedbackInfo[i].stride; } } void VertexProcessor::setInstanceID(int instanceID) { context->instanceID = instanceID; } void VertexProcessor::setTextureFilter(unsigned int sampler, FilterType textureFilter) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setTextureFilter(textureFilter); } else ASSERT(false); } void VertexProcessor::setMipmapFilter(unsigned int sampler, MipmapType mipmapFilter) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMipmapFilter(mipmapFilter); } else ASSERT(false); } void VertexProcessor::setGatherEnable(unsigned int sampler, bool enable) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setGatherEnable(enable); } else ASSERT(false); } void VertexProcessor::setAddressingModeU(unsigned int sampler, AddressingMode addressMode) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setAddressingModeU(addressMode); } else ASSERT(false); } void VertexProcessor::setAddressingModeV(unsigned int sampler, AddressingMode addressMode) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setAddressingModeV(addressMode); } else ASSERT(false); } void VertexProcessor::setAddressingModeW(unsigned int sampler, AddressingMode addressMode) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setAddressingModeW(addressMode); } else ASSERT(false); } void VertexProcessor::setReadSRGB(unsigned int sampler, bool sRGB) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setReadSRGB(sRGB); } else ASSERT(false); } void VertexProcessor::setMipmapLOD(unsigned int sampler, float bias) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMipmapLOD(bias); } else ASSERT(false); } void VertexProcessor::setBorderColor(unsigned int sampler, const Color &borderColor) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setBorderColor(borderColor); } else ASSERT(false); } void VertexProcessor::setMaxAnisotropy(unsigned int sampler, float maxAnisotropy) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMaxAnisotropy(maxAnisotropy); } else ASSERT(false); } void VertexProcessor::setHighPrecisionFiltering(unsigned int sampler, bool highPrecisionFiltering) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setHighPrecisionFiltering(highPrecisionFiltering); } else ASSERT(false); } void VertexProcessor::setSwizzleR(unsigned int sampler, SwizzleType swizzleR) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleR(swizzleR); } else ASSERT(false); } void VertexProcessor::setSwizzleG(unsigned int sampler, SwizzleType swizzleG) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleG(swizzleG); } else ASSERT(false); } void VertexProcessor::setSwizzleB(unsigned int sampler, SwizzleType swizzleB) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleB(swizzleB); } else ASSERT(false); } void VertexProcessor::setSwizzleA(unsigned int sampler, SwizzleType swizzleA) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setSwizzleA(swizzleA); } else ASSERT(false); } void VertexProcessor::setCompareFunc(unsigned int sampler, CompareFunc compFunc) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setCompareFunc(compFunc); } else ASSERT(false); } void VertexProcessor::setBaseLevel(unsigned int sampler, int baseLevel) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setBaseLevel(baseLevel); } else ASSERT(false); } void VertexProcessor::setMaxLevel(unsigned int sampler, int maxLevel) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMaxLevel(maxLevel); } else ASSERT(false); } void VertexProcessor::setMinLod(unsigned int sampler, float minLod) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMinLod(minLod); } else ASSERT(false); } void VertexProcessor::setMaxLod(unsigned int sampler, float maxLod) { if(sampler < VERTEX_TEXTURE_IMAGE_UNITS) { context->sampler[TEXTURE_IMAGE_UNITS + sampler].setMaxLod(maxLod); } else ASSERT(false); } void VertexProcessor::setPointSizeMin(float pointSizeMin) { this->pointSizeMin = pointSizeMin; } void VertexProcessor::setPointSizeMax(float pointSizeMax) { this->pointSizeMax = pointSizeMax; } void VertexProcessor::setTransformFeedbackQueryEnabled(bool enable) { context->transformFeedbackQueryEnabled = enable; } void VertexProcessor::enableTransformFeedback(uint64_t enable) { context->transformFeedbackEnabled = enable; } void VertexProcessor::setRoutineCacheSize(int cacheSize) { delete routineCache; routineCache = new RoutineCache(clamp(cacheSize, 1, 65536), precacheVertex ? "sw-vertex" : 0); } const VertexProcessor::State VertexProcessor::update(DrawType drawType) { State state; state.shaderID = context->vertexShader->getSerialID(); state.fixedFunction = !context->vertexShader && context->pixelShaderModel() < 0x0300; state.textureSampling = context->vertexShader ? context->vertexShader->containsTextureSampling() : false; state.positionRegister = context->vertexShader ? context->vertexShader->getPositionRegister() : Pos; state.pointSizeRegister = context->vertexShader ? context->vertexShader->getPointSizeRegister() : Pts; state.multiSampling = context->getMultiSampleCount() > 1; state.transformFeedbackQueryEnabled = context->transformFeedbackQueryEnabled; state.transformFeedbackEnabled = context->transformFeedbackEnabled; // Note: Quads aren't handled for verticesPerPrimitive, but verticesPerPrimitive is used for transform feedback, // which is an OpenGL ES 3.0 feature, and OpenGL ES 3.0 doesn't support quads as a primitive type. DrawType type = static_cast(static_cast(drawType) & 0xF); state.verticesPerPrimitive = 1 + (type >= DRAW_LINELIST) + (type >= DRAW_TRIANGLELIST); for(int i = 0; i < MAX_VERTEX_INPUTS; i++) { state.input[i].type = context->input[i].type; state.input[i].count = context->input[i].count; state.input[i].normalized = context->input[i].normalized; state.input[i].attribType = context->vertexShader ? context->vertexShader->getAttribType(i) : SpirvShader::ATTRIBTYPE_FLOAT; } for(unsigned int i = 0; i < VERTEX_TEXTURE_IMAGE_UNITS; i++) { if(context->vertexShader->usesSampler(i)) { state.sampler[i] = context->sampler[TEXTURE_IMAGE_UNITS + i].samplerState(); } } if(context->vertexShader) // FIXME: Also when pre-transformed? { for(int i = 0; i < MAX_VERTEX_OUTPUTS; i++) { state.output[i].xWrite = context->vertexShader->getOutput(i, 0).active(); state.output[i].yWrite = context->vertexShader->getOutput(i, 1).active(); state.output[i].zWrite = context->vertexShader->getOutput(i, 2).active(); state.output[i].wWrite = context->vertexShader->getOutput(i, 3).active(); } } state.hash = state.computeHash(); return state; } Routine *VertexProcessor::routine(const State &state) { Routine *routine = routineCache->query(state); if(!routine) // Create one { VertexRoutine *generator = new VertexProgram(state, context->vertexShader); generator->generate(); routine = (*generator)("VertexRoutine_%0.8X", state.shaderID); delete generator; routineCache->add(state, routine); } return routine; } }