// Copyright 2018 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "VkPipeline.hpp" #include "VkShaderModule.hpp" namespace { sw::DrawType Convert(VkPrimitiveTopology topology) { switch(topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: return sw::DRAW_POINTLIST; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: return sw::DRAW_LINELIST; case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: return sw::DRAW_LINESTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: return sw::DRAW_TRIANGLELIST; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: return sw::DRAW_TRIANGLESTRIP; case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: return sw::DRAW_TRIANGLEFAN; case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: // geometry shader specific ASSERT(false); break; case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: // tesselation shader specific ASSERT(false); break; default: UNIMPLEMENTED(); } return sw::DRAW_TRIANGLELIST; } sw::Rect Convert(const VkRect2D& rect) { return sw::Rect(rect.offset.x, rect.offset.y, rect.offset.x + rect.extent.width, rect.offset.y + rect.extent.height); } sw::StreamType getStreamType(VkFormat format) { switch(format) { case VK_FORMAT_R8_UNORM: case VK_FORMAT_R8G8_UNORM: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_R8_UINT: case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_A8B8G8R8_UINT_PACK32: return sw::STREAMTYPE_BYTE; case VK_FORMAT_R8_SNORM: case VK_FORMAT_R8_SINT: case VK_FORMAT_R8G8_SNORM: case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8G8B8A8_SNORM: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_A8B8G8R8_SNORM_PACK32: case VK_FORMAT_A8B8G8R8_SINT_PACK32: return sw::STREAMTYPE_SBYTE; case VK_FORMAT_A2B10G10R10_UNORM_PACK32: return sw::STREAMTYPE_2_10_10_10_UINT; case VK_FORMAT_R16_UNORM: case VK_FORMAT_R16_UINT: case VK_FORMAT_R16G16_UNORM: case VK_FORMAT_R16G16_UINT: case VK_FORMAT_R16G16B16A16_UNORM: case VK_FORMAT_R16G16B16A16_UINT: return sw::STREAMTYPE_USHORT; case VK_FORMAT_R16_SNORM: case VK_FORMAT_R16_SINT: case VK_FORMAT_R16G16_SNORM: case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16G16B16A16_SNORM: case VK_FORMAT_R16G16B16A16_SINT: return sw::STREAMTYPE_SHORT; case VK_FORMAT_R16_SFLOAT: case VK_FORMAT_R16G16_SFLOAT: case VK_FORMAT_R16G16B16A16_SFLOAT: return sw::STREAMTYPE_HALF; case VK_FORMAT_R32_UINT: case VK_FORMAT_R32G32_UINT: case VK_FORMAT_R32G32B32_UINT: case VK_FORMAT_R32G32B32A32_UINT: return sw::STREAMTYPE_UINT; case VK_FORMAT_R32_SINT: case VK_FORMAT_R32G32_SINT: case VK_FORMAT_R32G32B32_SINT: case VK_FORMAT_R32G32B32A32_SINT: return sw::STREAMTYPE_INT; case VK_FORMAT_R32_SFLOAT: case VK_FORMAT_R32G32_SFLOAT: case VK_FORMAT_R32G32B32_SFLOAT: case VK_FORMAT_R32G32B32A32_SFLOAT: return sw::STREAMTYPE_FLOAT; default: UNIMPLEMENTED(); } return sw::STREAMTYPE_BYTE; } uint32_t getNumberOfChannels(VkFormat format) { switch(format) { case VK_FORMAT_R8_UNORM: case VK_FORMAT_R8_SNORM: case VK_FORMAT_R8_UINT: case VK_FORMAT_R8_SINT: case VK_FORMAT_R16_UNORM: case VK_FORMAT_R16_SNORM: case VK_FORMAT_R16_UINT: case VK_FORMAT_R16_SINT: case VK_FORMAT_R16_SFLOAT: case VK_FORMAT_R32_UINT: case VK_FORMAT_R32_SINT: case VK_FORMAT_R32_SFLOAT: return 1; case VK_FORMAT_R8G8_UNORM: case VK_FORMAT_R8G8_SNORM: case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R16G16_UNORM: case VK_FORMAT_R16G16_SNORM: case VK_FORMAT_R16G16_UINT: case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16G16_SFLOAT: case VK_FORMAT_R32G32_UINT: case VK_FORMAT_R32G32_SINT: case VK_FORMAT_R32G32_SFLOAT: return 2; case VK_FORMAT_R32G32B32_UINT: case VK_FORMAT_R32G32B32_SINT: case VK_FORMAT_R32G32B32_SFLOAT: return 3; case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_R8G8B8A8_SNORM: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_A8B8G8R8_SNORM_PACK32: case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_A2B10G10R10_UNORM_PACK32: case VK_FORMAT_R16G16B16A16_UNORM: case VK_FORMAT_R16G16B16A16_SNORM: case VK_FORMAT_R16G16B16A16_UINT: case VK_FORMAT_R16G16B16A16_SINT: case VK_FORMAT_R16G16B16A16_SFLOAT: case VK_FORMAT_R32G32B32A32_UINT: case VK_FORMAT_R32G32B32A32_SINT: case VK_FORMAT_R32G32B32A32_SFLOAT: return 4; default: UNIMPLEMENTED(); } return 0; } } namespace vk { GraphicsPipeline::GraphicsPipeline(const VkGraphicsPipelineCreateInfo* pCreateInfo, void* mem) { if((pCreateInfo->flags != 0) || (pCreateInfo->stageCount != 2) || (pCreateInfo->pTessellationState != nullptr) || (pCreateInfo->pDynamicState != nullptr) || (pCreateInfo->subpass != 0) || (pCreateInfo->basePipelineHandle != VK_NULL_HANDLE) || (pCreateInfo->basePipelineIndex != 0)) { UNIMPLEMENTED(); } const VkPipelineShaderStageCreateInfo& vertexStage = pCreateInfo->pStages[0]; if((vertexStage.stage != VK_SHADER_STAGE_VERTEX_BIT) || (vertexStage.flags != 0) || !((vertexStage.pSpecializationInfo == nullptr) || ((vertexStage.pSpecializationInfo->mapEntryCount == 0) && (vertexStage.pSpecializationInfo->dataSize == 0)))) { UNIMPLEMENTED(); } const VkPipelineShaderStageCreateInfo& fragmentStage = pCreateInfo->pStages[1]; if((fragmentStage.stage != VK_SHADER_STAGE_FRAGMENT_BIT) || (fragmentStage.flags != 0) || !((fragmentStage.pSpecializationInfo == nullptr) || ((fragmentStage.pSpecializationInfo->mapEntryCount == 0) && (fragmentStage.pSpecializationInfo->dataSize == 0)))) { UNIMPLEMENTED(); } const VkPipelineVertexInputStateCreateInfo* vertexInputState = pCreateInfo->pVertexInputState; if(vertexInputState->flags != 0) { UNIMPLEMENTED(); } for(uint32_t i = 0; i < vertexInputState->vertexBindingDescriptionCount; i++) { const VkVertexInputBindingDescription* vertexBindingDescription = vertexInputState->pVertexBindingDescriptions; context.input[vertexBindingDescription->binding].stride = vertexBindingDescription->stride; if(vertexBindingDescription->inputRate != VK_VERTEX_INPUT_RATE_VERTEX) { UNIMPLEMENTED(); } } for(uint32_t i = 0; i < vertexInputState->vertexAttributeDescriptionCount; i++) { const VkVertexInputAttributeDescription* vertexAttributeDescriptions = vertexInputState->pVertexAttributeDescriptions; sw::Stream& input = context.input[vertexAttributeDescriptions->binding]; input.count = getNumberOfChannels(vertexAttributeDescriptions->format); input.type = getStreamType(vertexAttributeDescriptions->format); input.normalized = !sw::Surface::isNonNormalizedInteger(vertexAttributeDescriptions->format); if(vertexAttributeDescriptions->location != vertexAttributeDescriptions->binding) { UNIMPLEMENTED(); } if(vertexAttributeDescriptions->offset != 0) { UNIMPLEMENTED(); } } const VkPipelineInputAssemblyStateCreateInfo* assemblyState = pCreateInfo->pInputAssemblyState; if((assemblyState->flags != 0) || (assemblyState->primitiveRestartEnable != 0)) { UNIMPLEMENTED(); } context.drawType = Convert(assemblyState->topology); const VkPipelineViewportStateCreateInfo* viewportState = pCreateInfo->pViewportState; if((viewportState->flags != 0) || (viewportState->viewportCount != 1) || (viewportState->scissorCount != 1)) { UNIMPLEMENTED(); } scissor = Convert(viewportState->pScissors[0]); viewport = viewportState->pViewports[0]; const VkPipelineRasterizationStateCreateInfo* rasterizationState = pCreateInfo->pRasterizationState; if((rasterizationState->flags != 0) || (rasterizationState->depthClampEnable != 0) || (rasterizationState->polygonMode != VK_POLYGON_MODE_FILL)) { UNIMPLEMENTED(); } context.rasterizerDiscard = rasterizationState->rasterizerDiscardEnable; context.frontFacingCCW = rasterizationState->frontFace == VK_FRONT_FACE_COUNTER_CLOCKWISE; context.depthBias = (rasterizationState->depthBiasEnable ? rasterizationState->depthBiasConstantFactor : 0.0f); context.slopeDepthBias = (rasterizationState->depthBiasEnable ? rasterizationState->depthBiasSlopeFactor : 0.0f); const VkPipelineMultisampleStateCreateInfo* multisampleState = pCreateInfo->pMultisampleState; if((multisampleState->flags != 0) || (multisampleState->rasterizationSamples != VK_SAMPLE_COUNT_1_BIT) || (multisampleState->sampleShadingEnable != 0) || !((multisampleState->pSampleMask == nullptr) || (*(multisampleState->pSampleMask) == 0xFFFFFFFFu)) || (multisampleState->alphaToCoverageEnable != 0) || (multisampleState->alphaToOneEnable != 0)) { UNIMPLEMENTED(); } const VkPipelineDepthStencilStateCreateInfo* depthStencilState = pCreateInfo->pDepthStencilState; if((depthStencilState->flags != 0) || (depthStencilState->depthBoundsTestEnable != 0) || (depthStencilState->minDepthBounds != 0.0f) || (depthStencilState->maxDepthBounds != 1.0f)) { UNIMPLEMENTED(); } context.depthBufferEnable = depthStencilState->depthTestEnable; context.depthWriteEnable = depthStencilState->depthWriteEnable; context.depthCompareMode = depthStencilState->depthCompareOp; context.stencilEnable = context.twoSidedStencil = depthStencilState->stencilTestEnable; if(context.stencilEnable) { context.stencilMask = depthStencilState->front.compareMask; context.stencilCompareMode = depthStencilState->front.compareOp; context.stencilZFailOperation = depthStencilState->front.depthFailOp; context.stencilFailOperation = depthStencilState->front.failOp; context.stencilPassOperation = depthStencilState->front.passOp; context.stencilReference = depthStencilState->front.reference; context.stencilWriteMask = depthStencilState->front.writeMask; context.stencilMaskCCW = depthStencilState->back.compareMask; context.stencilCompareModeCCW = depthStencilState->back.compareOp; context.stencilZFailOperationCCW = depthStencilState->back.depthFailOp; context.stencilFailOperationCCW = depthStencilState->back.failOp; context.stencilPassOperationCCW = depthStencilState->back.passOp; context.stencilReferenceCCW = depthStencilState->back.reference; context.stencilWriteMaskCCW = depthStencilState->back.writeMask; } const VkPipelineColorBlendStateCreateInfo* colorBlendState = pCreateInfo->pColorBlendState; if((colorBlendState->flags != 0) || ((colorBlendState->logicOpEnable != 0) && (colorBlendState->attachmentCount > 1))) { UNIMPLEMENTED(); } context.colorLogicOpEnabled = colorBlendState->logicOpEnable; context.logicalOperation = colorBlendState->logicOp; blendConstants.r = colorBlendState->blendConstants[0]; blendConstants.g = colorBlendState->blendConstants[1]; blendConstants.b = colorBlendState->blendConstants[2]; blendConstants.a = colorBlendState->blendConstants[3]; if(colorBlendState->attachmentCount == 1) { const VkPipelineColorBlendAttachmentState& attachment = colorBlendState->pAttachments[0]; if(attachment.colorWriteMask != (VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT)) { UNIMPLEMENTED(); } context.alphaBlendEnable = attachment.blendEnable; context.separateAlphaBlendEnable = (attachment.alphaBlendOp != attachment.colorBlendOp) || (attachment.dstAlphaBlendFactor != attachment.dstColorBlendFactor) || (attachment.srcAlphaBlendFactor != attachment.srcColorBlendFactor); context.blendOperationStateAlpha = attachment.alphaBlendOp; context.blendOperationState = attachment.colorBlendOp; context.destBlendFactorStateAlpha = attachment.dstAlphaBlendFactor; context.destBlendFactorState = attachment.dstColorBlendFactor; context.sourceBlendFactorStateAlpha = attachment.srcAlphaBlendFactor; context.sourceBlendFactorState = attachment.srcColorBlendFactor; } } void GraphicsPipeline::destroyPipeline(const VkAllocationCallbacks* pAllocator) { delete vertexShader; delete fragmentShader; } size_t GraphicsPipeline::ComputeRequiredAllocationSize(const VkGraphicsPipelineCreateInfo* pCreateInfo) { return 0; } void GraphicsPipeline::compileShaders(const VkAllocationCallbacks* pAllocator, const VkGraphicsPipelineCreateInfo* pCreateInfo) { for (auto pStage = pCreateInfo->pStages; pStage != pCreateInfo->pStages + pCreateInfo->stageCount; pStage++) { auto module = Cast(pStage->module); // TODO: apply prep passes using SPIRV-Opt here. // - Apply and freeze specializations, etc. auto code = module->getCode(); // TODO: pass in additional information here: // - any NOS from pCreateInfo which we'll actually need auto spirvShader = new sw::SpirvShader{code}; switch (pStage->stage) { case VK_SHADER_STAGE_VERTEX_BIT: vertexShader = spirvShader; break; case VK_SHADER_STAGE_FRAGMENT_BIT: fragmentShader = spirvShader; break; default: UNIMPLEMENTED("Unsupported stage"); } } } uint32_t GraphicsPipeline::computePrimitiveCount(uint32_t vertexCount) const { switch(context.drawType) { case sw::DRAW_POINTLIST: return vertexCount; case sw::DRAW_LINELIST: return vertexCount / 2; case sw::DRAW_LINESTRIP: return vertexCount - 1; case sw::DRAW_TRIANGLELIST: return vertexCount / 3; case sw::DRAW_TRIANGLESTRIP: return vertexCount - 2; case sw::DRAW_TRIANGLEFAN: return vertexCount - 2; default: UNIMPLEMENTED(); } return 0; } const sw::Context& GraphicsPipeline::getContext() const { return context; } const sw::Rect& GraphicsPipeline::getScissor() const { return scissor; } const VkViewport& GraphicsPipeline::getViewport() const { return viewport; } const sw::Color& GraphicsPipeline::getBlendConstants() const { return blendConstants; } ComputePipeline::ComputePipeline(const VkComputePipelineCreateInfo* pCreateInfo, void* mem) { } void ComputePipeline::destroyPipeline(const VkAllocationCallbacks* pAllocator) { } size_t ComputePipeline::ComputeRequiredAllocationSize(const VkComputePipelineCreateInfo* pCreateInfo) { return 0; } } // namespace vk