// Copyright 2018 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "VkBuffer.hpp" #include "VkBufferView.hpp" #include "VkCommandBuffer.hpp" #include "VkCommandPool.hpp" #include "VkConfig.h" #include "VkDebug.hpp" #include "VkDescriptorPool.hpp" #include "VkDescriptorSetLayout.hpp" #include "VkDestroy.h" #include "VkDevice.hpp" #include "VkDeviceMemory.hpp" #include "VkEvent.hpp" #include "VkFence.hpp" #include "VkFramebuffer.hpp" #include "VkGetProcAddress.h" #include "VkImage.hpp" #include "VkImageView.hpp" #include "VkInstance.hpp" #include "VkPhysicalDevice.hpp" #include "VkPipeline.hpp" #include "VkPipelineCache.hpp" #include "VkPipelineLayout.hpp" #include "VkQueryPool.hpp" #include "VkQueue.hpp" #include "VkSampler.hpp" #include "VkSemaphore.hpp" #include "VkShaderModule.hpp" #include "VkRenderPass.hpp" #include #include #include extern "C" { VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(VkInstance instance, const char* pName) { TRACE("(VkInstance instance = 0x%X, const char* pName = 0x%X)", instance, pName); return vk::GetInstanceProcAddr(instance, pName); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateInstance(const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkInstance* pInstance) { TRACE("(const VkInstanceCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkInstance* pInstance = 0x%X)", pCreateInfo, pAllocator, pInstance); if(pCreateInfo->enabledLayerCount) { UNIMPLEMENTED(); } if(pCreateInfo->enabledExtensionCount) { UNIMPLEMENTED(); } if(pCreateInfo->pNext) { switch(*reinterpret_cast(pCreateInfo->pNext)) { case VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO: // According to the Vulkan spec, section 2.7.2. Implicit Valid Usage: // "The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and // VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO are reserved for // internal use by the loader, and do not have corresponding // Vulkan structures in this Specification." break; default: UNIMPLEMENTED(); } } *pInstance = VK_NULL_HANDLE; VkPhysicalDevice physicalDevice = VK_NULL_HANDLE; VkResult result = vk::DispatchablePhysicalDevice::Create(pAllocator, pCreateInfo, &physicalDevice); if(result != VK_SUCCESS) { return result; } vk::Instance::CreateInfo info = { pCreateInfo, physicalDevice }; result = vk::DispatchableInstance::Create(pAllocator, &info, pInstance); if(result != VK_SUCCESS) { vk::destroy(physicalDevice, pAllocator); return result; } return result; } VKAPI_ATTR void VKAPI_CALL vkDestroyInstance(VkInstance instance, const VkAllocationCallbacks* pAllocator) { TRACE("(VkInstance instance = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", instance, pAllocator); vk::destroy(instance, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkEnumeratePhysicalDevices(VkInstance instance, uint32_t* pPhysicalDeviceCount, VkPhysicalDevice* pPhysicalDevices) { TRACE("(VkInstance instance = 0x%X, uint32_t* pPhysicalDeviceCount = 0x%X, VkPhysicalDevice* pPhysicalDevices = 0x%X)", instance, pPhysicalDeviceCount, pPhysicalDevices); if(!pPhysicalDevices) { *pPhysicalDeviceCount = vk::Cast(instance)->getPhysicalDeviceCount(); } else { vk::Cast(instance)->getPhysicalDevices(*pPhysicalDeviceCount, pPhysicalDevices); } return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceFeatures* pFeatures = 0x%X)", physicalDevice, pFeatures); *pFeatures = vk::Cast(physicalDevice)->getFeatures(); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties* pFormatProperties) { TRACE("GetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice = 0x%X, VkFormat format = %d, VkFormatProperties* pFormatProperties = 0x%X)", physicalDevice, (int)format, pFormatProperties); vk::Cast(physicalDevice)->getFormatProperties(format, pFormatProperties); } VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkImageTiling tiling, VkImageUsageFlags usage, VkImageCreateFlags flags, VkImageFormatProperties* pImageFormatProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkFormat format = %d, VkImageType type = %d, VkImageTiling tiling = %d, VkImageUsageFlags usage = %d, VkImageCreateFlags flags = %d, VkImageFormatProperties* pImageFormatProperties = 0x%X)", physicalDevice, (int)format, (int)type, (int)tiling, usage, flags, pImageFormatProperties); VkFormatProperties properties; vk::Cast(physicalDevice)->getFormatProperties(format, &properties); switch (tiling) { case VK_IMAGE_TILING_LINEAR: if (properties.linearTilingFeatures == 0) return VK_ERROR_FORMAT_NOT_SUPPORTED; break; case VK_IMAGE_TILING_OPTIMAL: if (properties.optimalTilingFeatures == 0) return VK_ERROR_FORMAT_NOT_SUPPORTED; break; default: UNIMPLEMENTED(); } vk::Cast(physicalDevice)->getImageFormatProperties(format, type, tiling, usage, flags, pImageFormatProperties); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties* pProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceProperties* pProperties = 0x%X)", physicalDevice, pProperties); *pProperties = vk::Cast(physicalDevice)->getProperties(); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice, uint32_t* pQueueFamilyPropertyCount, VkQueueFamilyProperties* pQueueFamilyProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, uint32_t* pQueueFamilyPropertyCount = 0x%X, VkQueueFamilyProperties* pQueueFamilyProperties = 0x%X))", physicalDevice, pQueueFamilyPropertyCount, pQueueFamilyProperties); if(!pQueueFamilyProperties) { *pQueueFamilyPropertyCount = vk::Cast(physicalDevice)->getQueueFamilyPropertyCount(); } else { vk::Cast(physicalDevice)->getQueueFamilyProperties(*pQueueFamilyPropertyCount, pQueueFamilyProperties); } } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties* pMemoryProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceMemoryProperties* pMemoryProperties = 0x%X)", physicalDevice, pMemoryProperties); *pMemoryProperties = vk::Cast(physicalDevice)->getMemoryProperties(); } VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance, const char* pName) { TRACE("(VkInstance instance = 0x%X, const char* pName = 0x%X)", instance, pName); return vk::GetInstanceProcAddr(instance, pName); } VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice device, const char* pName) { TRACE("(VkDevice device = 0x%X, const char* pName = 0x%X)", device, pName); return vk::GetDeviceProcAddr(device, pName); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDevice* pDevice) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkDeviceCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkDevice* pDevice = 0x%X)", physicalDevice, pCreateInfo, pAllocator, pDevice); if(pCreateInfo->enabledLayerCount) { // "The ppEnabledLayerNames and enabledLayerCount members of VkDeviceCreateInfo are deprecated and their values must be ignored by implementations." UNIMPLEMENTED(); // TODO(b/119321052): UNIMPLEMENTED() should be used only for features that must still be implemented. Use a more informational macro here. } const VkBaseInStructure* extensionCreateInfo = reinterpret_cast(pCreateInfo->pNext); while(extensionCreateInfo) { switch(extensionCreateInfo->sType) { case VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO: // According to the Vulkan spec, section 2.7.2. Implicit Valid Usage: // "The values VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO and // VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO are reserved for // internal use by the loader, and do not have corresponding // Vulkan structures in this Specification." break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: { ASSERT(!pCreateInfo->pEnabledFeatures); // "If the pNext chain includes a VkPhysicalDeviceFeatures2 structure, then pEnabledFeatures must be NULL" const VkPhysicalDeviceFeatures2* physicalDeviceFeatures2 = reinterpret_cast(extensionCreateInfo); if(!vk::Cast(physicalDevice)->hasFeatures(physicalDeviceFeatures2->features)) { return VK_ERROR_FEATURE_NOT_PRESENT; } } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: { const VkPhysicalDeviceSamplerYcbcrConversionFeatures* samplerYcbcrConversionFeatures = reinterpret_cast(extensionCreateInfo); if(samplerYcbcrConversionFeatures->samplerYcbcrConversion == VK_TRUE) { return VK_ERROR_FEATURE_NOT_PRESENT; } } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: { const VkPhysicalDevice16BitStorageFeatures* storage16BitFeatures = reinterpret_cast(extensionCreateInfo); if(storage16BitFeatures->storageBuffer16BitAccess == VK_TRUE || storage16BitFeatures->uniformAndStorageBuffer16BitAccess == VK_TRUE || storage16BitFeatures->storagePushConstant16 == VK_TRUE || storage16BitFeatures->storageInputOutput16 == VK_TRUE) { return VK_ERROR_FEATURE_NOT_PRESENT; } } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: { const VkPhysicalDeviceVariablePointerFeatures* variablePointerFeatures = reinterpret_cast(extensionCreateInfo); if(variablePointerFeatures->variablePointersStorageBuffer == VK_TRUE || variablePointerFeatures->variablePointers == VK_TRUE) { return VK_ERROR_FEATURE_NOT_PRESENT; } } break; case VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO: { const VkDeviceGroupDeviceCreateInfo* groupDeviceCreateInfo = reinterpret_cast(extensionCreateInfo); if((groupDeviceCreateInfo->physicalDeviceCount != 1) || (groupDeviceCreateInfo->pPhysicalDevices[0] != physicalDevice)) { return VK_ERROR_FEATURE_NOT_PRESENT; } } break; default: // "the [driver] must skip over, without processing (other than reading the sType and pNext members) any structures in the chain with sType values not defined by [supported extenions]" UNIMPLEMENTED(); // TODO(b/119321052): UNIMPLEMENTED() should be used only for features that must still be implemented. Use a more informational macro here. break; } extensionCreateInfo = extensionCreateInfo->pNext; } ASSERT(pCreateInfo->queueCreateInfoCount > 0); if(pCreateInfo->pEnabledFeatures) { if(!vk::Cast(physicalDevice)->hasFeatures(*(pCreateInfo->pEnabledFeatures))) { UNIMPLEMENTED(); return VK_ERROR_FEATURE_NOT_PRESENT; } } uint32_t queueFamilyPropertyCount = vk::Cast(physicalDevice)->getQueueFamilyPropertyCount(); for(uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) { const VkDeviceQueueCreateInfo& queueCreateInfo = pCreateInfo->pQueueCreateInfos[i]; if(queueCreateInfo.pNext || queueCreateInfo.flags) { UNIMPLEMENTED(); } ASSERT(queueCreateInfo.queueFamilyIndex < queueFamilyPropertyCount); (void)queueFamilyPropertyCount; // Silence unused variable warning } vk::Device::CreateInfo deviceCreateInfo = { pCreateInfo, physicalDevice }; return vk::DispatchableDevice::Create(pAllocator, &deviceCreateInfo, pDevice); } VKAPI_ATTR void VKAPI_CALL vkDestroyDevice(VkDevice device, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, pAllocator); vk::destroy(device, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceExtensionProperties(const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { TRACE("(const char* pLayerName = 0x%X, uint32_t* pPropertyCount = 0x%X, VkExtensionProperties* pProperties = 0x%X)", pLayerName, pPropertyCount, pProperties); static VkExtensionProperties extensionProperties[] = { { VK_KHR_DEVICE_GROUP_CREATION_EXTENSION_NAME, VK_KHR_DEVICE_GROUP_CREATION_SPEC_VERSION }, { VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_FENCE_CAPABILITIES_SPEC_VERSION }, { VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_SPEC_VERSION }, { VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_SPEC_VERSION }, { VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_SPEC_VERSION }, }; uint32_t extensionPropertiesCount = sizeof(extensionProperties) / sizeof(extensionProperties[0]); if(!pProperties) { *pPropertyCount = extensionPropertiesCount; return VK_SUCCESS; } for(uint32_t i = 0; i < std::min(*pPropertyCount, extensionPropertiesCount); i++) { pProperties[i] = extensionProperties[i]; } return (*pPropertyCount < extensionPropertiesCount) ? VK_INCOMPLETE : VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice, const char* pLayerName, uint32_t* pPropertyCount, VkExtensionProperties* pProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const char* pLayerName, uint32_t* pPropertyCount = 0x%X, VkExtensionProperties* pProperties = 0x%X)", physicalDevice, pPropertyCount, pProperties); static VkExtensionProperties extensionProperties[] = { { VK_KHR_16BIT_STORAGE_EXTENSION_NAME, VK_KHR_16BIT_STORAGE_SPEC_VERSION }, { VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, VK_KHR_BIND_MEMORY_2_SPEC_VERSION }, { VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, VK_KHR_DEDICATED_ALLOCATION_SPEC_VERSION }, { VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME, VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_SPEC_VERSION }, { VK_KHR_DEVICE_GROUP_EXTENSION_NAME, VK_KHR_DEVICE_GROUP_SPEC_VERSION }, { VK_KHR_EXTERNAL_FENCE_EXTENSION_NAME, VK_KHR_EXTERNAL_FENCE_SPEC_VERSION }, { VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_SPEC_VERSION }, { VK_KHR_EXTERNAL_SEMAPHORE_EXTENSION_NAME, VK_KHR_EXTERNAL_SEMAPHORE_SPEC_VERSION }, { VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, VK_KHR_GET_MEMORY_REQUIREMENTS_2_SPEC_VERSION }, { VK_KHR_MAINTENANCE1_EXTENSION_NAME, VK_KHR_MAINTENANCE1_SPEC_VERSION }, { VK_KHR_MAINTENANCE2_EXTENSION_NAME, VK_KHR_MAINTENANCE2_SPEC_VERSION }, { VK_KHR_MAINTENANCE3_EXTENSION_NAME, VK_KHR_MAINTENANCE3_SPEC_VERSION }, { VK_KHR_MULTIVIEW_EXTENSION_NAME, VK_KHR_MULTIVIEW_SPEC_VERSION }, { VK_KHR_RELAXED_BLOCK_LAYOUT_EXTENSION_NAME, VK_KHR_RELAXED_BLOCK_LAYOUT_SPEC_VERSION }, { VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, VK_KHR_SAMPLER_YCBCR_CONVERSION_SPEC_VERSION }, { VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME, VK_KHR_SHADER_DRAW_PARAMETERS_SPEC_VERSION }, { VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_EXTENSION_NAME, VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_SPEC_VERSION }, { VK_KHR_VARIABLE_POINTERS_EXTENSION_NAME, VK_KHR_VARIABLE_POINTERS_SPEC_VERSION }, }; uint32_t extensionPropertiesCount = sizeof(extensionProperties) / sizeof(extensionProperties[0]); if(!pProperties) { *pPropertyCount = extensionPropertiesCount; return VK_SUCCESS; } for(uint32_t i = 0; i < std::min(*pPropertyCount, extensionPropertiesCount); i++) { pProperties[i] = extensionProperties[i]; } return (*pPropertyCount < extensionPropertiesCount) ? VK_INCOMPLETE : VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceLayerProperties(uint32_t* pPropertyCount, VkLayerProperties* pProperties) { TRACE("(uint32_t* pPropertyCount = 0x%X, VkLayerProperties* pProperties = 0x%X)", pPropertyCount, pProperties); if(!pProperties) { *pPropertyCount = 0; return VK_SUCCESS; } return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t* pPropertyCount, VkLayerProperties* pProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, uint32_t* pPropertyCount = 0x%X, VkLayerProperties* pProperties = 0x%X)", physicalDevice, pPropertyCount, pProperties); if(!pProperties) { *pPropertyCount = 0; return VK_SUCCESS; } return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetDeviceQueue(VkDevice device, uint32_t queueFamilyIndex, uint32_t queueIndex, VkQueue* pQueue) { TRACE("(VkDevice device = 0x%X, uint32_t queueFamilyIndex = %d, uint32_t queueIndex = %d, VkQueue* pQueue = 0x%X)", device, queueFamilyIndex, queueIndex, pQueue); *pQueue = vk::Cast(device)->getQueue(queueFamilyIndex, queueIndex); } VKAPI_ATTR VkResult VKAPI_CALL vkQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence fence) { TRACE("(VkQueue queue = 0x%X, uint32_t submitCount = %d, const VkSubmitInfo* pSubmits = 0x%X, VkFence fence = 0x%X)", queue, submitCount, pSubmits, fence); vk::Cast(queue)->submit(submitCount, pSubmits, fence); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkQueueWaitIdle(VkQueue queue) { TRACE("(VkQueue queue = 0x%X)", queue); vk::Cast(queue)->waitIdle(); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkDeviceWaitIdle(VkDevice device) { TRACE("(VkDevice device = 0x%X)", device); vk::Cast(device)->waitIdle(); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo* pAllocateInfo, const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMemory) { TRACE("(VkDevice device = 0x%X, const VkMemoryAllocateInfo* pAllocateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkDeviceMemory* pMemory = 0x%X)", device, pAllocateInfo, pAllocator, pMemory); const VkBaseOutStructure* allocationInfo = reinterpret_cast(pAllocateInfo->pNext); while(allocationInfo) { switch(allocationInfo->sType) { case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO: // This can safely be ignored, as the Vulkan spec mentions: // "If the pNext chain includes a VkMemoryDedicatedAllocateInfo structure, then that structure // includes a handle of the sole buffer or image resource that the memory *can* be bound to." break; default: UNIMPLEMENTED(); break; } allocationInfo = allocationInfo->pNext; } VkResult result = vk::DeviceMemory::Create(pAllocator, pAllocateInfo, pMemory); if(result != VK_SUCCESS) { return result; } // Make sure the memory allocation is done now so that OOM errors can be checked now result = vk::Cast(*pMemory)->allocate(); if(result != VK_SUCCESS) { vk::destroy(*pMemory, pAllocator); *pMemory = VK_NULL_HANDLE; } return result; } VKAPI_ATTR void VKAPI_CALL vkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkDeviceMemory memory = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, memory, pAllocator); vk::destroy(memory, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size, VkMemoryMapFlags flags, void** ppData) { TRACE("(VkDevice device = 0x%X, VkDeviceMemory memory = 0x%X, VkDeviceSize offset = %d, VkDeviceSize size = %d, VkMemoryMapFlags flags = 0x%X, void** ppData = 0x%X)", device, memory, offset, size, flags, ppData); return vk::Cast(memory)->map(offset, size, ppData); } VKAPI_ATTR void VKAPI_CALL vkUnmapMemory(VkDevice device, VkDeviceMemory memory) { TRACE("(VkDevice device = 0x%X, VkDeviceMemory memory = 0x%X)", device, memory); // Noop, memory will be released when the DeviceMemory object is released } VKAPI_ATTR VkResult VKAPI_CALL vkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { TRACE("(VkDevice device = 0x%X, uint32_t memoryRangeCount = %d, const VkMappedMemoryRange* pMemoryRanges = 0x%X)", device, memoryRangeCount, pMemoryRanges); // Noop, host and device memory are the same to SwiftShader return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount, const VkMappedMemoryRange* pMemoryRanges) { TRACE("(VkDevice device = 0x%X, uint32_t memoryRangeCount = %d, const VkMappedMemoryRange* pMemoryRanges = 0x%X)", device, memoryRangeCount, pMemoryRanges); // Noop, host and device memory are the same to SwiftShader return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetDeviceMemoryCommitment(VkDevice pDevice, VkDeviceMemory pMemory, VkDeviceSize* pCommittedMemoryInBytes) { TRACE("(VkDevice device = 0x%X, VkDeviceMemory memory = 0x%X, VkDeviceSize* pCommittedMemoryInBytes = 0x%X)", pDevice, pMemory, pCommittedMemoryInBytes); auto memory = vk::Cast(pMemory); #if !defined(NDEBUG) || defined(DCHECK_ALWAYS_ON) const auto& memoryProperties = vk::Cast(vk::Cast(pDevice)->getPhysicalDevice())->getMemoryProperties(); uint32_t typeIndex = memory->getMemoryTypeIndex(); ASSERT(typeIndex < memoryProperties.memoryTypeCount); ASSERT(memoryProperties.memoryTypes[typeIndex].propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT); #endif *pCommittedMemoryInBytes = memory->getCommittedMemoryInBytes(); } VKAPI_ATTR VkResult VKAPI_CALL vkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize memoryOffset) { TRACE("(VkDevice device = 0x%X, VkBuffer buffer = 0x%X, VkDeviceMemory memory = 0x%X, VkDeviceSize memoryOffset = %d)", device, buffer, memory, memoryOffset); vk::Cast(buffer)->bind(memory, memoryOffset); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory, VkDeviceSize memoryOffset) { TRACE("(VkDevice device = 0x%X, VkImage image = 0x%X, VkDeviceMemory memory = 0x%X, VkDeviceSize memoryOffset = %d)", device, image, memory, memoryOffset); vk::Cast(image)->bind(memory, memoryOffset); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer, VkMemoryRequirements* pMemoryRequirements) { TRACE("(VkDevice device = 0x%X, VkBuffer buffer = 0x%X, VkMemoryRequirements* pMemoryRequirements = 0x%X)", device, buffer, pMemoryRequirements); *pMemoryRequirements = vk::Cast(buffer)->getMemoryRequirements(); } VKAPI_ATTR void VKAPI_CALL vkGetImageMemoryRequirements(VkDevice device, VkImage image, VkMemoryRequirements* pMemoryRequirements) { TRACE("(VkDevice device = 0x%X, VkImage image = 0x%X, VkMemoryRequirements* pMemoryRequirements = 0x%X)", device, image, pMemoryRequirements); *pMemoryRequirements = vk::Cast(image)->getMemoryRequirements(); } VKAPI_ATTR void VKAPI_CALL vkGetImageSparseMemoryRequirements(VkDevice device, VkImage image, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements* pSparseMemoryRequirements) { TRACE("(VkDevice device, VkImage image, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements* pSparseMemoryRequirements)", device, image, pSparseMemoryRequirementCount, pSparseMemoryRequirements); // The 'sparseBinding' feature is not supported, so images can not be created with the VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT flag. // "If the image was not created with VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT then pSparseMemoryRequirementCount will be set to zero and pSparseMemoryRequirements will not be written to." *pSparseMemoryRequirementCount = 0; } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceSparseImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkSampleCountFlagBits samples, VkImageUsageFlags usage, VkImageTiling tiling, uint32_t* pPropertyCount, VkSparseImageFormatProperties* pProperties) { TRACE("()"); UNIMPLEMENTED(); } VKAPI_ATTR VkResult VKAPI_CALL vkQueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo, VkFence fence) { TRACE("()"); UNIMPLEMENTED(); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkCreateFence(VkDevice device, const VkFenceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFence* pFence) { TRACE("(VkDevice device = 0x%X, const VkFenceCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkFence* pFence = 0x%X)", device, pCreateInfo, pAllocator, pFence); if(pCreateInfo->pNext) { UNIMPLEMENTED(); } return vk::Fence::Create(pAllocator, pCreateInfo, pFence); } VKAPI_ATTR void VKAPI_CALL vkDestroyFence(VkDevice device, VkFence fence, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkFence fence = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, fence, pAllocator); vk::destroy(fence, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkResetFences(VkDevice device, uint32_t fenceCount, const VkFence* pFences) { TRACE("(VkDevice device = 0x%X, uint32_t fenceCount = %d, const VkFence* pFences = 0x%X)", device, fenceCount, pFences); for(uint32_t i = 0; i < fenceCount; i++) { vk::Cast(pFences[i])->reset(); } return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkGetFenceStatus(VkDevice device, VkFence fence) { TRACE("(VkDevice device = 0x%X, VkFence fence = 0x%X)", device, fence); return vk::Cast(fence)->getStatus(); } VKAPI_ATTR VkResult VKAPI_CALL vkWaitForFences(VkDevice device, uint32_t fenceCount, const VkFence* pFences, VkBool32 waitAll, uint64_t timeout) { TRACE("(VkDevice device = 0x%X, uint32_t fenceCount = %d, const VkFence* pFences = 0x%X, VkBool32 waitAll = %d, uint64_t timeout = %d)", device, fenceCount, pFences, waitAll, timeout); vk::Cast(device)->waitForFences(fenceCount, pFences, waitAll, timeout); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkCreateSemaphore(VkDevice device, const VkSemaphoreCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSemaphore* pSemaphore) { TRACE("(VkDevice device = 0x%X, const VkSemaphoreCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkSemaphore* pSemaphore = 0x%X)", device, pCreateInfo, pAllocator, pSemaphore); if(pCreateInfo->pNext || pCreateInfo->flags) { UNIMPLEMENTED(); } return vk::Semaphore::Create(pAllocator, pCreateInfo, pSemaphore); } VKAPI_ATTR void VKAPI_CALL vkDestroySemaphore(VkDevice device, VkSemaphore semaphore, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkSemaphore semaphore = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, semaphore, pAllocator); vk::destroy(semaphore, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateEvent(VkDevice device, const VkEventCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkEvent* pEvent) { TRACE("(VkDevice device = 0x%X, const VkEventCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkEvent* pEvent = 0x%X)", device, pCreateInfo, pAllocator, pEvent); if(pCreateInfo->pNext || pCreateInfo->flags) { UNIMPLEMENTED(); } return vk::Event::Create(pAllocator, pCreateInfo, pEvent); } VKAPI_ATTR void VKAPI_CALL vkDestroyEvent(VkDevice device, VkEvent event, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkEvent event = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, event, pAllocator); vk::destroy(event, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkGetEventStatus(VkDevice device, VkEvent event) { TRACE("(VkDevice device = 0x%X, VkEvent event = 0x%X)", device, event); return vk::Cast(event)->getStatus(); } VKAPI_ATTR VkResult VKAPI_CALL vkSetEvent(VkDevice device, VkEvent event) { TRACE("(VkDevice device = 0x%X, VkEvent event = 0x%X)", device, event); vk::Cast(event)->signal(); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkResetEvent(VkDevice device, VkEvent event) { TRACE("(VkDevice device = 0x%X, VkEvent event = 0x%X)", device, event); vk::Cast(event)->reset(); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkCreateQueryPool(VkDevice device, const VkQueryPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkQueryPool* pQueryPool) { TRACE("(VkDevice device = 0x%X, const VkQueryPoolCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkQueryPool* pQueryPool = 0x%X)", device, pCreateInfo, pAllocator, pQueryPool); if(pCreateInfo->pNext || pCreateInfo->flags) { UNIMPLEMENTED(); } return vk::QueryPool::Create(pAllocator, pCreateInfo, pQueryPool); } VKAPI_ATTR void VKAPI_CALL vkDestroyQueryPool(VkDevice device, VkQueryPool queryPool, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkQueryPool queryPool = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, queryPool, pAllocator); vk::destroy(queryPool, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkGetQueryPoolResults(VkDevice device, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, size_t dataSize, void* pData, VkDeviceSize stride, VkQueryResultFlags flags) { TRACE("(VkDevice device = 0x%X, VkQueryPool queryPool = 0x%X, uint32_t firstQuery = %d, uint32_t queryCount = %d, size_t dataSize = %d, void* pData = 0x%X, VkDeviceSize stride = 0x%X, VkQueryResultFlags flags = %d)", device, queryPool, firstQuery, queryCount, dataSize, pData, stride, flags); vk::Cast(queryPool)->getResults(firstQuery, queryCount, dataSize, pData, stride, flags); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkCreateBuffer(VkDevice device, const VkBufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer) { TRACE("(VkDevice device = 0x%X, const VkBufferCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkBuffer* pBuffer = 0x%X)", device, pCreateInfo, pAllocator, pBuffer); if(pCreateInfo->pNext) { UNIMPLEMENTED(); } return vk::Buffer::Create(pAllocator, pCreateInfo, pBuffer); } VKAPI_ATTR void VKAPI_CALL vkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkBuffer buffer = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, buffer, pAllocator); vk::destroy(buffer, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateBufferView(VkDevice device, const VkBufferViewCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBufferView* pView) { TRACE("(VkDevice device, const VkBufferViewCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkBufferView* pView)", device, pCreateInfo, pAllocator, pView); if(pCreateInfo->pNext || pCreateInfo->flags) { UNIMPLEMENTED(); } return vk::BufferView::Create(pAllocator, pCreateInfo, pView); } VKAPI_ATTR void VKAPI_CALL vkDestroyBufferView(VkDevice device, VkBufferView bufferView, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device, VkBufferView bufferView, const VkAllocationCallbacks* pAllocator)", device, bufferView, pAllocator); vk::destroy(bufferView, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateImage(VkDevice device, const VkImageCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkImage* pImage) { TRACE("(VkDevice device = 0x%X, const VkImageCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkImage* pImage = 0x%X)", device, pCreateInfo, pAllocator, pImage); if(pCreateInfo->pNext) { UNIMPLEMENTED(); } return vk::Image::Create(pAllocator, pCreateInfo, pImage); } VKAPI_ATTR void VKAPI_CALL vkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkImage image = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, image, pAllocator); vk::destroy(image, pAllocator); } VKAPI_ATTR void VKAPI_CALL vkGetImageSubresourceLayout(VkDevice device, VkImage image, const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) { TRACE("(VkDevice device, VkImage image, const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout)", device, image, pSubresource, pLayout); vk::Cast(image)->getSubresourceLayout(pSubresource, pLayout); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateImageView(VkDevice device, const VkImageViewCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkImageView* pView) { TRACE("(VkDevice device = 0x%X, const VkImageViewCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkImageView* pView = 0x%X)", device, pCreateInfo, pAllocator, pView); if(pCreateInfo->pNext || pCreateInfo->flags) { UNIMPLEMENTED(); } return vk::ImageView::Create(pAllocator, pCreateInfo, pView); } VKAPI_ATTR void VKAPI_CALL vkDestroyImageView(VkDevice device, VkImageView imageView, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkImageView imageView = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, imageView, pAllocator); vk::destroy(imageView, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkShaderModule* pShaderModule) { TRACE("(VkDevice device = 0x%X, const VkShaderModuleCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkShaderModule* pShaderModule = 0x%X)", device, pCreateInfo, pAllocator, pShaderModule); if(pCreateInfo->pNext || pCreateInfo->flags) { UNIMPLEMENTED(); } return vk::ShaderModule::Create(pAllocator, pCreateInfo, pShaderModule); } VKAPI_ATTR void VKAPI_CALL vkDestroyShaderModule(VkDevice device, VkShaderModule shaderModule, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkShaderModule shaderModule = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, shaderModule, pAllocator); vk::destroy(shaderModule, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreatePipelineCache(VkDevice device, const VkPipelineCacheCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipelineCache* pPipelineCache) { TRACE("(VkDevice device, const VkPipelineCacheCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipelineCache* pPipelineCache)", device, pCreateInfo, pAllocator, pPipelineCache); if(pCreateInfo->pNext || pCreateInfo->flags) { UNIMPLEMENTED(); } return vk::PipelineCache::Create(pAllocator, pCreateInfo, pPipelineCache); } VKAPI_ATTR void VKAPI_CALL vkDestroyPipelineCache(VkDevice device, VkPipelineCache pipelineCache, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device, VkPipelineCache pipelineCache, const VkAllocationCallbacks* pAllocator)", device, pipelineCache, pAllocator); vk::destroy(pipelineCache, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkGetPipelineCacheData(VkDevice device, VkPipelineCache pipelineCache, size_t* pDataSize, void* pData) { TRACE("()"); UNIMPLEMENTED(); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkMergePipelineCaches(VkDevice device, VkPipelineCache dstCache, uint32_t srcCacheCount, const VkPipelineCache* pSrcCaches) { TRACE("()"); UNIMPLEMENTED(); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines) { TRACE("(VkDevice device = 0x%X, VkPipelineCache pipelineCache = 0x%X, uint32_t createInfoCount = %d, const VkGraphicsPipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator = 0x%X, VkPipeline* pPipelines = 0x%X)", device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines); // TODO (b/123588002): Optimize based on pipelineCache. VkResult errorResult = VK_SUCCESS; for(uint32_t i = 0; i < createInfoCount; i++) { VkResult result = vk::GraphicsPipeline::Create(pAllocator, &pCreateInfos[i], &pPipelines[i]); if(result != VK_SUCCESS) { // According to the Vulkan spec, section 9.4. Multiple Pipeline Creation // "When an application attempts to create many pipelines in a single command, // it is possible that some subset may fail creation. In that case, the // corresponding entries in the pPipelines output array will be filled with // VK_NULL_HANDLE values. If any pipeline fails creation (for example, due to // out of memory errors), the vkCreate*Pipelines commands will return an // error code. The implementation will attempt to create all pipelines, and // only return VK_NULL_HANDLE values for those that actually failed." pPipelines[i] = VK_NULL_HANDLE; errorResult = result; } else { static_cast(vk::Cast(pPipelines[i]))->compileShaders(pAllocator, &pCreateInfos[i]); } } return errorResult; } VKAPI_ATTR VkResult VKAPI_CALL vkCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount, const VkComputePipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines) { TRACE("(VkDevice device = 0x%X, VkPipelineCache pipelineCache = 0x%X, uint32_t createInfoCount = %d, const VkComputePipelineCreateInfo* pCreateInfos, const VkAllocationCallbacks* pAllocator = 0x%X, VkPipeline* pPipelines = 0x%X)", device, pipelineCache, createInfoCount, pCreateInfos, pAllocator, pPipelines); // TODO (b/123588002): Optimize based on pipelineCache. VkResult errorResult = VK_SUCCESS; for(uint32_t i = 0; i < createInfoCount; i++) { VkResult result = vk::ComputePipeline::Create(pAllocator, &pCreateInfos[i], &pPipelines[i]); if(result != VK_SUCCESS) { // According to the Vulkan spec, section 9.4. Multiple Pipeline Creation // "When an application attempts to create many pipelines in a single command, // it is possible that some subset may fail creation. In that case, the // corresponding entries in the pPipelines output array will be filled with // VK_NULL_HANDLE values. If any pipeline fails creation (for example, due to // out of memory errors), the vkCreate*Pipelines commands will return an // error code. The implementation will attempt to create all pipelines, and // only return VK_NULL_HANDLE values for those that actually failed." pPipelines[i] = VK_NULL_HANDLE; errorResult = result; } } return errorResult; } VKAPI_ATTR void VKAPI_CALL vkDestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkPipeline pipeline = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, pipeline, pAllocator); vk::destroy(pipeline, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipelineLayout* pPipelineLayout) { TRACE("(VkDevice device = 0x%X, const VkPipelineLayoutCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkPipelineLayout* pPipelineLayout = 0x%X)", device, pCreateInfo, pAllocator, pPipelineLayout); if(pCreateInfo->pNext || pCreateInfo->flags) { UNIMPLEMENTED(); } return vk::PipelineLayout::Create(pAllocator, pCreateInfo, pPipelineLayout); } VKAPI_ATTR void VKAPI_CALL vkDestroyPipelineLayout(VkDevice device, VkPipelineLayout pipelineLayout, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkPipelineLayout pipelineLayout = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, pipelineLayout, pAllocator); vk::destroy(pipelineLayout, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateSampler(VkDevice device, const VkSamplerCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSampler* pSampler) { TRACE("(VkDevice device = 0x%X, const VkSamplerCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkSampler* pSampler = 0x%X)", device, pCreateInfo, pAllocator, pSampler); if(pCreateInfo->pNext || pCreateInfo->flags) { UNIMPLEMENTED(); } return vk::Sampler::Create(pAllocator, pCreateInfo, pSampler); } VKAPI_ATTR void VKAPI_CALL vkDestroySampler(VkDevice device, VkSampler sampler, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkSampler sampler = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, sampler, pAllocator); vk::destroy(sampler, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateDescriptorSetLayout(VkDevice device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorSetLayout* pSetLayout) { TRACE("(VkDevice device = 0x%X, const VkDescriptorSetLayoutCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkDescriptorSetLayout* pSetLayout = 0x%X)", device, pCreateInfo, pAllocator, pSetLayout); if(pCreateInfo->pNext) { UNIMPLEMENTED(); } return vk::DescriptorSetLayout::Create(pAllocator, pCreateInfo, pSetLayout); } VKAPI_ATTR void VKAPI_CALL vkDestroyDescriptorSetLayout(VkDevice device, VkDescriptorSetLayout descriptorSetLayout, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkDescriptorSetLayout descriptorSetLayout = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, descriptorSetLayout, pAllocator); vk::destroy(descriptorSetLayout, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateDescriptorPool(VkDevice device, const VkDescriptorPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorPool* pDescriptorPool) { TRACE("(VkDevice device = 0x%X, const VkDescriptorPoolCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkDescriptorPool* pDescriptorPool = 0x%X)", device, pCreateInfo, pAllocator, pDescriptorPool); if(pCreateInfo->pNext) { UNIMPLEMENTED(); } return vk::DescriptorPool::Create(pAllocator, pCreateInfo, pDescriptorPool); } VKAPI_ATTR void VKAPI_CALL vkDestroyDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkDescriptorPool descriptorPool = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, descriptorPool, pAllocator); vk::destroy(descriptorPool, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkResetDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) { TRACE("(VkDevice device = 0x%X, VkDescriptorPool descriptorPool = 0x%X, VkDescriptorPoolResetFlags flags = 0x%X)", device, descriptorPool, flags); if(flags) { UNIMPLEMENTED(); } return vk::Cast(descriptorPool)->reset(); } VKAPI_ATTR VkResult VKAPI_CALL vkAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo* pAllocateInfo, VkDescriptorSet* pDescriptorSets) { TRACE("(VkDevice device = 0x%X, const VkDescriptorSetAllocateInfo* pAllocateInfo = 0x%X, VkDescriptorSet* pDescriptorSets = 0x%X)", device, pAllocateInfo, pDescriptorSets); if(pAllocateInfo->pNext) { UNIMPLEMENTED(); } return vk::Cast(pAllocateInfo->descriptorPool)->allocateSets( pAllocateInfo->descriptorSetCount, pAllocateInfo->pSetLayouts, pDescriptorSets); } VKAPI_ATTR VkResult VKAPI_CALL vkFreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t descriptorSetCount, const VkDescriptorSet* pDescriptorSets) { TRACE("(VkDevice device = 0x%X, VkDescriptorPool descriptorPool = 0x%X, uint32_t descriptorSetCount = %d, const VkDescriptorSet* pDescriptorSets = 0x%X)", device, descriptorPool, descriptorSetCount, pDescriptorSets); vk::Cast(descriptorPool)->freeSets(descriptorSetCount, pDescriptorSets); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkUpdateDescriptorSets(VkDevice device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet* pDescriptorCopies) { TRACE("()"); UNIMPLEMENTED(); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateFramebuffer(VkDevice device, const VkFramebufferCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkFramebuffer* pFramebuffer) { TRACE("(VkDevice device = 0x%X, const VkFramebufferCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkFramebuffer* pFramebuffer = 0x%X)", device, pCreateInfo, pAllocator, pFramebuffer); if(pCreateInfo->pNext || pCreateInfo->flags) { UNIMPLEMENTED(); } return vk::Framebuffer::Create(pAllocator, pCreateInfo, pFramebuffer); } VKAPI_ATTR void VKAPI_CALL vkDestroyFramebuffer(VkDevice device, VkFramebuffer framebuffer, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkFramebuffer framebuffer = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)"); vk::destroy(framebuffer, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateRenderPass(VkDevice device, const VkRenderPassCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkRenderPass* pRenderPass) { TRACE("(VkDevice device = 0x%X, const VkRenderPassCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkRenderPass* pRenderPass = 0x%X)", device, pCreateInfo, pAllocator, pRenderPass); if(pCreateInfo->pNext || pCreateInfo->flags) { UNIMPLEMENTED(); } return vk::RenderPass::Create(pAllocator, pCreateInfo, pRenderPass); } VKAPI_ATTR void VKAPI_CALL vkDestroyRenderPass(VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkRenderPass renderPass = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, renderPass, pAllocator); vk::destroy(renderPass, pAllocator); } VKAPI_ATTR void VKAPI_CALL vkGetRenderAreaGranularity(VkDevice device, VkRenderPass renderPass, VkExtent2D* pGranularity) { TRACE("()"); UNIMPLEMENTED(); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateCommandPool(VkDevice device, const VkCommandPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkCommandPool* pCommandPool) { TRACE("(VkDevice device = 0x%X, const VkCommandPoolCreateInfo* pCreateInfo = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X, VkCommandPool* pCommandPool = 0x%X)", device, pCreateInfo, pAllocator, pCommandPool); if(pCreateInfo->pNext) { UNIMPLEMENTED(); } return vk::CommandPool::Create(pAllocator, pCreateInfo, pCommandPool); } VKAPI_ATTR void VKAPI_CALL vkDestroyCommandPool(VkDevice device, VkCommandPool commandPool, const VkAllocationCallbacks* pAllocator) { TRACE("(VkDevice device = 0x%X, VkCommandPool commandPool = 0x%X, const VkAllocationCallbacks* pAllocator = 0x%X)", device, commandPool, pAllocator); vk::destroy(commandPool, pAllocator); } VKAPI_ATTR VkResult VKAPI_CALL vkResetCommandPool(VkDevice device, VkCommandPool commandPool, VkCommandPoolResetFlags flags) { TRACE("(VkDevice device = 0x%X, VkCommandPool commandPool = 0x%X, VkCommandPoolResetFlags flags = %d )", device, commandPool, flags); return vk::Cast(commandPool)->reset(flags); } VKAPI_ATTR VkResult VKAPI_CALL vkAllocateCommandBuffers(VkDevice device, const VkCommandBufferAllocateInfo* pAllocateInfo, VkCommandBuffer* pCommandBuffers) { TRACE("(VkDevice device = 0x%X, const VkCommandBufferAllocateInfo* pAllocateInfo = 0x%X, VkCommandBuffer* pCommandBuffers = 0x%X)", device, pAllocateInfo, pCommandBuffers); if(pAllocateInfo->pNext) { UNIMPLEMENTED(); } return vk::Cast(pAllocateInfo->commandPool)->allocateCommandBuffers( pAllocateInfo->level, pAllocateInfo->commandBufferCount, pCommandBuffers); } VKAPI_ATTR void VKAPI_CALL vkFreeCommandBuffers(VkDevice device, VkCommandPool commandPool, uint32_t commandBufferCount, const VkCommandBuffer* pCommandBuffers) { TRACE("(VkDevice device = 0x%X, VkCommandPool commandPool = 0x%X, uint32_t commandBufferCount = %d, const VkCommandBuffer* pCommandBuffers = 0x%X)", device, commandPool, commandBufferCount, pCommandBuffers); vk::Cast(commandPool)->freeCommandBuffers(commandBufferCount, pCommandBuffers); } VKAPI_ATTR VkResult VKAPI_CALL vkBeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo* pBeginInfo) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, const VkCommandBufferBeginInfo* pBeginInfo = 0x%X)", commandBuffer, pBeginInfo); if(pBeginInfo->pNext) { UNIMPLEMENTED(); } return vk::Cast(commandBuffer)->begin(pBeginInfo->flags, pBeginInfo->pInheritanceInfo); } VKAPI_ATTR VkResult VKAPI_CALL vkEndCommandBuffer(VkCommandBuffer commandBuffer) { TRACE("(VkCommandBuffer commandBuffer = 0x%X)", commandBuffer); return vk::Cast(commandBuffer)->end(); } VKAPI_ATTR VkResult VKAPI_CALL vkResetCommandBuffer(VkCommandBuffer commandBuffer, VkCommandBufferResetFlags flags) { TRACE("VkCommandBuffer commandBuffer = 0x%X, VkCommandBufferResetFlags flags = %d", commandBuffer, flags); return vk::Cast(commandBuffer)->reset(flags); } VKAPI_ATTR void VKAPI_CALL vkCmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkPipelineBindPoint pipelineBindPoint = %d, VkPipeline pipeline = 0x%X)", commandBuffer, pipelineBindPoint, pipeline); vk::Cast(commandBuffer)->bindPipeline(pipelineBindPoint, pipeline); } VKAPI_ATTR void VKAPI_CALL vkCmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport* pViewports) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t firstViewport = %d, uint32_t viewportCount = %d, const VkViewport* pViewports = 0x%X)", commandBuffer, firstViewport, viewportCount, pViewports); vk::Cast(commandBuffer)->setViewport(firstViewport, viewportCount, pViewports); } VKAPI_ATTR void VKAPI_CALL vkCmdSetScissor(VkCommandBuffer commandBuffer, uint32_t firstScissor, uint32_t scissorCount, const VkRect2D* pScissors) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t firstScissor = %d, uint32_t scissorCount = %d, const VkRect2D* pScissors = 0x%X)", commandBuffer, firstScissor, scissorCount, pScissors); vk::Cast(commandBuffer)->setScissor(firstScissor, scissorCount, pScissors); } VKAPI_ATTR void VKAPI_CALL vkCmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, float lineWidth = %f)", commandBuffer, lineWidth); vk::Cast(commandBuffer)->setLineWidth(lineWidth); } VKAPI_ATTR void VKAPI_CALL vkCmdSetDepthBias(VkCommandBuffer commandBuffer, float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, float depthBiasConstantFactor = %f, float depthBiasClamp = %f, float depthBiasSlopeFactor = %f)", commandBuffer, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor); vk::Cast(commandBuffer)->setDepthBias(depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor); } VKAPI_ATTR void VKAPI_CALL vkCmdSetBlendConstants(VkCommandBuffer commandBuffer, const float blendConstants[4]) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, const float blendConstants[4] = {%f, %f, %f, %f})", commandBuffer, blendConstants[0], blendConstants[1], blendConstants[2], blendConstants[3]); vk::Cast(commandBuffer)->setBlendConstants(blendConstants); } VKAPI_ATTR void VKAPI_CALL vkCmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, float minDepthBounds = %f, float maxDepthBounds = %f)", commandBuffer, minDepthBounds, maxDepthBounds); vk::Cast(commandBuffer)->setDepthBounds(minDepthBounds, maxDepthBounds); } VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilCompareMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t compareMask) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkStencilFaceFlags faceMask = %d, uint32_t compareMask = %d)", commandBuffer, faceMask, compareMask); vk::Cast(commandBuffer)->setStencilCompareMask(faceMask, compareMask); } VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilWriteMask(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t writeMask) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkStencilFaceFlags faceMask = %d, uint32_t writeMask = %d)", commandBuffer, faceMask, writeMask); vk::Cast(commandBuffer)->setStencilWriteMask(faceMask, writeMask); } VKAPI_ATTR void VKAPI_CALL vkCmdSetStencilReference(VkCommandBuffer commandBuffer, VkStencilFaceFlags faceMask, uint32_t reference) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkStencilFaceFlags faceMask = %d, uint32_t reference = %d)", commandBuffer, faceMask, reference); vk::Cast(commandBuffer)->setStencilReference(faceMask, reference); } VKAPI_ATTR void VKAPI_CALL vkCmdBindDescriptorSets(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout layout, uint32_t firstSet, uint32_t descriptorSetCount, const VkDescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkPipelineBindPoint pipelineBindPoint = %d, VkPipelineLayout layout = 0x%X, uint32_t firstSet = %d, uint32_t descriptorSetCount = %d, const VkDescriptorSet* pDescriptorSets = 0x%X, uint32_t dynamicOffsetCount = %d, const uint32_t* pDynamicOffsets = 0x%X)", commandBuffer, pipelineBindPoint, layout, firstSet, descriptorSetCount, pDescriptorSets, dynamicOffsetCount, pDynamicOffsets); vk::Cast(commandBuffer)->bindDescriptorSets(pipelineBindPoint, layout, firstSet, descriptorSetCount, pDescriptorSets, dynamicOffsetCount, pDynamicOffsets); } VKAPI_ATTR void VKAPI_CALL vkCmdBindIndexBuffer(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkIndexType indexType) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer buffer = 0x%X, VkDeviceSize offset = %d, VkIndexType indexType = %d)", commandBuffer, buffer, offset, indexType); vk::Cast(commandBuffer)->bindIndexBuffer(buffer, offset, indexType); } VKAPI_ATTR void VKAPI_CALL vkCmdBindVertexBuffers(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount, const VkBuffer* pBuffers, const VkDeviceSize* pOffsets) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t firstBinding = %d, uint32_t bindingCount = %d, const VkBuffer* pBuffers = 0x%X, const VkDeviceSize* pOffsets = 0x%X)", commandBuffer, firstBinding, bindingCount, pBuffers, pOffsets); vk::Cast(commandBuffer)->bindVertexBuffers(firstBinding, bindingCount, pBuffers, pOffsets); } VKAPI_ATTR void VKAPI_CALL vkCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t vertexCount = %d, uint32_t instanceCount = %d, uint32_t firstVertex = %d, uint32_t firstInstance = %d)", commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance); vk::Cast(commandBuffer)->draw(vertexCount, instanceCount, firstVertex, firstInstance); } VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t indexCount = %d, uint32_t instanceCount = %d, uint32_t firstIndex = %d, int32_t vertexOffset = %d, uint32_t firstInstance = %d)", commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance); vk::Cast(commandBuffer)->drawIndexed(indexCount, instanceCount, firstIndex, vertexOffset, firstInstance); } VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer buffer = 0x%X, VkDeviceSize offset = %d, uint32_t drawCount = %d, uint32_t stride = %d)", commandBuffer, buffer, offset, drawCount, stride); vk::Cast(commandBuffer)->drawIndirect(buffer, offset, drawCount, stride); } VKAPI_ATTR void VKAPI_CALL vkCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer buffer = 0x%X, VkDeviceSize offset = %d, uint32_t drawCount = %d, uint32_t stride = %d)", commandBuffer, buffer, offset, drawCount, stride); vk::Cast(commandBuffer)->drawIndexedIndirect(buffer, offset, drawCount, stride); } VKAPI_ATTR void VKAPI_CALL vkCmdDispatch(VkCommandBuffer commandBuffer, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t groupCountX = %d, uint32_t groupCountY = %d, uint32_t groupCountZ = %d)", commandBuffer, groupCountX, groupCountY, groupCountZ); vk::Cast(commandBuffer)->dispatch(groupCountX, groupCountY, groupCountZ); } VKAPI_ATTR void VKAPI_CALL vkCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer buffer = 0x%X, VkDeviceSize offset = %d)", commandBuffer, buffer, offset); vk::Cast(commandBuffer)->dispatchIndirect(buffer, offset); } VKAPI_ATTR void VKAPI_CALL vkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer, uint32_t regionCount, const VkBufferCopy* pRegions) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer srcBuffer = 0x%X, VkBuffer dstBuffer = 0x%X, uint32_t regionCount = %d, const VkBufferCopy* pRegions = 0x%X)", commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions); vk::Cast(commandBuffer)->copyBuffer(srcBuffer, dstBuffer, regionCount, pRegions); } VKAPI_ATTR void VKAPI_CALL vkCmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageCopy* pRegions) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage srcImage = 0x%X, VkImageLayout srcImageLayout = %d, VkImage dstImage = 0x%X, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkImageCopy* pRegions = 0x%X)", commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions); vk::Cast(commandBuffer)->copyImage(srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions); } VKAPI_ATTR void VKAPI_CALL vkCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageBlit* pRegions, VkFilter filter) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage srcImage = 0x%X, VkImageLayout srcImageLayout = %d, VkImage dstImage = 0x%X, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkImageBlit* pRegions = 0x%X, VkFilter filter = %d)", commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions, filter); vk::Cast(commandBuffer)->blitImage(srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions, filter); } VKAPI_ATTR void VKAPI_CALL vkCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkBufferImageCopy* pRegions) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer srcBuffer = 0x%X, VkImage dstImage = 0x%X, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkBufferImageCopy* pRegions = 0x%X)", commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions); vk::Cast(commandBuffer)->copyBufferToImage(srcBuffer, dstImage, dstImageLayout, regionCount, pRegions); } VKAPI_ATTR void VKAPI_CALL vkCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkBuffer dstBuffer, uint32_t regionCount, const VkBufferImageCopy* pRegions) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage srcImage = 0x%X, VkImageLayout srcImageLayout = %d, VkBuffer dstBuffer = 0x%X, uint32_t regionCount = %d, const VkBufferImageCopy* pRegions = 0x%X)", commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions); vk::Cast(commandBuffer)->copyImageToBuffer(srcImage, srcImageLayout, dstBuffer, regionCount, pRegions); } VKAPI_ATTR void VKAPI_CALL vkCmdUpdateBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize dataSize, const void* pData) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer dstBuffer = 0x%X, VkDeviceSize dstOffset = %d, VkDeviceSize dataSize = %d, const void* pData = 0x%X)", commandBuffer, dstBuffer, dstOffset, dataSize, pData); vk::Cast(commandBuffer)->updateBuffer(dstBuffer, dstOffset, dataSize, pData); } VKAPI_ATTR void VKAPI_CALL vkCmdFillBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize size, uint32_t data) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkBuffer dstBuffer = 0x%X, VkDeviceSize dstOffset = %d, VkDeviceSize size = %d, uint32_t data = %d)", commandBuffer, dstBuffer, dstOffset, size, data); vk::Cast(commandBuffer)->fillBuffer(dstBuffer, dstOffset, size, data); } VKAPI_ATTR void VKAPI_CALL vkCmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout, const VkClearColorValue* pColor, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage image = 0x%X, VkImageLayout imageLayout = %d, const VkClearColorValue* pColor = 0x%X, uint32_t rangeCount = %d, const VkImageSubresourceRange* pRanges = 0x%X)", commandBuffer, image, imageLayout, pColor, rangeCount, pRanges); vk::Cast(commandBuffer)->clearColorImage(image, imageLayout, pColor, rangeCount, pRanges); } VKAPI_ATTR void VKAPI_CALL vkCmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout, const VkClearDepthStencilValue* pDepthStencil, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage image = 0x%X, VkImageLayout imageLayout = %d, const VkClearDepthStencilValue* pDepthStencil = 0x%X, uint32_t rangeCount = %d, const VkImageSubresourceRange* pRanges = 0x%X)", commandBuffer, image, imageLayout, pDepthStencil, rangeCount, pRanges); vk::Cast(commandBuffer)->clearDepthStencilImage(image, imageLayout, pDepthStencil, rangeCount, pRanges); } VKAPI_ATTR void VKAPI_CALL vkCmdClearAttachments(VkCommandBuffer commandBuffer, uint32_t attachmentCount, const VkClearAttachment* pAttachments, uint32_t rectCount, const VkClearRect* pRects) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t attachmentCount = %d, const VkClearAttachment* pAttachments = 0x%X, uint32_t rectCount = %d, const VkClearRect* pRects = 0x%X)", commandBuffer, attachmentCount, pAttachments, rectCount, pRects); vk::Cast(commandBuffer)->clearAttachments(attachmentCount, pAttachments, rectCount, pRects); } VKAPI_ATTR void VKAPI_CALL vkCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageResolve* pRegions) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkImage srcImage = 0x%X, VkImageLayout srcImageLayout = %d, VkImage dstImage = 0x%X, VkImageLayout dstImageLayout = %d, uint32_t regionCount = %d, const VkImageResolve* pRegions = 0x%X)", commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions); vk::Cast(commandBuffer)->resolveImage(srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions); } VKAPI_ATTR void VKAPI_CALL vkCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkEvent event = 0x%X, VkPipelineStageFlags stageMask = %d)", commandBuffer, event, stageMask); vk::Cast(commandBuffer)->setEvent(event, stageMask); } VKAPI_ATTR void VKAPI_CALL vkCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkEvent event = 0x%X, VkPipelineStageFlags stageMask = %d)", commandBuffer, event, stageMask); vk::Cast(commandBuffer)->resetEvent(event, stageMask); } VKAPI_ATTR void VKAPI_CALL vkCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t eventCount = %d, const VkEvent* pEvents = 0x%X, VkPipelineStageFlags srcStageMask = %d, VkPipelineStageFlags dstStageMask = %d, uint32_t memoryBarrierCount = %d, const VkMemoryBarrier* pMemoryBarriers = 0x%X, uint32_t bufferMemoryBarrierCount = %d, const VkBufferMemoryBarrier* pBufferMemoryBarriers = 0x%X, uint32_t imageMemoryBarrierCount = %d, const VkImageMemoryBarrier* pImageMemoryBarriers = 0x%X)", commandBuffer, eventCount, pEvents, srcStageMask, dstStageMask, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); vk::Cast(commandBuffer)->waitEvents(eventCount, pEvents, srcStageMask, dstStageMask, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); } VKAPI_ATTR void VKAPI_CALL vkCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkPipelineStageFlags srcStageMask = 0x%X, VkPipelineStageFlags dstStageMask = 0x%X, VkDependencyFlags dependencyFlags = %d, uint32_t memoryBarrierCount = %d, onst VkMemoryBarrier* pMemoryBarriers = 0x%X," " uint32_t bufferMemoryBarrierCount = %d, const VkBufferMemoryBarrier* pBufferMemoryBarriers = 0x%X, uint32_t imageMemoryBarrierCount = %d, const VkImageMemoryBarrier* pImageMemoryBarriers = 0x%X)", commandBuffer, srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); vk::Cast(commandBuffer)->pipelineBarrier(srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); } VKAPI_ATTR void VKAPI_CALL vkCmdBeginQuery(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query, VkQueryControlFlags flags) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkQueryPool queryPool = 0x%X, uint32_t query = %d, VkQueryControlFlags flags = %d)", commandBuffer, queryPool, query, flags); vk::Cast(commandBuffer)->beginQuery(queryPool, query, flags); } VKAPI_ATTR void VKAPI_CALL vkCmdEndQuery(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t query) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkQueryPool queryPool = 0x%X, uint32_t query = %d)", commandBuffer, queryPool, query); vk::Cast(commandBuffer)->endQuery(queryPool, query); } VKAPI_ATTR void VKAPI_CALL vkCmdResetQueryPool(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkQueryPool queryPool = 0x%X, uint32_t firstQuery = %d, uint32_t queryCount = %d)", commandBuffer, queryPool, firstQuery, queryCount); vk::Cast(commandBuffer)->resetQueryPool(queryPool, firstQuery, queryCount); } VKAPI_ATTR void VKAPI_CALL vkCmdWriteTimestamp(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage, VkQueryPool queryPool, uint32_t query) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkPipelineStageFlagBits pipelineStage = %d, VkQueryPool queryPool = 0x%X, uint32_t query = %d)", commandBuffer, pipelineStage, queryPool, query); vk::Cast(commandBuffer)->writeTimestamp(pipelineStage, queryPool, query); } VKAPI_ATTR void VKAPI_CALL vkCmdCopyQueryPoolResults(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, VkBuffer dstBuffer, VkDeviceSize dstOffset, VkDeviceSize stride, VkQueryResultFlags flags) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkQueryPool queryPool = 0x%X, uint32_t firstQuery = %d, uint32_t queryCount = %d, VkBuffer dstBuffer = 0x%X, VkDeviceSize dstOffset = %d, VkDeviceSize stride = %d, VkQueryResultFlags flags = %d)", commandBuffer, queryPool, firstQuery, queryCount, dstBuffer, dstOffset, stride, flags); vk::Cast(commandBuffer)->copyQueryPoolResults(queryPool, firstQuery, queryCount, dstBuffer, dstOffset, stride, flags); } VKAPI_ATTR void VKAPI_CALL vkCmdPushConstants(VkCommandBuffer commandBuffer, VkPipelineLayout layout, VkShaderStageFlags stageFlags, uint32_t offset, uint32_t size, const void* pValues) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkPipelineLayout layout = 0x%X, VkShaderStageFlags stageFlags = %d, uint32_t offset = %d, uint32_t size = %d, const void* pValues = 0x%X)", commandBuffer, layout, stageFlags, offset, size, pValues); vk::Cast(commandBuffer)->pushConstants(layout, stageFlags, offset, size, pValues); } VKAPI_ATTR void VKAPI_CALL vkCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin, VkSubpassContents contents) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, const VkRenderPassBeginInfo* pRenderPassBegin = 0x%X, VkSubpassContents contents = %d)", commandBuffer, pRenderPassBegin, contents); if(pRenderPassBegin->pNext) { UNIMPLEMENTED(); } vk::Cast(commandBuffer)->beginRenderPass(pRenderPassBegin->renderPass, pRenderPassBegin->framebuffer, pRenderPassBegin->renderArea, pRenderPassBegin->clearValueCount, pRenderPassBegin->pClearValues, contents); } VKAPI_ATTR void VKAPI_CALL vkCmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, VkSubpassContents contents = %d)", commandBuffer, contents); vk::Cast(commandBuffer)->nextSubpass(contents); } VKAPI_ATTR void VKAPI_CALL vkCmdEndRenderPass(VkCommandBuffer commandBuffer) { TRACE("(VkCommandBuffer commandBuffer = 0x%X)", commandBuffer); vk::Cast(commandBuffer)->endRenderPass(); } VKAPI_ATTR void VKAPI_CALL vkCmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer* pCommandBuffers) { TRACE("(VkCommandBuffer commandBuffer = 0x%X, uint32_t commandBufferCount = %d, const VkCommandBuffer* pCommandBuffers = 0x%X)", commandBuffer, commandBufferCount, pCommandBuffers); vk::Cast(commandBuffer)->executeCommands(commandBufferCount, pCommandBuffers); } VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceVersion(uint32_t* pApiVersion) { TRACE("(uint32_t* pApiVersion = 0x%X)", pApiVersion); *pApiVersion = vk::API_VERSION; return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkBindBufferMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo* pBindInfos) { TRACE("(VkDevice device = 0x%X, uint32_t bindInfoCount = %d, const VkBindBufferMemoryInfo* pBindInfos = 0x%X)", device, bindInfoCount, pBindInfos); for(uint32_t i = 0; i < bindInfoCount; i++) { if(pBindInfos[i].pNext) { UNIMPLEMENTED(); } vk::Cast(pBindInfos[i].buffer)->bind(pBindInfos[i].memory, pBindInfos[i].memoryOffset); } return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL vkBindImageMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindImageMemoryInfo* pBindInfos) { TRACE("()"); UNIMPLEMENTED(); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetDeviceGroupPeerMemoryFeatures(VkDevice device, uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, VkPeerMemoryFeatureFlags* pPeerMemoryFeatures) { TRACE("(VkDevice device = 0x%X, uint32_t heapIndex = %d, uint32_t localDeviceIndex = %d, uint32_t remoteDeviceIndex = %d, VkPeerMemoryFeatureFlags* pPeerMemoryFeatures = 0x%X)", device, heapIndex, localDeviceIndex, remoteDeviceIndex, pPeerMemoryFeatures); ASSERT(localDeviceIndex != remoteDeviceIndex); // "localDeviceIndex must not equal remoteDeviceIndex" UNREACHABLE(remoteDeviceIndex); // Only one physical device is supported, and since the device indexes can't be equal, this should never be called. } VKAPI_ATTR void VKAPI_CALL vkCmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask) { TRACE("()"); UNIMPLEMENTED(); } VKAPI_ATTR void VKAPI_CALL vkCmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { TRACE("()"); UNIMPLEMENTED(); } VKAPI_ATTR VkResult VKAPI_CALL vkEnumeratePhysicalDeviceGroups(VkInstance instance, uint32_t* pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties) { TRACE("VkInstance instance = 0x%X, uint32_t* pPhysicalDeviceGroupCount = 0x%X, VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties = 0x%X", instance, pPhysicalDeviceGroupCount, pPhysicalDeviceGroupProperties); if(!pPhysicalDeviceGroupProperties) { *pPhysicalDeviceGroupCount = vk::Cast(instance)->getPhysicalDeviceGroupCount(); } else { vk::Cast(instance)->getPhysicalDeviceGroups(*pPhysicalDeviceGroupCount, pPhysicalDeviceGroupProperties); } return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkGetImageMemoryRequirements2(VkDevice device, const VkImageMemoryRequirementsInfo2* pInfo, VkMemoryRequirements2* pMemoryRequirements) { TRACE("(VkDevice device = 0x%X, const VkImageMemoryRequirementsInfo2* pInfo = 0x%X, VkMemoryRequirements2* pMemoryRequirements = 0x%X)", device, pInfo, pMemoryRequirements); if(pInfo->pNext || pMemoryRequirements->pNext) { UNIMPLEMENTED(); } vkGetImageMemoryRequirements(device, pInfo->image, &(pMemoryRequirements->memoryRequirements)); } VKAPI_ATTR void VKAPI_CALL vkGetBufferMemoryRequirements2(VkDevice device, const VkBufferMemoryRequirementsInfo2* pInfo, VkMemoryRequirements2* pMemoryRequirements) { TRACE("(VkDevice device = 0x%X, const VkBufferMemoryRequirementsInfo2* pInfo = 0x%X, VkMemoryRequirements2* pMemoryRequirements = 0x%X)", device, pInfo, pMemoryRequirements); if(pInfo->pNext || pMemoryRequirements->pNext) { UNIMPLEMENTED(); } vkGetBufferMemoryRequirements(device, pInfo->buffer, &(pMemoryRequirements->memoryRequirements)); } VKAPI_ATTR void VKAPI_CALL vkGetImageSparseMemoryRequirements2(VkDevice device, const VkImageSparseMemoryRequirementsInfo2* pInfo, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2* pSparseMemoryRequirements) { TRACE("(VkDevice device = 0x%X, const VkImageSparseMemoryRequirementsInfo2* pInfo = 0x%X, uint32_t* pSparseMemoryRequirementCount = 0x%X, VkSparseImageMemoryRequirements2* pSparseMemoryRequirements = 0x%X)", device, pInfo, pSparseMemoryRequirementCount, pSparseMemoryRequirements); if(pInfo->pNext || pSparseMemoryRequirements->pNext) { UNIMPLEMENTED(); } vkGetImageSparseMemoryRequirements(device, pInfo->image, pSparseMemoryRequirementCount, &(pSparseMemoryRequirements->memoryRequirements)); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures2* pFeatures) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceFeatures2* pFeatures = 0x%X)", physicalDevice, pFeatures); VkBaseOutStructure* extensionFeatures = reinterpret_cast(pFeatures->pNext); while(extensionFeatures) { switch(extensionFeatures->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: { auto& features = *reinterpret_cast(extensionFeatures); vk::Cast(physicalDevice)->getFeatures(&features); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: { auto& features = *reinterpret_cast(extensionFeatures); vk::Cast(physicalDevice)->getFeatures(&features); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: { auto& features = *reinterpret_cast(extensionFeatures); vk::Cast(physicalDevice)->getFeatures(&features); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: { auto& features = *reinterpret_cast(extensionFeatures); vk::Cast(physicalDevice)->getFeatures(&features); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: { auto& features = *reinterpret_cast(extensionFeatures); vk::Cast(physicalDevice)->getFeatures(&features); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: { auto& features = *reinterpret_cast(extensionFeatures); vk::Cast(physicalDevice)->getFeatures(&features); } break; default: // "the [driver] must skip over, without processing (other than reading the sType and pNext members) any structures in the chain with sType values not defined by [supported extenions]" UNIMPLEMENTED(); // TODO(b/119321052): UNIMPLEMENTED() should be used only for features that must still be implemented. Use a more informational macro here. break; } extensionFeatures = extensionFeatures->pNext; } vkGetPhysicalDeviceFeatures(physicalDevice, &(pFeatures->features)); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties2* pProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceProperties2* pProperties = 0x%X)", physicalDevice, pProperties); VkBaseOutStructure* extensionProperties = reinterpret_cast(pProperties->pNext); while(extensionProperties) { switch(extensionProperties->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: { auto& properties = *reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(&properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: { auto& properties = *reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(&properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: { auto& properties = *reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(&properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: { auto& properties = *reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(&properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: { auto& properties = *reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(&properties); } break; case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: { auto& properties = *reinterpret_cast(extensionProperties); vk::Cast(physicalDevice)->getProperties(&properties); } break; default: // "the [driver] must skip over, without processing (other than reading the sType and pNext members) any structures in the chain with sType values not defined by [supported extenions]" UNIMPLEMENTED(); // TODO(b/119321052): UNIMPLEMENTED() should be used only for features that must still be implemented. Use a more informational macro here. break; } extensionProperties = extensionProperties->pNext; } vkGetPhysicalDeviceProperties(physicalDevice, &(pProperties->properties)); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceFormatProperties2(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties2* pFormatProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkFormat format = %d, VkFormatProperties2* pFormatProperties = 0x%X)", physicalDevice, format, pFormatProperties); if(pFormatProperties->pNext) { UNIMPLEMENTED(); } vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &(pFormatProperties->formatProperties)); } VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceImageFormatProperties2(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo, VkImageFormatProperties2* pImageFormatProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo = 0x%X, VkImageFormatProperties2* pImageFormatProperties = 0x%X)", physicalDevice, pImageFormatInfo, pImageFormatProperties); if(pImageFormatInfo->pNext || pImageFormatProperties->pNext) { UNIMPLEMENTED(); } return vkGetPhysicalDeviceImageFormatProperties(physicalDevice, pImageFormatInfo->format, pImageFormatInfo->type, pImageFormatInfo->tiling, pImageFormatInfo->usage, pImageFormatInfo->flags, &(pImageFormatProperties->imageFormatProperties)); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice, uint32_t* pQueueFamilyPropertyCount, VkQueueFamilyProperties2* pQueueFamilyProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, uint32_t* pQueueFamilyPropertyCount = 0x%X, VkQueueFamilyProperties2* pQueueFamilyProperties = 0x%X)", physicalDevice, pQueueFamilyPropertyCount, pQueueFamilyProperties); if(pQueueFamilyProperties && pQueueFamilyProperties->pNext) { UNIMPLEMENTED(); } vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, pQueueFamilyPropertyCount, pQueueFamilyProperties ? &(pQueueFamilyProperties->queueFamilyProperties) : nullptr); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2* pMemoryProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, VkPhysicalDeviceMemoryProperties2* pMemoryProperties = 0x%X)", physicalDevice, pMemoryProperties); if(pMemoryProperties->pNext) { UNIMPLEMENTED(); } vkGetPhysicalDeviceMemoryProperties(physicalDevice, &(pMemoryProperties->memoryProperties)); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceSparseImageFormatProperties2(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSparseImageFormatInfo2* pFormatInfo, uint32_t* pPropertyCount, VkSparseImageFormatProperties2* pProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkPhysicalDeviceSparseImageFormatInfo2* pFormatInfo = 0x%X, uint32_t* pPropertyCount = 0x%X, VkSparseImageFormatProperties2* pProperties = 0x%X)", physicalDevice, pFormatInfo, pPropertyCount, pProperties); if(pProperties && pProperties->pNext) { UNIMPLEMENTED(); } vkGetPhysicalDeviceSparseImageFormatProperties(physicalDevice, pFormatInfo->format, pFormatInfo->type, pFormatInfo->samples, pFormatInfo->usage, pFormatInfo->tiling, pPropertyCount, pProperties ? &(pProperties->properties) : nullptr); } VKAPI_ATTR void VKAPI_CALL vkTrimCommandPool(VkDevice device, VkCommandPool commandPool, VkCommandPoolTrimFlags flags) { TRACE("(VkDevice device = 0x%X, VkCommandPool commandPool = 0x%X, VkCommandPoolTrimFlags flags = %d)", device, commandPool, flags); vk::Cast(commandPool)->trim(flags); } VKAPI_ATTR void VKAPI_CALL vkGetDeviceQueue2(VkDevice device, const VkDeviceQueueInfo2* pQueueInfo, VkQueue* pQueue) { TRACE("(VkDevice device = 0x%X, const VkDeviceQueueInfo2* pQueueInfo = 0x%X, VkQueue* pQueue = 0x%X)", device, pQueueInfo, pQueue); if(pQueueInfo->pNext) { UNIMPLEMENTED(); } // The only flag that can be set here is VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT // According to the Vulkan spec, 4.3.1. Queue Family Properties: // "VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT specifies that the device queue is a // protected-capable queue. If the protected memory feature is not enabled, // the VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT bit of flags must not be set." if(pQueueInfo->flags) { *pQueue = VK_NULL_HANDLE; } else { vkGetDeviceQueue(device, pQueueInfo->queueFamilyIndex, pQueueInfo->queueIndex, pQueue); } } VKAPI_ATTR VkResult VKAPI_CALL vkCreateSamplerYcbcrConversion(VkDevice device, const VkSamplerYcbcrConversionCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSamplerYcbcrConversion* pYcbcrConversion) { TRACE("()"); UNIMPLEMENTED(); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkDestroySamplerYcbcrConversion(VkDevice device, VkSamplerYcbcrConversion ycbcrConversion, const VkAllocationCallbacks* pAllocator) { TRACE("()"); UNIMPLEMENTED(); } VKAPI_ATTR VkResult VKAPI_CALL vkCreateDescriptorUpdateTemplate(VkDevice device, const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate) { TRACE("()"); UNIMPLEMENTED(); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL vkDestroyDescriptorUpdateTemplate(VkDevice device, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const VkAllocationCallbacks* pAllocator) { TRACE("()"); UNIMPLEMENTED(); } VKAPI_ATTR void VKAPI_CALL vkUpdateDescriptorSetWithTemplate(VkDevice device, VkDescriptorSet descriptorSet, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void* pData) { TRACE("()"); UNIMPLEMENTED(); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceExternalBufferProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo, VkExternalBufferProperties* pExternalBufferProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo = 0x%X, VkExternalBufferProperties* pExternalBufferProperties = 0x%X)", physicalDevice, pExternalBufferInfo, pExternalBufferProperties); UNIMPLEMENTED(); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceExternalFenceProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo, VkExternalFenceProperties* pExternalFenceProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo = 0x%X, VkExternalFenceProperties* pExternalFenceProperties = 0x%X)", physicalDevice, pExternalFenceInfo, pExternalFenceProperties); UNIMPLEMENTED(); } VKAPI_ATTR void VKAPI_CALL vkGetPhysicalDeviceExternalSemaphoreProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo, VkExternalSemaphoreProperties* pExternalSemaphoreProperties) { TRACE("(VkPhysicalDevice physicalDevice = 0x%X, const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo = 0x%X, VkExternalSemaphoreProperties* pExternalSemaphoreProperties = 0x%X)", physicalDevice, pExternalSemaphoreInfo, pExternalSemaphoreProperties); UNIMPLEMENTED(); } VKAPI_ATTR void VKAPI_CALL vkGetDescriptorSetLayoutSupport(VkDevice device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo, VkDescriptorSetLayoutSupport* pSupport) { TRACE("(VkDevice device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo, VkDescriptorSetLayoutSupport* pSupport)", device, pCreateInfo, pSupport); vk::Cast(device)->getDescriptorSetLayoutSupport(pCreateInfo, pSupport); } }