//===- DWARFDebugLine.cpp -------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/DebugInfo/DWARF/DWARFRelocMap.h" #include "llvm/Support/Format.h" #include "llvm/Support/Path.h" #include "llvm/Support/WithColor.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; using namespace dwarf; using FileLineInfoKind = DILineInfoSpecifier::FileLineInfoKind; namespace { struct ContentDescriptor { dwarf::LineNumberEntryFormat Type; dwarf::Form Form; }; using ContentDescriptors = SmallVector; } // end anonmyous namespace void DWARFDebugLine::ContentTypeTracker::trackContentType( dwarf::LineNumberEntryFormat ContentType) { switch (ContentType) { case dwarf::DW_LNCT_timestamp: HasModTime = true; break; case dwarf::DW_LNCT_size: HasLength = true; break; case dwarf::DW_LNCT_MD5: HasMD5 = true; break; case dwarf::DW_LNCT_LLVM_source: HasSource = true; break; default: // We only care about values we consider optional, and new values may be // added in the vendor extension range, so we do not match exhaustively. break; } } DWARFDebugLine::Prologue::Prologue() { clear(); } void DWARFDebugLine::Prologue::clear() { TotalLength = PrologueLength = 0; SegSelectorSize = 0; MinInstLength = MaxOpsPerInst = DefaultIsStmt = LineBase = LineRange = 0; OpcodeBase = 0; FormParams = dwarf::FormParams({0, 0, DWARF32}); ContentTypes = ContentTypeTracker(); StandardOpcodeLengths.clear(); IncludeDirectories.clear(); FileNames.clear(); } void DWARFDebugLine::Prologue::dump(raw_ostream &OS, DIDumpOptions DumpOptions) const { OS << "Line table prologue:\n" << format(" total_length: 0x%8.8" PRIx64 "\n", TotalLength) << format(" version: %u\n", getVersion()); if (getVersion() >= 5) OS << format(" address_size: %u\n", getAddressSize()) << format(" seg_select_size: %u\n", SegSelectorSize); OS << format(" prologue_length: 0x%8.8" PRIx64 "\n", PrologueLength) << format(" min_inst_length: %u\n", MinInstLength) << format(getVersion() >= 4 ? "max_ops_per_inst: %u\n" : "", MaxOpsPerInst) << format(" default_is_stmt: %u\n", DefaultIsStmt) << format(" line_base: %i\n", LineBase) << format(" line_range: %u\n", LineRange) << format(" opcode_base: %u\n", OpcodeBase); for (uint32_t I = 0; I != StandardOpcodeLengths.size(); ++I) OS << format("standard_opcode_lengths[%s] = %u\n", LNStandardString(I + 1).data(), StandardOpcodeLengths[I]); if (!IncludeDirectories.empty()) { // DWARF v5 starts directory indexes at 0. uint32_t DirBase = getVersion() >= 5 ? 0 : 1; for (uint32_t I = 0; I != IncludeDirectories.size(); ++I) { OS << format("include_directories[%3u] = ", I + DirBase); IncludeDirectories[I].dump(OS, DumpOptions); OS << '\n'; } } if (!FileNames.empty()) { // DWARF v5 starts file indexes at 0. uint32_t FileBase = getVersion() >= 5 ? 0 : 1; for (uint32_t I = 0; I != FileNames.size(); ++I) { const FileNameEntry &FileEntry = FileNames[I]; OS << format("file_names[%3u]:\n", I + FileBase); OS << " name: "; FileEntry.Name.dump(OS, DumpOptions); OS << '\n' << format(" dir_index: %" PRIu64 "\n", FileEntry.DirIdx); if (ContentTypes.HasMD5) OS << " md5_checksum: " << FileEntry.Checksum.digest() << '\n'; if (ContentTypes.HasModTime) OS << format(" mod_time: 0x%8.8" PRIx64 "\n", FileEntry.ModTime); if (ContentTypes.HasLength) OS << format(" length: 0x%8.8" PRIx64 "\n", FileEntry.Length); if (ContentTypes.HasSource) { OS << " source: "; FileEntry.Source.dump(OS, DumpOptions); OS << '\n'; } } } } // Parse v2-v4 directory and file tables. static void parseV2DirFileTables(const DWARFDataExtractor &DebugLineData, uint32_t *OffsetPtr, uint64_t EndPrologueOffset, DWARFDebugLine::ContentTypeTracker &ContentTypes, std::vector &IncludeDirectories, std::vector &FileNames) { while (*OffsetPtr < EndPrologueOffset) { StringRef S = DebugLineData.getCStrRef(OffsetPtr); if (S.empty()) break; DWARFFormValue Dir(dwarf::DW_FORM_string); Dir.setPValue(S.data()); IncludeDirectories.push_back(Dir); } while (*OffsetPtr < EndPrologueOffset) { StringRef Name = DebugLineData.getCStrRef(OffsetPtr); if (Name.empty()) break; DWARFDebugLine::FileNameEntry FileEntry; FileEntry.Name.setForm(dwarf::DW_FORM_string); FileEntry.Name.setPValue(Name.data()); FileEntry.DirIdx = DebugLineData.getULEB128(OffsetPtr); FileEntry.ModTime = DebugLineData.getULEB128(OffsetPtr); FileEntry.Length = DebugLineData.getULEB128(OffsetPtr); FileNames.push_back(FileEntry); } ContentTypes.HasModTime = true; ContentTypes.HasLength = true; } // Parse v5 directory/file entry content descriptions. // Returns the descriptors, or an empty vector if we did not find a path or // ran off the end of the prologue. static ContentDescriptors parseV5EntryFormat(const DWARFDataExtractor &DebugLineData, uint32_t *OffsetPtr, uint64_t EndPrologueOffset, DWARFDebugLine::ContentTypeTracker *ContentTypes) { ContentDescriptors Descriptors; int FormatCount = DebugLineData.getU8(OffsetPtr); bool HasPath = false; for (int I = 0; I != FormatCount; ++I) { if (*OffsetPtr >= EndPrologueOffset) return ContentDescriptors(); ContentDescriptor Descriptor; Descriptor.Type = dwarf::LineNumberEntryFormat(DebugLineData.getULEB128(OffsetPtr)); Descriptor.Form = dwarf::Form(DebugLineData.getULEB128(OffsetPtr)); if (Descriptor.Type == dwarf::DW_LNCT_path) HasPath = true; if (ContentTypes) ContentTypes->trackContentType(Descriptor.Type); Descriptors.push_back(Descriptor); } return HasPath ? Descriptors : ContentDescriptors(); } static bool parseV5DirFileTables(const DWARFDataExtractor &DebugLineData, uint32_t *OffsetPtr, uint64_t EndPrologueOffset, const dwarf::FormParams &FormParams, const DWARFContext &Ctx, const DWARFUnit *U, DWARFDebugLine::ContentTypeTracker &ContentTypes, std::vector &IncludeDirectories, std::vector &FileNames) { // Get the directory entry description. ContentDescriptors DirDescriptors = parseV5EntryFormat(DebugLineData, OffsetPtr, EndPrologueOffset, nullptr); if (DirDescriptors.empty()) return false; // Get the directory entries, according to the format described above. int DirEntryCount = DebugLineData.getU8(OffsetPtr); for (int I = 0; I != DirEntryCount; ++I) { if (*OffsetPtr >= EndPrologueOffset) return false; for (auto Descriptor : DirDescriptors) { DWARFFormValue Value(Descriptor.Form); switch (Descriptor.Type) { case DW_LNCT_path: if (!Value.extractValue(DebugLineData, OffsetPtr, FormParams, &Ctx, U)) return false; IncludeDirectories.push_back(Value); break; default: if (!Value.skipValue(DebugLineData, OffsetPtr, FormParams)) return false; } } } // Get the file entry description. ContentDescriptors FileDescriptors = parseV5EntryFormat(DebugLineData, OffsetPtr, EndPrologueOffset, &ContentTypes); if (FileDescriptors.empty()) return false; // Get the file entries, according to the format described above. int FileEntryCount = DebugLineData.getU8(OffsetPtr); for (int I = 0; I != FileEntryCount; ++I) { if (*OffsetPtr >= EndPrologueOffset) return false; DWARFDebugLine::FileNameEntry FileEntry; for (auto Descriptor : FileDescriptors) { DWARFFormValue Value(Descriptor.Form); if (!Value.extractValue(DebugLineData, OffsetPtr, FormParams, &Ctx, U)) return false; switch (Descriptor.Type) { case DW_LNCT_path: FileEntry.Name = Value; break; case DW_LNCT_LLVM_source: FileEntry.Source = Value; break; case DW_LNCT_directory_index: FileEntry.DirIdx = Value.getAsUnsignedConstant().getValue(); break; case DW_LNCT_timestamp: FileEntry.ModTime = Value.getAsUnsignedConstant().getValue(); break; case DW_LNCT_size: FileEntry.Length = Value.getAsUnsignedConstant().getValue(); break; case DW_LNCT_MD5: assert(Value.getAsBlock().getValue().size() == 16); std::uninitialized_copy_n(Value.getAsBlock().getValue().begin(), 16, FileEntry.Checksum.Bytes.begin()); break; default: break; } } FileNames.push_back(FileEntry); } return true; } template static std::string formatErrorString(char const *Fmt, const Ts &... Vals) { std::string Buffer; raw_string_ostream Stream(Buffer); Stream << format(Fmt, Vals...); return Stream.str(); } template static Error createError(char const *Fmt, const Ts &... Vals) { return make_error(formatErrorString(Fmt, Vals...), inconvertibleErrorCode()); } static Error createError(char const *Msg) { return make_error(Msg, inconvertibleErrorCode()); } Error DWARFDebugLine::Prologue::parse(const DWARFDataExtractor &DebugLineData, uint32_t *OffsetPtr, const DWARFContext &Ctx, const DWARFUnit *U) { const uint64_t PrologueOffset = *OffsetPtr; clear(); TotalLength = DebugLineData.getU32(OffsetPtr); if (TotalLength == UINT32_MAX) { FormParams.Format = dwarf::DWARF64; TotalLength = DebugLineData.getU64(OffsetPtr); } else if (TotalLength >= 0xffffff00) { return createError( "parsing line table prologue at offset 0x%8.8" PRIx64 " unsupported reserved unit length found of value 0x%8.8" PRIx64, PrologueOffset, TotalLength); } FormParams.Version = DebugLineData.getU16(OffsetPtr); if (getVersion() < 2) return createError("parsing line table prologue at offset 0x%8.8" PRIx64 " found unsupported version 0x%2.2" PRIx16, PrologueOffset, getVersion()); if (getVersion() >= 5) { FormParams.AddrSize = DebugLineData.getU8(OffsetPtr); assert((DebugLineData.getAddressSize() == 0 || DebugLineData.getAddressSize() == getAddressSize()) && "Line table header and data extractor disagree"); SegSelectorSize = DebugLineData.getU8(OffsetPtr); } PrologueLength = DebugLineData.getUnsigned(OffsetPtr, sizeofPrologueLength()); const uint64_t EndPrologueOffset = PrologueLength + *OffsetPtr; MinInstLength = DebugLineData.getU8(OffsetPtr); if (getVersion() >= 4) MaxOpsPerInst = DebugLineData.getU8(OffsetPtr); DefaultIsStmt = DebugLineData.getU8(OffsetPtr); LineBase = DebugLineData.getU8(OffsetPtr); LineRange = DebugLineData.getU8(OffsetPtr); OpcodeBase = DebugLineData.getU8(OffsetPtr); StandardOpcodeLengths.reserve(OpcodeBase - 1); for (uint32_t I = 1; I < OpcodeBase; ++I) { uint8_t OpLen = DebugLineData.getU8(OffsetPtr); StandardOpcodeLengths.push_back(OpLen); } if (getVersion() >= 5) { if (!parseV5DirFileTables(DebugLineData, OffsetPtr, EndPrologueOffset, FormParams, Ctx, U, ContentTypes, IncludeDirectories, FileNames)) { return createError( "parsing line table prologue at 0x%8.8" PRIx64 " found an invalid directory or file table description at" " 0x%8.8" PRIx64, PrologueOffset, (uint64_t)*OffsetPtr); } } else parseV2DirFileTables(DebugLineData, OffsetPtr, EndPrologueOffset, ContentTypes, IncludeDirectories, FileNames); if (*OffsetPtr != EndPrologueOffset) return createError("parsing line table prologue at 0x%8.8" PRIx64 " should have ended at 0x%8.8" PRIx64 " but it ended at 0x%8.8" PRIx64, PrologueOffset, EndPrologueOffset, (uint64_t)*OffsetPtr); return Error::success(); } DWARFDebugLine::Row::Row(bool DefaultIsStmt) { reset(DefaultIsStmt); } void DWARFDebugLine::Row::postAppend() { BasicBlock = false; PrologueEnd = false; EpilogueBegin = false; } void DWARFDebugLine::Row::reset(bool DefaultIsStmt) { Address = 0; Line = 1; Column = 0; File = 1; Isa = 0; Discriminator = 0; IsStmt = DefaultIsStmt; BasicBlock = false; EndSequence = false; PrologueEnd = false; EpilogueBegin = false; } void DWARFDebugLine::Row::dumpTableHeader(raw_ostream &OS) { OS << "Address Line Column File ISA Discriminator Flags\n" << "------------------ ------ ------ ------ --- ------------- " "-------------\n"; } void DWARFDebugLine::Row::dump(raw_ostream &OS) const { OS << format("0x%16.16" PRIx64 " %6u %6u", Address, Line, Column) << format(" %6u %3u %13u ", File, Isa, Discriminator) << (IsStmt ? " is_stmt" : "") << (BasicBlock ? " basic_block" : "") << (PrologueEnd ? " prologue_end" : "") << (EpilogueBegin ? " epilogue_begin" : "") << (EndSequence ? " end_sequence" : "") << '\n'; } DWARFDebugLine::Sequence::Sequence() { reset(); } void DWARFDebugLine::Sequence::reset() { LowPC = 0; HighPC = 0; FirstRowIndex = 0; LastRowIndex = 0; Empty = true; } DWARFDebugLine::LineTable::LineTable() { clear(); } void DWARFDebugLine::LineTable::dump(raw_ostream &OS, DIDumpOptions DumpOptions) const { Prologue.dump(OS, DumpOptions); OS << '\n'; if (!Rows.empty()) { Row::dumpTableHeader(OS); for (const Row &R : Rows) { R.dump(OS); } } } void DWARFDebugLine::LineTable::clear() { Prologue.clear(); Rows.clear(); Sequences.clear(); } DWARFDebugLine::ParsingState::ParsingState(struct LineTable *LT) : LineTable(LT) { resetRowAndSequence(); } void DWARFDebugLine::ParsingState::resetRowAndSequence() { Row.reset(LineTable->Prologue.DefaultIsStmt); Sequence.reset(); } void DWARFDebugLine::ParsingState::appendRowToMatrix(uint32_t Offset) { if (Sequence.Empty) { // Record the beginning of instruction sequence. Sequence.Empty = false; Sequence.LowPC = Row.Address; Sequence.FirstRowIndex = RowNumber; } ++RowNumber; LineTable->appendRow(Row); if (Row.EndSequence) { // Record the end of instruction sequence. Sequence.HighPC = Row.Address; Sequence.LastRowIndex = RowNumber; if (Sequence.isValid()) LineTable->appendSequence(Sequence); Sequence.reset(); } Row.postAppend(); } const DWARFDebugLine::LineTable * DWARFDebugLine::getLineTable(uint32_t Offset) const { LineTableConstIter Pos = LineTableMap.find(Offset); if (Pos != LineTableMap.end()) return &Pos->second; return nullptr; } Expected DWARFDebugLine::getOrParseLineTable( DWARFDataExtractor &DebugLineData, uint32_t Offset, const DWARFContext &Ctx, const DWARFUnit *U, std::function RecoverableErrorCallback) { if (!DebugLineData.isValidOffset(Offset)) return createError("offset 0x%8.8" PRIx32 " is not a valid debug line section offset", Offset); std::pair Pos = LineTableMap.insert(LineTableMapTy::value_type(Offset, LineTable())); LineTable *LT = &Pos.first->second; if (Pos.second) { if (Error Err = LT->parse(DebugLineData, &Offset, Ctx, U, RecoverableErrorCallback)) return std::move(Err); return LT; } return LT; } Error DWARFDebugLine::LineTable::parse( DWARFDataExtractor &DebugLineData, uint32_t *OffsetPtr, const DWARFContext &Ctx, const DWARFUnit *U, std::function RecoverableErrorCallback, raw_ostream *OS) { const uint32_t DebugLineOffset = *OffsetPtr; clear(); Error PrologueErr = Prologue.parse(DebugLineData, OffsetPtr, Ctx, U); if (OS) { // The presence of OS signals verbose dumping. DIDumpOptions DumpOptions; DumpOptions.Verbose = true; Prologue.dump(*OS, DumpOptions); } if (PrologueErr) return PrologueErr; const uint32_t EndOffset = DebugLineOffset + Prologue.TotalLength + Prologue.sizeofTotalLength(); // See if we should tell the data extractor the address size. if (DebugLineData.getAddressSize() == 0) DebugLineData.setAddressSize(Prologue.getAddressSize()); else assert(Prologue.getAddressSize() == 0 || Prologue.getAddressSize() == DebugLineData.getAddressSize()); ParsingState State(this); while (*OffsetPtr < EndOffset) { if (OS) *OS << format("0x%08.08" PRIx32 ": ", *OffsetPtr); uint8_t Opcode = DebugLineData.getU8(OffsetPtr); if (OS) *OS << format("%02.02" PRIx8 " ", Opcode); if (Opcode == 0) { // Extended Opcodes always start with a zero opcode followed by // a uleb128 length so you can skip ones you don't know about uint64_t Len = DebugLineData.getULEB128(OffsetPtr); uint32_t ExtOffset = *OffsetPtr; // Tolerate zero-length; assume length is correct and soldier on. if (Len == 0) { if (OS) *OS << "Badly formed extended line op (length 0)\n"; continue; } uint8_t SubOpcode = DebugLineData.getU8(OffsetPtr); if (OS) *OS << LNExtendedString(SubOpcode); switch (SubOpcode) { case DW_LNE_end_sequence: // Set the end_sequence register of the state machine to true and // append a row to the matrix using the current values of the // state-machine registers. Then reset the registers to the initial // values specified above. Every statement program sequence must end // with a DW_LNE_end_sequence instruction which creates a row whose // address is that of the byte after the last target machine instruction // of the sequence. State.Row.EndSequence = true; State.appendRowToMatrix(*OffsetPtr); if (OS) { *OS << "\n"; OS->indent(12); State.Row.dump(*OS); } State.resetRowAndSequence(); break; case DW_LNE_set_address: // Takes a single relocatable address as an operand. The size of the // operand is the size appropriate to hold an address on the target // machine. Set the address register to the value given by the // relocatable address. All of the other statement program opcodes // that affect the address register add a delta to it. This instruction // stores a relocatable value into it instead. // // Make sure the extractor knows the address size. If not, infer it // from the size of the operand. if (DebugLineData.getAddressSize() == 0) DebugLineData.setAddressSize(Len - 1); else if (DebugLineData.getAddressSize() != Len - 1) { return createError("mismatching address size at offset 0x%8.8" PRIx32 " expected 0x%2.2" PRIx8 " found 0x%2.2" PRIx64, ExtOffset, DebugLineData.getAddressSize(), Len - 1); } State.Row.Address = DebugLineData.getRelocatedAddress(OffsetPtr); if (OS) *OS << format(" (0x%16.16" PRIx64 ")", State.Row.Address); break; case DW_LNE_define_file: // Takes 4 arguments. The first is a null terminated string containing // a source file name. The second is an unsigned LEB128 number // representing the directory index of the directory in which the file // was found. The third is an unsigned LEB128 number representing the // time of last modification of the file. The fourth is an unsigned // LEB128 number representing the length in bytes of the file. The time // and length fields may contain LEB128(0) if the information is not // available. // // The directory index represents an entry in the include_directories // section of the statement program prologue. The index is LEB128(0) // if the file was found in the current directory of the compilation, // LEB128(1) if it was found in the first directory in the // include_directories section, and so on. The directory index is // ignored for file names that represent full path names. // // The files are numbered, starting at 1, in the order in which they // appear; the names in the prologue come before names defined by // the DW_LNE_define_file instruction. These numbers are used in the // the file register of the state machine. { FileNameEntry FileEntry; const char *Name = DebugLineData.getCStr(OffsetPtr); FileEntry.Name.setForm(dwarf::DW_FORM_string); FileEntry.Name.setPValue(Name); FileEntry.DirIdx = DebugLineData.getULEB128(OffsetPtr); FileEntry.ModTime = DebugLineData.getULEB128(OffsetPtr); FileEntry.Length = DebugLineData.getULEB128(OffsetPtr); Prologue.FileNames.push_back(FileEntry); if (OS) *OS << " (" << Name << ", dir=" << FileEntry.DirIdx << ", mod_time=" << format("(0x%16.16" PRIx64 ")", FileEntry.ModTime) << ", length=" << FileEntry.Length << ")"; } break; case DW_LNE_set_discriminator: State.Row.Discriminator = DebugLineData.getULEB128(OffsetPtr); if (OS) *OS << " (" << State.Row.Discriminator << ")"; break; default: if (OS) *OS << format("Unrecognized extended op 0x%02.02" PRIx8, SubOpcode) << format(" length %" PRIx64, Len); // Len doesn't include the zero opcode byte or the length itself, but // it does include the sub_opcode, so we have to adjust for that. (*OffsetPtr) += Len - 1; break; } // Make sure the stated and parsed lengths are the same. // Otherwise we have an unparseable line-number program. if (*OffsetPtr - ExtOffset != Len) return createError("unexpected line op length at offset 0x%8.8" PRIx32 " expected 0x%2.2" PRIx64 " found 0x%2.2" PRIx32, ExtOffset, Len, *OffsetPtr - ExtOffset); } else if (Opcode < Prologue.OpcodeBase) { if (OS) *OS << LNStandardString(Opcode); switch (Opcode) { // Standard Opcodes case DW_LNS_copy: // Takes no arguments. Append a row to the matrix using the // current values of the state-machine registers. Then set // the basic_block register to false. State.appendRowToMatrix(*OffsetPtr); if (OS) { *OS << "\n"; OS->indent(12); State.Row.dump(*OS); *OS << "\n"; } break; case DW_LNS_advance_pc: // Takes a single unsigned LEB128 operand, multiplies it by the // min_inst_length field of the prologue, and adds the // result to the address register of the state machine. { uint64_t AddrOffset = DebugLineData.getULEB128(OffsetPtr) * Prologue.MinInstLength; State.Row.Address += AddrOffset; if (OS) *OS << " (" << AddrOffset << ")"; } break; case DW_LNS_advance_line: // Takes a single signed LEB128 operand and adds that value to // the line register of the state machine. State.Row.Line += DebugLineData.getSLEB128(OffsetPtr); if (OS) *OS << " (" << State.Row.Line << ")"; break; case DW_LNS_set_file: // Takes a single unsigned LEB128 operand and stores it in the file // register of the state machine. State.Row.File = DebugLineData.getULEB128(OffsetPtr); if (OS) *OS << " (" << State.Row.File << ")"; break; case DW_LNS_set_column: // Takes a single unsigned LEB128 operand and stores it in the // column register of the state machine. State.Row.Column = DebugLineData.getULEB128(OffsetPtr); if (OS) *OS << " (" << State.Row.Column << ")"; break; case DW_LNS_negate_stmt: // Takes no arguments. Set the is_stmt register of the state // machine to the logical negation of its current value. State.Row.IsStmt = !State.Row.IsStmt; break; case DW_LNS_set_basic_block: // Takes no arguments. Set the basic_block register of the // state machine to true State.Row.BasicBlock = true; break; case DW_LNS_const_add_pc: // Takes no arguments. Add to the address register of the state // machine the address increment value corresponding to special // opcode 255. The motivation for DW_LNS_const_add_pc is this: // when the statement program needs to advance the address by a // small amount, it can use a single special opcode, which occupies // a single byte. When it needs to advance the address by up to // twice the range of the last special opcode, it can use // DW_LNS_const_add_pc followed by a special opcode, for a total // of two bytes. Only if it needs to advance the address by more // than twice that range will it need to use both DW_LNS_advance_pc // and a special opcode, requiring three or more bytes. { uint8_t AdjustOpcode = 255 - Prologue.OpcodeBase; uint64_t AddrOffset = (AdjustOpcode / Prologue.LineRange) * Prologue.MinInstLength; State.Row.Address += AddrOffset; if (OS) *OS << format(" (0x%16.16" PRIx64 ")", AddrOffset); } break; case DW_LNS_fixed_advance_pc: // Takes a single uhalf operand. Add to the address register of // the state machine the value of the (unencoded) operand. This // is the only extended opcode that takes an argument that is not // a variable length number. The motivation for DW_LNS_fixed_advance_pc // is this: existing assemblers cannot emit DW_LNS_advance_pc or // special opcodes because they cannot encode LEB128 numbers or // judge when the computation of a special opcode overflows and // requires the use of DW_LNS_advance_pc. Such assemblers, however, // can use DW_LNS_fixed_advance_pc instead, sacrificing compression. { uint16_t PCOffset = DebugLineData.getU16(OffsetPtr); State.Row.Address += PCOffset; if (OS) *OS << format(" (0x%16.16" PRIx64 ")", PCOffset); } break; case DW_LNS_set_prologue_end: // Takes no arguments. Set the prologue_end register of the // state machine to true State.Row.PrologueEnd = true; break; case DW_LNS_set_epilogue_begin: // Takes no arguments. Set the basic_block register of the // state machine to true State.Row.EpilogueBegin = true; break; case DW_LNS_set_isa: // Takes a single unsigned LEB128 operand and stores it in the // column register of the state machine. State.Row.Isa = DebugLineData.getULEB128(OffsetPtr); if (OS) *OS << " (" << State.Row.Isa << ")"; break; default: // Handle any unknown standard opcodes here. We know the lengths // of such opcodes because they are specified in the prologue // as a multiple of LEB128 operands for each opcode. { assert(Opcode - 1U < Prologue.StandardOpcodeLengths.size()); uint8_t OpcodeLength = Prologue.StandardOpcodeLengths[Opcode - 1]; for (uint8_t I = 0; I < OpcodeLength; ++I) { uint64_t Value = DebugLineData.getULEB128(OffsetPtr); if (OS) *OS << format("Skipping ULEB128 value: 0x%16.16" PRIx64 ")\n", Value); } } break; } } else { // Special Opcodes // A special opcode value is chosen based on the amount that needs // to be added to the line and address registers. The maximum line // increment for a special opcode is the value of the line_base // field in the header, plus the value of the line_range field, // minus 1 (line base + line range - 1). If the desired line // increment is greater than the maximum line increment, a standard // opcode must be used instead of a special opcode. The "address // advance" is calculated by dividing the desired address increment // by the minimum_instruction_length field from the header. The // special opcode is then calculated using the following formula: // // opcode = (desired line increment - line_base) + // (line_range * address advance) + opcode_base // // If the resulting opcode is greater than 255, a standard opcode // must be used instead. // // To decode a special opcode, subtract the opcode_base from the // opcode itself to give the adjusted opcode. The amount to // increment the address register is the result of the adjusted // opcode divided by the line_range multiplied by the // minimum_instruction_length field from the header. That is: // // address increment = (adjusted opcode / line_range) * // minimum_instruction_length // // The amount to increment the line register is the line_base plus // the result of the adjusted opcode modulo the line_range. That is: // // line increment = line_base + (adjusted opcode % line_range) uint8_t AdjustOpcode = Opcode - Prologue.OpcodeBase; uint64_t AddrOffset = (AdjustOpcode / Prologue.LineRange) * Prologue.MinInstLength; int32_t LineOffset = Prologue.LineBase + (AdjustOpcode % Prologue.LineRange); State.Row.Line += LineOffset; State.Row.Address += AddrOffset; if (OS) { *OS << "address += " << ((uint32_t)AdjustOpcode) << ", line += " << LineOffset << "\n"; OS->indent(12); State.Row.dump(*OS); } State.appendRowToMatrix(*OffsetPtr); // Reset discriminator to 0. State.Row.Discriminator = 0; } if(OS) *OS << "\n"; } if (!State.Sequence.Empty) RecoverableErrorCallback( createError("last sequence in debug line table is not terminated!")); // Sort all sequences so that address lookup will work faster. if (!Sequences.empty()) { llvm::sort(Sequences.begin(), Sequences.end(), Sequence::orderByLowPC); // Note: actually, instruction address ranges of sequences should not // overlap (in shared objects and executables). If they do, the address // lookup would still work, though, but result would be ambiguous. // We don't report warning in this case. For example, // sometimes .so compiled from multiple object files contains a few // rudimentary sequences for address ranges [0x0, 0xsomething). } return Error::success(); } uint32_t DWARFDebugLine::LineTable::findRowInSeq(const DWARFDebugLine::Sequence &Seq, uint64_t Address) const { if (!Seq.containsPC(Address)) return UnknownRowIndex; // Search for instruction address in the rows describing the sequence. // Rows are stored in a vector, so we may use arithmetical operations with // iterators. DWARFDebugLine::Row Row; Row.Address = Address; RowIter FirstRow = Rows.begin() + Seq.FirstRowIndex; RowIter LastRow = Rows.begin() + Seq.LastRowIndex; LineTable::RowIter RowPos = std::lower_bound( FirstRow, LastRow, Row, DWARFDebugLine::Row::orderByAddress); if (RowPos == LastRow) { return Seq.LastRowIndex - 1; } uint32_t Index = Seq.FirstRowIndex + (RowPos - FirstRow); if (RowPos->Address > Address) { if (RowPos == FirstRow) return UnknownRowIndex; else Index--; } return Index; } uint32_t DWARFDebugLine::LineTable::lookupAddress(uint64_t Address) const { if (Sequences.empty()) return UnknownRowIndex; // First, find an instruction sequence containing the given address. DWARFDebugLine::Sequence Sequence; Sequence.LowPC = Address; SequenceIter FirstSeq = Sequences.begin(); SequenceIter LastSeq = Sequences.end(); SequenceIter SeqPos = std::lower_bound( FirstSeq, LastSeq, Sequence, DWARFDebugLine::Sequence::orderByLowPC); DWARFDebugLine::Sequence FoundSeq; if (SeqPos == LastSeq) { FoundSeq = Sequences.back(); } else if (SeqPos->LowPC == Address) { FoundSeq = *SeqPos; } else { if (SeqPos == FirstSeq) return UnknownRowIndex; FoundSeq = *(SeqPos - 1); } return findRowInSeq(FoundSeq, Address); } bool DWARFDebugLine::LineTable::lookupAddressRange( uint64_t Address, uint64_t Size, std::vector &Result) const { if (Sequences.empty()) return false; uint64_t EndAddr = Address + Size; // First, find an instruction sequence containing the given address. DWARFDebugLine::Sequence Sequence; Sequence.LowPC = Address; SequenceIter FirstSeq = Sequences.begin(); SequenceIter LastSeq = Sequences.end(); SequenceIter SeqPos = std::lower_bound( FirstSeq, LastSeq, Sequence, DWARFDebugLine::Sequence::orderByLowPC); if (SeqPos == LastSeq || SeqPos->LowPC != Address) { if (SeqPos == FirstSeq) return false; SeqPos--; } if (!SeqPos->containsPC(Address)) return false; SequenceIter StartPos = SeqPos; // Add the rows from the first sequence to the vector, starting with the // index we just calculated while (SeqPos != LastSeq && SeqPos->LowPC < EndAddr) { const DWARFDebugLine::Sequence &CurSeq = *SeqPos; // For the first sequence, we need to find which row in the sequence is the // first in our range. uint32_t FirstRowIndex = CurSeq.FirstRowIndex; if (SeqPos == StartPos) FirstRowIndex = findRowInSeq(CurSeq, Address); // Figure out the last row in the range. uint32_t LastRowIndex = findRowInSeq(CurSeq, EndAddr - 1); if (LastRowIndex == UnknownRowIndex) LastRowIndex = CurSeq.LastRowIndex - 1; assert(FirstRowIndex != UnknownRowIndex); assert(LastRowIndex != UnknownRowIndex); for (uint32_t I = FirstRowIndex; I <= LastRowIndex; ++I) { Result.push_back(I); } ++SeqPos; } return true; } bool DWARFDebugLine::LineTable::hasFileAtIndex(uint64_t FileIndex) const { return FileIndex != 0 && FileIndex <= Prologue.FileNames.size(); } Optional DWARFDebugLine::LineTable::getSourceByIndex(uint64_t FileIndex, FileLineInfoKind Kind) const { if (Kind == FileLineInfoKind::None || !hasFileAtIndex(FileIndex)) return None; const FileNameEntry &Entry = Prologue.FileNames[FileIndex - 1]; if (Optional source = Entry.Source.getAsCString()) return StringRef(*source); return None; } static bool isPathAbsoluteOnWindowsOrPosix(const Twine &Path) { // Debug info can contain paths from any OS, not necessarily // an OS we're currently running on. Moreover different compilation units can // be compiled on different operating systems and linked together later. return sys::path::is_absolute(Path, sys::path::Style::posix) || sys::path::is_absolute(Path, sys::path::Style::windows); } bool DWARFDebugLine::LineTable::getFileNameByIndex(uint64_t FileIndex, const char *CompDir, FileLineInfoKind Kind, std::string &Result) const { if (Kind == FileLineInfoKind::None || !hasFileAtIndex(FileIndex)) return false; const FileNameEntry &Entry = Prologue.FileNames[FileIndex - 1]; StringRef FileName = Entry.Name.getAsCString().getValue(); if (Kind != FileLineInfoKind::AbsoluteFilePath || isPathAbsoluteOnWindowsOrPosix(FileName)) { Result = FileName; return true; } SmallString<16> FilePath; uint64_t IncludeDirIndex = Entry.DirIdx; StringRef IncludeDir; // Be defensive about the contents of Entry. if (IncludeDirIndex > 0 && IncludeDirIndex <= Prologue.IncludeDirectories.size()) IncludeDir = Prologue.IncludeDirectories[IncludeDirIndex - 1] .getAsCString() .getValue(); // We may still need to append compilation directory of compile unit. // We know that FileName is not absolute, the only way to have an // absolute path at this point would be if IncludeDir is absolute. if (CompDir && Kind == FileLineInfoKind::AbsoluteFilePath && !isPathAbsoluteOnWindowsOrPosix(IncludeDir)) sys::path::append(FilePath, CompDir); // sys::path::append skips empty strings. sys::path::append(FilePath, IncludeDir, FileName); Result = FilePath.str(); return true; } bool DWARFDebugLine::LineTable::getFileLineInfoForAddress( uint64_t Address, const char *CompDir, FileLineInfoKind Kind, DILineInfo &Result) const { // Get the index of row we're looking for in the line table. uint32_t RowIndex = lookupAddress(Address); if (RowIndex == -1U) return false; // Take file number and line/column from the row. const auto &Row = Rows[RowIndex]; if (!getFileNameByIndex(Row.File, CompDir, Kind, Result.FileName)) return false; Result.Line = Row.Line; Result.Column = Row.Column; Result.Discriminator = Row.Discriminator; Result.Source = getSourceByIndex(Row.File, Kind); return true; } // We want to supply the Unit associated with a .debug_line[.dwo] table when // we dump it, if possible, but still dump the table even if there isn't a Unit. // Therefore, collect up handles on all the Units that point into the // line-table section. static DWARFDebugLine::SectionParser::LineToUnitMap buildLineToUnitMap(DWARFDebugLine::SectionParser::cu_range CUs, DWARFDebugLine::SectionParser::tu_range TUSections) { DWARFDebugLine::SectionParser::LineToUnitMap LineToUnit; for (const auto &CU : CUs) if (auto CUDIE = CU->getUnitDIE()) if (auto StmtOffset = toSectionOffset(CUDIE.find(DW_AT_stmt_list))) LineToUnit.insert(std::make_pair(*StmtOffset, &*CU)); for (const auto &TUS : TUSections) for (const auto &TU : TUS) if (auto TUDIE = TU->getUnitDIE()) if (auto StmtOffset = toSectionOffset(TUDIE.find(DW_AT_stmt_list))) LineToUnit.insert(std::make_pair(*StmtOffset, &*TU)); return LineToUnit; } DWARFDebugLine::SectionParser::SectionParser(DWARFDataExtractor &Data, const DWARFContext &C, cu_range CUs, tu_range TUs) : DebugLineData(Data), Context(C) { LineToUnit = buildLineToUnitMap(CUs, TUs); if (!DebugLineData.isValidOffset(Offset)) Done = true; } bool DWARFDebugLine::Prologue::totalLengthIsValid() const { return TotalLength == 0xffffffff || TotalLength < 0xffffff00; } DWARFDebugLine::LineTable DWARFDebugLine::SectionParser::parseNext( function_ref RecoverableErrorCallback, function_ref UnrecoverableErrorCallback, raw_ostream *OS) { assert(DebugLineData.isValidOffset(Offset) && "parsing should have terminated"); DWARFUnit *U = prepareToParse(Offset); uint32_t OldOffset = Offset; LineTable LT; if (Error Err = LT.parse(DebugLineData, &Offset, Context, U, RecoverableErrorCallback, OS)) UnrecoverableErrorCallback(std::move(Err)); moveToNextTable(OldOffset, LT.Prologue); return LT; } void DWARFDebugLine::SectionParser::skip( function_ref ErrorCallback) { assert(DebugLineData.isValidOffset(Offset) && "parsing should have terminated"); DWARFUnit *U = prepareToParse(Offset); uint32_t OldOffset = Offset; LineTable LT; if (Error Err = LT.Prologue.parse(DebugLineData, &Offset, Context, U)) ErrorCallback(std::move(Err)); moveToNextTable(OldOffset, LT.Prologue); } DWARFUnit *DWARFDebugLine::SectionParser::prepareToParse(uint32_t Offset) { DWARFUnit *U = nullptr; auto It = LineToUnit.find(Offset); if (It != LineToUnit.end()) U = It->second; DebugLineData.setAddressSize(U ? U->getAddressByteSize() : 0); return U; } void DWARFDebugLine::SectionParser::moveToNextTable(uint32_t OldOffset, const Prologue &P) { // If the length field is not valid, we don't know where the next table is, so // cannot continue to parse. Mark the parser as done, and leave the Offset // value as it currently is. This will be the end of the bad length field. if (!P.totalLengthIsValid()) { Done = true; return; } Offset = OldOffset + P.TotalLength + P.sizeofTotalLength(); if (!DebugLineData.isValidOffset(Offset)) { Done = true; } } void DWARFDebugLine::warn(Error Err) { handleAllErrors(std::move(Err), [](ErrorInfoBase &Info) { WithColor::warning() << Info.message() << '\n'; }); }