//===- IRSymtab.cpp - implementation of IR symbol tables ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Object/IRSymtab.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Comdat.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalObject.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Object/IRObjectFile.h" #include "llvm/Object/ModuleSymbolTable.h" #include "llvm/Object/SymbolicFile.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Error.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/VCSRevision.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; using namespace irsymtab; static const char *LibcallRoutineNames[] = { #define HANDLE_LIBCALL(code, name) name, #include "llvm/IR/RuntimeLibcalls.def" #undef HANDLE_LIBCALL }; namespace { const char *getExpectedProducerName() { static char DefaultName[] = LLVM_VERSION_STRING #ifdef LLVM_REVISION " " LLVM_REVISION #endif ; // Allows for testing of the irsymtab writer and upgrade mechanism. This // environment variable should not be set by users. if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER")) return OverrideName; return DefaultName; } const char *kExpectedProducerName = getExpectedProducerName(); /// Stores the temporary state that is required to build an IR symbol table. struct Builder { SmallVector &Symtab; StringTableBuilder &StrtabBuilder; StringSaver Saver; // This ctor initializes a StringSaver using the passed in BumpPtrAllocator. // The StringTableBuilder does not create a copy of any strings added to it, // so this provides somewhere to store any strings that we create. Builder(SmallVector &Symtab, StringTableBuilder &StrtabBuilder, BumpPtrAllocator &Alloc) : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {} DenseMap ComdatMap; Mangler Mang; Triple TT; std::vector Comdats; std::vector Mods; std::vector Syms; std::vector Uncommons; std::string COFFLinkerOpts; raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts}; void setStr(storage::Str &S, StringRef Value) { S.Offset = StrtabBuilder.add(Value); S.Size = Value.size(); } template void writeRange(storage::Range &R, const std::vector &Objs) { R.Offset = Symtab.size(); R.Size = Objs.size(); Symtab.insert(Symtab.end(), reinterpret_cast(Objs.data()), reinterpret_cast(Objs.data() + Objs.size())); } Expected getComdatIndex(const Comdat *C, const Module *M); Error addModule(Module *M); Error addSymbol(const ModuleSymbolTable &Msymtab, const SmallPtrSet &Used, ModuleSymbolTable::Symbol Sym); Error build(ArrayRef Mods); }; Error Builder::addModule(Module *M) { if (M->getDataLayoutStr().empty()) return make_error("input module has no datalayout", inconvertibleErrorCode()); SmallPtrSet Used; collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false); ModuleSymbolTable Msymtab; Msymtab.addModule(M); storage::Module Mod; Mod.Begin = Syms.size(); Mod.End = Syms.size() + Msymtab.symbols().size(); Mod.UncBegin = Uncommons.size(); Mods.push_back(Mod); if (TT.isOSBinFormatCOFF()) { if (auto E = M->materializeMetadata()) return E; if (NamedMDNode *LinkerOptions = M->getNamedMetadata("llvm.linker.options")) { for (MDNode *MDOptions : LinkerOptions->operands()) for (const MDOperand &MDOption : cast(MDOptions)->operands()) COFFLinkerOptsOS << " " << cast(MDOption)->getString(); } } for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols()) if (Error Err = addSymbol(Msymtab, Used, Msym)) return Err; return Error::success(); } Expected Builder::getComdatIndex(const Comdat *C, const Module *M) { auto P = ComdatMap.insert(std::make_pair(C, Comdats.size())); if (P.second) { std::string Name; if (TT.isOSBinFormatCOFF()) { const GlobalValue *GV = M->getNamedValue(C->getName()); if (!GV) return make_error("Could not find leader", inconvertibleErrorCode()); // Internal leaders do not affect symbol resolution, therefore they do not // appear in the symbol table. if (GV->hasLocalLinkage()) { P.first->second = -1; return -1; } llvm::raw_string_ostream OS(Name); Mang.getNameWithPrefix(OS, GV, false); } else { Name = C->getName(); } storage::Comdat Comdat; setStr(Comdat.Name, Saver.save(Name)); Comdats.push_back(Comdat); } return P.first->second; } Error Builder::addSymbol(const ModuleSymbolTable &Msymtab, const SmallPtrSet &Used, ModuleSymbolTable::Symbol Msym) { Syms.emplace_back(); storage::Symbol &Sym = Syms.back(); Sym = {}; storage::Uncommon *Unc = nullptr; auto Uncommon = [&]() -> storage::Uncommon & { if (Unc) return *Unc; Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon; Uncommons.emplace_back(); Unc = &Uncommons.back(); *Unc = {}; setStr(Unc->COFFWeakExternFallbackName, ""); setStr(Unc->SectionName, ""); return *Unc; }; SmallString<64> Name; { raw_svector_ostream OS(Name); Msymtab.printSymbolName(OS, Msym); } setStr(Sym.Name, Saver.save(StringRef(Name))); auto Flags = Msymtab.getSymbolFlags(Msym); if (Flags & object::BasicSymbolRef::SF_Undefined) Sym.Flags |= 1 << storage::Symbol::FB_undefined; if (Flags & object::BasicSymbolRef::SF_Weak) Sym.Flags |= 1 << storage::Symbol::FB_weak; if (Flags & object::BasicSymbolRef::SF_Common) Sym.Flags |= 1 << storage::Symbol::FB_common; if (Flags & object::BasicSymbolRef::SF_Indirect) Sym.Flags |= 1 << storage::Symbol::FB_indirect; if (Flags & object::BasicSymbolRef::SF_Global) Sym.Flags |= 1 << storage::Symbol::FB_global; if (Flags & object::BasicSymbolRef::SF_FormatSpecific) Sym.Flags |= 1 << storage::Symbol::FB_format_specific; if (Flags & object::BasicSymbolRef::SF_Executable) Sym.Flags |= 1 << storage::Symbol::FB_executable; Sym.ComdatIndex = -1; auto *GV = Msym.dyn_cast(); if (!GV) { // Undefined module asm symbols act as GC roots and are implicitly used. if (Flags & object::BasicSymbolRef::SF_Undefined) Sym.Flags |= 1 << storage::Symbol::FB_used; setStr(Sym.IRName, ""); return Error::success(); } setStr(Sym.IRName, GV->getName()); bool IsBuiltinFunc = false; for (const char *LibcallName : LibcallRoutineNames) if (GV->getName() == LibcallName) IsBuiltinFunc = true; if (Used.count(GV) || IsBuiltinFunc) Sym.Flags |= 1 << storage::Symbol::FB_used; if (GV->isThreadLocal()) Sym.Flags |= 1 << storage::Symbol::FB_tls; if (GV->hasGlobalUnnamedAddr()) Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr; if (GV->canBeOmittedFromSymbolTable()) Sym.Flags |= 1 << storage::Symbol::FB_may_omit; Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility; if (Flags & object::BasicSymbolRef::SF_Common) { Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize( GV->getType()->getElementType()); Uncommon().CommonAlign = GV->getAlignment(); } const GlobalObject *Base = GV->getBaseObject(); if (!Base) return make_error("Unable to determine comdat of alias!", inconvertibleErrorCode()); if (const Comdat *C = Base->getComdat()) { Expected ComdatIndexOrErr = getComdatIndex(C, GV->getParent()); if (!ComdatIndexOrErr) return ComdatIndexOrErr.takeError(); Sym.ComdatIndex = *ComdatIndexOrErr; } if (TT.isOSBinFormatCOFF()) { emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang); if ((Flags & object::BasicSymbolRef::SF_Weak) && (Flags & object::BasicSymbolRef::SF_Indirect)) { auto *Fallback = dyn_cast( cast(GV)->getAliasee()->stripPointerCasts()); if (!Fallback) return make_error("Invalid weak external", inconvertibleErrorCode()); std::string FallbackName; raw_string_ostream OS(FallbackName); Msymtab.printSymbolName(OS, Fallback); OS.flush(); setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName)); } } if (!Base->getSection().empty()) setStr(Uncommon().SectionName, Saver.save(Base->getSection())); return Error::success(); } Error Builder::build(ArrayRef IRMods) { storage::Header Hdr; assert(!IRMods.empty()); Hdr.Version = storage::Header::kCurrentVersion; setStr(Hdr.Producer, kExpectedProducerName); setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple()); setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName()); TT = Triple(IRMods[0]->getTargetTriple()); for (auto *M : IRMods) if (Error Err = addModule(M)) return Err; COFFLinkerOptsOS.flush(); setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts)); // We are about to fill in the header's range fields, so reserve space for it // and copy it in afterwards. Symtab.resize(sizeof(storage::Header)); writeRange(Hdr.Modules, Mods); writeRange(Hdr.Comdats, Comdats); writeRange(Hdr.Symbols, Syms); writeRange(Hdr.Uncommons, Uncommons); *reinterpret_cast(Symtab.data()) = Hdr; return Error::success(); } } // end anonymous namespace Error irsymtab::build(ArrayRef Mods, SmallVector &Symtab, StringTableBuilder &StrtabBuilder, BumpPtrAllocator &Alloc) { return Builder(Symtab, StrtabBuilder, Alloc).build(Mods); } // Upgrade a vector of bitcode modules created by an old version of LLVM by // creating an irsymtab for them in the current format. static Expected upgrade(ArrayRef BMs) { FileContents FC; LLVMContext Ctx; std::vector Mods; std::vector> OwnedMods; for (auto BM : BMs) { Expected> MOrErr = BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true, /*IsImporting*/ false); if (!MOrErr) return MOrErr.takeError(); Mods.push_back(MOrErr->get()); OwnedMods.push_back(std::move(*MOrErr)); } StringTableBuilder StrtabBuilder(StringTableBuilder::RAW); BumpPtrAllocator Alloc; if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc)) return std::move(E); StrtabBuilder.finalizeInOrder(); FC.Strtab.resize(StrtabBuilder.getSize()); StrtabBuilder.write((uint8_t *)FC.Strtab.data()); FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()}, {FC.Strtab.data(), FC.Strtab.size()}}; return std::move(FC); } Expected irsymtab::readBitcode(const BitcodeFileContents &BFC) { if (BFC.Mods.empty()) return make_error("Bitcode file does not contain any modules", inconvertibleErrorCode()); if (BFC.StrtabForSymtab.empty() || BFC.Symtab.size() < sizeof(storage::Header)) return upgrade(BFC.Mods); // We cannot use the regular reader to read the version and producer, because // it will expect the header to be in the current format. The only thing we // can rely on is that the version and producer will be present as the first // struct elements. auto *Hdr = reinterpret_cast(BFC.Symtab.data()); unsigned Version = Hdr->Version; StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab); if (Version != storage::Header::kCurrentVersion || Producer != kExpectedProducerName) return upgrade(BFC.Mods); FileContents FC; FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()}, {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}}; // Finally, make sure that the number of modules in the symbol table matches // the number of modules in the bitcode file. If they differ, it may mean that // the bitcode file was created by binary concatenation, so we need to create // a new symbol table from scratch. if (FC.TheReader.getNumModules() != BFC.Mods.size()) return upgrade(std::move(BFC.Mods)); return std::move(FC); }