//===-- AVRAsmBackend.cpp - AVR Asm Backend ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the AVRAsmBackend class. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/AVRAsmBackend.h" #include "MCTargetDesc/AVRFixupKinds.h" #include "MCTargetDesc/AVRMCTargetDesc.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDirectives.h" #include "llvm/MC/MCELFObjectWriter.h" #include "llvm/MC/MCFixupKindInfo.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" // FIXME: we should be doing checks to make sure asm operands // are not out of bounds. namespace adjust { using namespace llvm; void signed_width(unsigned Width, uint64_t Value, std::string Description, const MCFixup &Fixup, MCContext *Ctx = nullptr) { if (!isIntN(Width, Value)) { std::string Diagnostic = "out of range " + Description; int64_t Min = minIntN(Width); int64_t Max = maxIntN(Width); Diagnostic += " (expected an integer in the range " + std::to_string(Min) + " to " + std::to_string(Max) + ")"; if (Ctx) { Ctx->reportFatalError(Fixup.getLoc(), Diagnostic); } else { llvm_unreachable(Diagnostic.c_str()); } } } void unsigned_width(unsigned Width, uint64_t Value, std::string Description, const MCFixup &Fixup, MCContext *Ctx = nullptr) { if (!isUIntN(Width, Value)) { std::string Diagnostic = "out of range " + Description; int64_t Max = maxUIntN(Width); Diagnostic += " (expected an integer in the range 0 to " + std::to_string(Max) + ")"; if (Ctx) { Ctx->reportFatalError(Fixup.getLoc(), Diagnostic); } else { llvm_unreachable(Diagnostic.c_str()); } } } /// Adjusts the value of a branch target before fixup application. void adjustBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { // We have one extra bit of precision because the value is rightshifted by // one. unsigned_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx); // Rightshifts the value by one. AVR::fixups::adjustBranchTarget(Value); } /// Adjusts the value of a relative branch target before fixup application. void adjustRelativeBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { // We have one extra bit of precision because the value is rightshifted by // one. signed_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx); Value -= 2; // Rightshifts the value by one. AVR::fixups::adjustBranchTarget(Value); } /// 22-bit absolute fixup. /// /// Resolves to: /// 1001 kkkk 010k kkkk kkkk kkkk 111k kkkk /// /// Offset of 0 (so the result is left shifted by 3 bits before application). void fixup_call(unsigned Size, const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { adjustBranch(Size, Fixup, Value, Ctx); auto top = Value & (0xf00000 << 6); // the top four bits auto middle = Value & (0x1ffff << 5); // the middle 13 bits auto bottom = Value & 0x1f; // end bottom 5 bits Value = (top << 6) | (middle << 3) | (bottom << 0); } /// 7-bit PC-relative fixup. /// /// Resolves to: /// 0000 00kk kkkk k000 /// Offset of 0 (so the result is left shifted by 3 bits before application). void fixup_7_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { adjustRelativeBranch(Size, Fixup, Value, Ctx); // Because the value may be negative, we must mask out the sign bits Value &= 0x7f; } /// 12-bit PC-relative fixup. /// Yes, the fixup is 12 bits even though the name says otherwise. /// /// Resolves to: /// 0000 kkkk kkkk kkkk /// Offset of 0 (so the result isn't left-shifted before application). void fixup_13_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { adjustRelativeBranch(Size, Fixup, Value, Ctx); // Because the value may be negative, we must mask out the sign bits Value &= 0xfff; } /// 6-bit fixup for the immediate operand of the ADIW family of /// instructions. /// /// Resolves to: /// 0000 0000 kk00 kkkk void fixup_6_adiw(const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx); Value = ((Value & 0x30) << 2) | (Value & 0x0f); } /// 5-bit port number fixup on the SBIC family of instructions. /// /// Resolves to: /// 0000 0000 AAAA A000 void fixup_port5(const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { unsigned_width(5, Value, std::string("port number"), Fixup, Ctx); Value &= 0x1f; Value <<= 3; } /// 6-bit port number fixup on the `IN` family of instructions. /// /// Resolves to: /// 1011 0AAd dddd AAAA void fixup_port6(const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { unsigned_width(6, Value, std::string("port number"), Fixup, Ctx); Value = ((Value & 0x30) << 5) | (Value & 0x0f); } /// Adjusts a program memory address. /// This is a simple right-shift. void pm(uint64_t &Value) { Value >>= 1; } /// Fixups relating to the LDI instruction. namespace ldi { /// Adjusts a value to fix up the immediate of an `LDI Rd, K` instruction. /// /// Resolves to: /// 0000 KKKK 0000 KKKK /// Offset of 0 (so the result isn't left-shifted before application). void fixup(unsigned Size, const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { uint64_t upper = Value & 0xf0; uint64_t lower = Value & 0x0f; Value = (upper << 4) | lower; } void neg(uint64_t &Value) { Value *= -1; } void lo8(unsigned Size, const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { Value &= 0xff; ldi::fixup(Size, Fixup, Value, Ctx); } void hi8(unsigned Size, const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { Value = (Value & 0xff00) >> 8; ldi::fixup(Size, Fixup, Value, Ctx); } void hh8(unsigned Size, const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { Value = (Value & 0xff0000) >> 16; ldi::fixup(Size, Fixup, Value, Ctx); } void ms8(unsigned Size, const MCFixup &Fixup, uint64_t &Value, MCContext *Ctx = nullptr) { Value = (Value & 0xff000000) >> 24; ldi::fixup(Size, Fixup, Value, Ctx); } } // end of ldi namespace } // end of adjust namespace namespace llvm { // Prepare value for the target space for it void AVRAsmBackend::adjustFixupValue(const MCFixup &Fixup, const MCValue &Target, uint64_t &Value, MCContext *Ctx) const { // The size of the fixup in bits. uint64_t Size = AVRAsmBackend::getFixupKindInfo(Fixup.getKind()).TargetSize; unsigned Kind = Fixup.getKind(); // Parsed LLVM-generated temporary labels are already // adjusted for instruction size, but normal labels aren't. // // To handle both cases, we simply un-adjust the temporary label // case so it acts like all other labels. if (const MCSymbolRefExpr *A = Target.getSymA()) { if (A->getSymbol().isTemporary()) Value += 2; } switch (Kind) { default: llvm_unreachable("unhandled fixup"); case AVR::fixup_7_pcrel: adjust::fixup_7_pcrel(Size, Fixup, Value, Ctx); break; case AVR::fixup_13_pcrel: adjust::fixup_13_pcrel(Size, Fixup, Value, Ctx); break; case AVR::fixup_call: adjust::fixup_call(Size, Fixup, Value, Ctx); break; case AVR::fixup_ldi: adjust::ldi::fixup(Size, Fixup, Value, Ctx); break; case AVR::fixup_lo8_ldi: adjust::ldi::lo8(Size, Fixup, Value, Ctx); break; case AVR::fixup_lo8_ldi_pm: case AVR::fixup_lo8_ldi_gs: adjust::pm(Value); adjust::ldi::lo8(Size, Fixup, Value, Ctx); break; case AVR::fixup_hi8_ldi: adjust::ldi::hi8(Size, Fixup, Value, Ctx); break; case AVR::fixup_hi8_ldi_pm: case AVR::fixup_hi8_ldi_gs: adjust::pm(Value); adjust::ldi::hi8(Size, Fixup, Value, Ctx); break; case AVR::fixup_hh8_ldi: case AVR::fixup_hh8_ldi_pm: if (Kind == AVR::fixup_hh8_ldi_pm) adjust::pm(Value); adjust::ldi::hh8(Size, Fixup, Value, Ctx); break; case AVR::fixup_ms8_ldi: adjust::ldi::ms8(Size, Fixup, Value, Ctx); break; case AVR::fixup_lo8_ldi_neg: case AVR::fixup_lo8_ldi_pm_neg: if (Kind == AVR::fixup_lo8_ldi_pm_neg) adjust::pm(Value); adjust::ldi::neg(Value); adjust::ldi::lo8(Size, Fixup, Value, Ctx); break; case AVR::fixup_hi8_ldi_neg: case AVR::fixup_hi8_ldi_pm_neg: if (Kind == AVR::fixup_hi8_ldi_pm_neg) adjust::pm(Value); adjust::ldi::neg(Value); adjust::ldi::hi8(Size, Fixup, Value, Ctx); break; case AVR::fixup_hh8_ldi_neg: case AVR::fixup_hh8_ldi_pm_neg: if (Kind == AVR::fixup_hh8_ldi_pm_neg) adjust::pm(Value); adjust::ldi::neg(Value); adjust::ldi::hh8(Size, Fixup, Value, Ctx); break; case AVR::fixup_ms8_ldi_neg: adjust::ldi::neg(Value); adjust::ldi::ms8(Size, Fixup, Value, Ctx); break; case AVR::fixup_16: adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx); Value &= 0xffff; break; case AVR::fixup_16_pm: Value >>= 1; // Flash addresses are always shifted. adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx); Value &= 0xffff; break; case AVR::fixup_6_adiw: adjust::fixup_6_adiw(Fixup, Value, Ctx); break; case AVR::fixup_port5: adjust::fixup_port5(Fixup, Value, Ctx); break; case AVR::fixup_port6: adjust::fixup_port6(Fixup, Value, Ctx); break; // Fixups which do not require adjustments. case FK_Data_1: case FK_Data_2: case FK_Data_4: case FK_Data_8: break; case FK_GPRel_4: llvm_unreachable("don't know how to adjust this fixup"); break; } } std::unique_ptr AVRAsmBackend::createObjectTargetWriter() const { return createAVRELFObjectWriter(MCELFObjectTargetWriter::getOSABI(OSType)); } void AVRAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, MutableArrayRef Data, uint64_t Value, bool IsResolved, const MCSubtargetInfo *STI) const { adjustFixupValue(Fixup, Target, Value, &Asm.getContext()); if (Value == 0) return; // Doesn't change encoding. MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind()); // The number of bits in the fixup mask auto NumBits = Info.TargetSize + Info.TargetOffset; auto NumBytes = (NumBits / 8) + ((NumBits % 8) == 0 ? 0 : 1); // Shift the value into position. Value <<= Info.TargetOffset; unsigned Offset = Fixup.getOffset(); assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); // For each byte of the fragment that the fixup touches, mask in the // bits from the fixup value. for (unsigned i = 0; i < NumBytes; ++i) { uint8_t mask = (((Value >> (i * 8)) & 0xff)); Data[Offset + i] |= mask; } } MCFixupKindInfo const &AVRAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { // NOTE: Many AVR fixups work on sets of non-contignous bits. We work around // this by saying that the fixup is the size of the entire instruction. const static MCFixupKindInfo Infos[AVR::NumTargetFixupKinds] = { // This table *must* be in same the order of fixup_* kinds in // AVRFixupKinds.h. // // name offset bits flags {"fixup_32", 0, 32, 0}, {"fixup_7_pcrel", 3, 7, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_13_pcrel", 0, 12, MCFixupKindInfo::FKF_IsPCRel}, {"fixup_16", 0, 16, 0}, {"fixup_16_pm", 0, 16, 0}, {"fixup_ldi", 0, 8, 0}, {"fixup_lo8_ldi", 0, 8, 0}, {"fixup_hi8_ldi", 0, 8, 0}, {"fixup_hh8_ldi", 0, 8, 0}, {"fixup_ms8_ldi", 0, 8, 0}, {"fixup_lo8_ldi_neg", 0, 8, 0}, {"fixup_hi8_ldi_neg", 0, 8, 0}, {"fixup_hh8_ldi_neg", 0, 8, 0}, {"fixup_ms8_ldi_neg", 0, 8, 0}, {"fixup_lo8_ldi_pm", 0, 8, 0}, {"fixup_hi8_ldi_pm", 0, 8, 0}, {"fixup_hh8_ldi_pm", 0, 8, 0}, {"fixup_lo8_ldi_pm_neg", 0, 8, 0}, {"fixup_hi8_ldi_pm_neg", 0, 8, 0}, {"fixup_hh8_ldi_pm_neg", 0, 8, 0}, {"fixup_call", 0, 22, 0}, {"fixup_6", 0, 16, 0}, // non-contiguous {"fixup_6_adiw", 0, 6, 0}, {"fixup_lo8_ldi_gs", 0, 8, 0}, {"fixup_hi8_ldi_gs", 0, 8, 0}, {"fixup_8", 0, 8, 0}, {"fixup_8_lo8", 0, 8, 0}, {"fixup_8_hi8", 0, 8, 0}, {"fixup_8_hlo8", 0, 8, 0}, {"fixup_diff8", 0, 8, 0}, {"fixup_diff16", 0, 16, 0}, {"fixup_diff32", 0, 32, 0}, {"fixup_lds_sts_16", 0, 16, 0}, {"fixup_port6", 0, 16, 0}, // non-contiguous {"fixup_port5", 3, 5, 0}, }; if (Kind < FirstTargetFixupKind) return MCAsmBackend::getFixupKindInfo(Kind); assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && "Invalid kind!"); return Infos[Kind - FirstTargetFixupKind]; } bool AVRAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const { // If the count is not 2-byte aligned, we must be writing data into the text // section (otherwise we have unaligned instructions, and thus have far // bigger problems), so just write zeros instead. assert((Count % 2) == 0 && "NOP instructions must be 2 bytes"); OS.write_zeros(Count); return true; } bool AVRAsmBackend::shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target) { switch ((unsigned) Fixup.getKind()) { default: return false; // Fixups which should always be recorded as relocations. case AVR::fixup_7_pcrel: case AVR::fixup_13_pcrel: case AVR::fixup_call: return true; } } MCAsmBackend *createAVRAsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const llvm::MCTargetOptions &TO) { return new AVRAsmBackend(STI.getTargetTriple().getOS()); } } // end of namespace llvm