//===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides X86 specific target descriptions. // //===----------------------------------------------------------------------===// #include "X86MCTargetDesc.h" #include "InstPrinter/X86ATTInstPrinter.h" #include "InstPrinter/X86IntelInstPrinter.h" #include "X86BaseInfo.h" #include "X86MCAsmInfo.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/Triple.h" #include "llvm/DebugInfo/CodeView/CodeView.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MachineLocation.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Host.h" #include "llvm/Support/TargetRegistry.h" #if _MSC_VER #include #endif using namespace llvm; #define GET_REGINFO_MC_DESC #include "X86GenRegisterInfo.inc" #define GET_INSTRINFO_MC_DESC #define GET_GENINSTRINFO_MC_HELPERS #include "X86GenInstrInfo.inc" #define GET_SUBTARGETINFO_MC_DESC #include "X86GenSubtargetInfo.inc" std::string X86_MC::ParseX86Triple(const Triple &TT) { std::string FS; if (TT.getArch() == Triple::x86_64) FS = "+64bit-mode,-32bit-mode,-16bit-mode"; else if (TT.getEnvironment() != Triple::CODE16) FS = "-64bit-mode,+32bit-mode,-16bit-mode"; else FS = "-64bit-mode,-32bit-mode,+16bit-mode"; return FS; } unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) { if (TT.getArch() == Triple::x86_64) return DWARFFlavour::X86_64; if (TT.isOSDarwin()) return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic; if (TT.isOSCygMing()) // Unsupported by now, just quick fallback return DWARFFlavour::X86_32_Generic; return DWARFFlavour::X86_32_Generic; } void X86_MC::initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI) { // FIXME: TableGen these. for (unsigned Reg = X86::NoRegister + 1; Reg < X86::NUM_TARGET_REGS; ++Reg) { unsigned SEH = MRI->getEncodingValue(Reg); MRI->mapLLVMRegToSEHReg(Reg, SEH); } // Mapping from CodeView to MC register id. static const struct { codeview::RegisterId CVReg; MCPhysReg Reg; } RegMap[] = { { codeview::RegisterId::CVRegAL, X86::AL}, { codeview::RegisterId::CVRegCL, X86::CL}, { codeview::RegisterId::CVRegDL, X86::DL}, { codeview::RegisterId::CVRegBL, X86::BL}, { codeview::RegisterId::CVRegAH, X86::AH}, { codeview::RegisterId::CVRegCH, X86::CH}, { codeview::RegisterId::CVRegDH, X86::DH}, { codeview::RegisterId::CVRegBH, X86::BH}, { codeview::RegisterId::CVRegAX, X86::AX}, { codeview::RegisterId::CVRegCX, X86::CX}, { codeview::RegisterId::CVRegDX, X86::DX}, { codeview::RegisterId::CVRegBX, X86::BX}, { codeview::RegisterId::CVRegSP, X86::SP}, { codeview::RegisterId::CVRegBP, X86::BP}, { codeview::RegisterId::CVRegSI, X86::SI}, { codeview::RegisterId::CVRegDI, X86::DI}, { codeview::RegisterId::CVRegEAX, X86::EAX}, { codeview::RegisterId::CVRegECX, X86::ECX}, { codeview::RegisterId::CVRegEDX, X86::EDX}, { codeview::RegisterId::CVRegEBX, X86::EBX}, { codeview::RegisterId::CVRegESP, X86::ESP}, { codeview::RegisterId::CVRegEBP, X86::EBP}, { codeview::RegisterId::CVRegESI, X86::ESI}, { codeview::RegisterId::CVRegEDI, X86::EDI}, { codeview::RegisterId::CVRegEFLAGS, X86::EFLAGS}, { codeview::RegisterId::CVRegST0, X86::FP0}, { codeview::RegisterId::CVRegST1, X86::FP1}, { codeview::RegisterId::CVRegST2, X86::FP2}, { codeview::RegisterId::CVRegST3, X86::FP3}, { codeview::RegisterId::CVRegST4, X86::FP4}, { codeview::RegisterId::CVRegST5, X86::FP5}, { codeview::RegisterId::CVRegST6, X86::FP6}, { codeview::RegisterId::CVRegST7, X86::FP7}, { codeview::RegisterId::CVRegXMM0, X86::XMM0}, { codeview::RegisterId::CVRegXMM1, X86::XMM1}, { codeview::RegisterId::CVRegXMM2, X86::XMM2}, { codeview::RegisterId::CVRegXMM3, X86::XMM3}, { codeview::RegisterId::CVRegXMM4, X86::XMM4}, { codeview::RegisterId::CVRegXMM5, X86::XMM5}, { codeview::RegisterId::CVRegXMM6, X86::XMM6}, { codeview::RegisterId::CVRegXMM7, X86::XMM7}, { codeview::RegisterId::CVRegXMM8, X86::XMM8}, { codeview::RegisterId::CVRegXMM9, X86::XMM9}, { codeview::RegisterId::CVRegXMM10, X86::XMM10}, { codeview::RegisterId::CVRegXMM11, X86::XMM11}, { codeview::RegisterId::CVRegXMM12, X86::XMM12}, { codeview::RegisterId::CVRegXMM13, X86::XMM13}, { codeview::RegisterId::CVRegXMM14, X86::XMM14}, { codeview::RegisterId::CVRegXMM15, X86::XMM15}, { codeview::RegisterId::CVRegSIL, X86::SIL}, { codeview::RegisterId::CVRegDIL, X86::DIL}, { codeview::RegisterId::CVRegBPL, X86::BPL}, { codeview::RegisterId::CVRegSPL, X86::SPL}, { codeview::RegisterId::CVRegRAX, X86::RAX}, { codeview::RegisterId::CVRegRBX, X86::RBX}, { codeview::RegisterId::CVRegRCX, X86::RCX}, { codeview::RegisterId::CVRegRDX, X86::RDX}, { codeview::RegisterId::CVRegRSI, X86::RSI}, { codeview::RegisterId::CVRegRDI, X86::RDI}, { codeview::RegisterId::CVRegRBP, X86::RBP}, { codeview::RegisterId::CVRegRSP, X86::RSP}, { codeview::RegisterId::CVRegR8, X86::R8}, { codeview::RegisterId::CVRegR9, X86::R9}, { codeview::RegisterId::CVRegR10, X86::R10}, { codeview::RegisterId::CVRegR11, X86::R11}, { codeview::RegisterId::CVRegR12, X86::R12}, { codeview::RegisterId::CVRegR13, X86::R13}, { codeview::RegisterId::CVRegR14, X86::R14}, { codeview::RegisterId::CVRegR15, X86::R15}, { codeview::RegisterId::CVRegR8B, X86::R8B}, { codeview::RegisterId::CVRegR9B, X86::R9B}, { codeview::RegisterId::CVRegR10B, X86::R10B}, { codeview::RegisterId::CVRegR11B, X86::R11B}, { codeview::RegisterId::CVRegR12B, X86::R12B}, { codeview::RegisterId::CVRegR13B, X86::R13B}, { codeview::RegisterId::CVRegR14B, X86::R14B}, { codeview::RegisterId::CVRegR15B, X86::R15B}, { codeview::RegisterId::CVRegR8W, X86::R8W}, { codeview::RegisterId::CVRegR9W, X86::R9W}, { codeview::RegisterId::CVRegR10W, X86::R10W}, { codeview::RegisterId::CVRegR11W, X86::R11W}, { codeview::RegisterId::CVRegR12W, X86::R12W}, { codeview::RegisterId::CVRegR13W, X86::R13W}, { codeview::RegisterId::CVRegR14W, X86::R14W}, { codeview::RegisterId::CVRegR15W, X86::R15W}, { codeview::RegisterId::CVRegR8D, X86::R8D}, { codeview::RegisterId::CVRegR9D, X86::R9D}, { codeview::RegisterId::CVRegR10D, X86::R10D}, { codeview::RegisterId::CVRegR11D, X86::R11D}, { codeview::RegisterId::CVRegR12D, X86::R12D}, { codeview::RegisterId::CVRegR13D, X86::R13D}, { codeview::RegisterId::CVRegR14D, X86::R14D}, { codeview::RegisterId::CVRegR15D, X86::R15D}, { codeview::RegisterId::CVRegAMD64_YMM0, X86::YMM0}, { codeview::RegisterId::CVRegAMD64_YMM1, X86::YMM1}, { codeview::RegisterId::CVRegAMD64_YMM2, X86::YMM2}, { codeview::RegisterId::CVRegAMD64_YMM3, X86::YMM3}, { codeview::RegisterId::CVRegAMD64_YMM4, X86::YMM4}, { codeview::RegisterId::CVRegAMD64_YMM5, X86::YMM5}, { codeview::RegisterId::CVRegAMD64_YMM6, X86::YMM6}, { codeview::RegisterId::CVRegAMD64_YMM7, X86::YMM7}, { codeview::RegisterId::CVRegAMD64_YMM8, X86::YMM8}, { codeview::RegisterId::CVRegAMD64_YMM9, X86::YMM9}, { codeview::RegisterId::CVRegAMD64_YMM10, X86::YMM10}, { codeview::RegisterId::CVRegAMD64_YMM11, X86::YMM11}, { codeview::RegisterId::CVRegAMD64_YMM12, X86::YMM12}, { codeview::RegisterId::CVRegAMD64_YMM13, X86::YMM13}, { codeview::RegisterId::CVRegAMD64_YMM14, X86::YMM14}, { codeview::RegisterId::CVRegAMD64_YMM15, X86::YMM15}, }; for (unsigned I = 0; I < array_lengthof(RegMap); ++I) MRI->mapLLVMRegToCVReg(RegMap[I].Reg, static_cast(RegMap[I].CVReg)); } MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) { std::string ArchFS = X86_MC::ParseX86Triple(TT); if (!FS.empty()) { if (!ArchFS.empty()) ArchFS = (Twine(ArchFS) + "," + FS).str(); else ArchFS = FS; } std::string CPUName = CPU; if (CPUName.empty()) CPUName = "generic"; return createX86MCSubtargetInfoImpl(TT, CPUName, ArchFS); } static MCInstrInfo *createX86MCInstrInfo() { MCInstrInfo *X = new MCInstrInfo(); InitX86MCInstrInfo(X); return X; } static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) { unsigned RA = (TT.getArch() == Triple::x86_64) ? X86::RIP // Should have dwarf #16. : X86::EIP; // Should have dwarf #8. MCRegisterInfo *X = new MCRegisterInfo(); InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false), X86_MC::getDwarfRegFlavour(TT, true), RA); X86_MC::initLLVMToSEHAndCVRegMapping(X); return X; } static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI, const Triple &TheTriple) { bool is64Bit = TheTriple.getArch() == Triple::x86_64; MCAsmInfo *MAI; if (TheTriple.isOSBinFormatMachO()) { if (is64Bit) MAI = new X86_64MCAsmInfoDarwin(TheTriple); else MAI = new X86MCAsmInfoDarwin(TheTriple); } else if (TheTriple.isOSBinFormatELF()) { // Force the use of an ELF container. MAI = new X86ELFMCAsmInfo(TheTriple); } else if (TheTriple.isWindowsMSVCEnvironment() || TheTriple.isWindowsCoreCLREnvironment()) { MAI = new X86MCAsmInfoMicrosoft(TheTriple); } else if (TheTriple.isOSCygMing() || TheTriple.isWindowsItaniumEnvironment()) { MAI = new X86MCAsmInfoGNUCOFF(TheTriple); } else { // The default is ELF. MAI = new X86ELFMCAsmInfo(TheTriple); } // Initialize initial frame state. // Calculate amount of bytes used for return address storing int stackGrowth = is64Bit ? -8 : -4; // Initial state of the frame pointer is esp+stackGrowth. unsigned StackPtr = is64Bit ? X86::RSP : X86::ESP; MCCFIInstruction Inst = MCCFIInstruction::createDefCfa( nullptr, MRI.getDwarfRegNum(StackPtr, true), -stackGrowth); MAI->addInitialFrameState(Inst); // Add return address to move list unsigned InstPtr = is64Bit ? X86::RIP : X86::EIP; MCCFIInstruction Inst2 = MCCFIInstruction::createOffset( nullptr, MRI.getDwarfRegNum(InstPtr, true), stackGrowth); MAI->addInitialFrameState(Inst2); return MAI; } static MCInstPrinter *createX86MCInstPrinter(const Triple &T, unsigned SyntaxVariant, const MCAsmInfo &MAI, const MCInstrInfo &MII, const MCRegisterInfo &MRI) { if (SyntaxVariant == 0) return new X86ATTInstPrinter(MAI, MII, MRI); if (SyntaxVariant == 1) return new X86IntelInstPrinter(MAI, MII, MRI); return nullptr; } static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple, MCContext &Ctx) { // Default to the stock relocation info. return llvm::createMCRelocationInfo(TheTriple, Ctx); } namespace llvm { namespace X86_MC { class X86MCInstrAnalysis : public MCInstrAnalysis { X86MCInstrAnalysis(const X86MCInstrAnalysis &) = delete; X86MCInstrAnalysis &operator=(const X86MCInstrAnalysis &) = delete; virtual ~X86MCInstrAnalysis() = default; public: X86MCInstrAnalysis(const MCInstrInfo *MCII) : MCInstrAnalysis(MCII) {} bool isDependencyBreaking(const MCSubtargetInfo &STI, const MCInst &Inst) const override; bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst, APInt &Mask) const override; }; bool X86MCInstrAnalysis::isDependencyBreaking(const MCSubtargetInfo &STI, const MCInst &Inst) const { if (STI.getCPU() == "btver2") { // Reference: Agner Fog's microarchitecture.pdf - Section 20 "AMD Bobcat and // Jaguar pipeline", subsection 8 "Dependency-breaking instructions". switch (Inst.getOpcode()) { default: return false; case X86::SUB32rr: case X86::SUB64rr: case X86::SBB32rr: case X86::SBB64rr: case X86::XOR32rr: case X86::XOR64rr: case X86::XORPSrr: case X86::XORPDrr: case X86::VXORPSrr: case X86::VXORPDrr: case X86::ANDNPSrr: case X86::VANDNPSrr: case X86::ANDNPDrr: case X86::VANDNPDrr: case X86::PXORrr: case X86::VPXORrr: case X86::PANDNrr: case X86::VPANDNrr: case X86::PSUBBrr: case X86::PSUBWrr: case X86::PSUBDrr: case X86::PSUBQrr: case X86::VPSUBBrr: case X86::VPSUBWrr: case X86::VPSUBDrr: case X86::VPSUBQrr: case X86::PCMPEQBrr: case X86::PCMPEQWrr: case X86::PCMPEQDrr: case X86::PCMPEQQrr: case X86::VPCMPEQBrr: case X86::VPCMPEQWrr: case X86::VPCMPEQDrr: case X86::VPCMPEQQrr: case X86::PCMPGTBrr: case X86::PCMPGTWrr: case X86::PCMPGTDrr: case X86::PCMPGTQrr: case X86::VPCMPGTBrr: case X86::VPCMPGTWrr: case X86::VPCMPGTDrr: case X86::VPCMPGTQrr: case X86::MMX_PXORirr: case X86::MMX_PANDNirr: case X86::MMX_PSUBBirr: case X86::MMX_PSUBDirr: case X86::MMX_PSUBQirr: case X86::MMX_PSUBWirr: case X86::MMX_PCMPGTBirr: case X86::MMX_PCMPGTDirr: case X86::MMX_PCMPGTWirr: case X86::MMX_PCMPEQBirr: case X86::MMX_PCMPEQDirr: case X86::MMX_PCMPEQWirr: return Inst.getOperand(1).getReg() == Inst.getOperand(2).getReg(); case X86::CMP32rr: case X86::CMP64rr: return Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg(); } } return false; } bool X86MCInstrAnalysis::clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst, APInt &Mask) const { const MCInstrDesc &Desc = Info->get(Inst.getOpcode()); unsigned NumDefs = Desc.getNumDefs(); unsigned NumImplicitDefs = Desc.getNumImplicitDefs(); assert(Mask.getBitWidth() == NumDefs + NumImplicitDefs && "Unexpected number of bits in the mask!"); bool HasVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::VEX; bool HasEVEX = (Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX; bool HasXOP = (Desc.TSFlags & X86II::EncodingMask) == X86II::XOP; const MCRegisterClass &GR32RC = MRI.getRegClass(X86::GR32RegClassID); const MCRegisterClass &VR128XRC = MRI.getRegClass(X86::VR128XRegClassID); const MCRegisterClass &VR256XRC = MRI.getRegClass(X86::VR256XRegClassID); auto ClearsSuperReg = [=](unsigned RegID) { // On X86-64, a general purpose integer register is viewed as a 64-bit // register internal to the processor. // An update to the lower 32 bits of a 64 bit integer register is // architecturally defined to zero extend the upper 32 bits. if (GR32RC.contains(RegID)) return true; // Early exit if this instruction has no vex/evex/xop prefix. if (!HasEVEX && !HasVEX && !HasXOP) return false; // All VEX and EVEX encoded instructions are defined to zero the high bits // of the destination register up to VLMAX (i.e. the maximum vector register // width pertaining to the instruction). // We assume the same behavior for XOP instructions too. return VR128XRC.contains(RegID) || VR256XRC.contains(RegID); }; Mask.clearAllBits(); for (unsigned I = 0, E = NumDefs; I < E; ++I) { const MCOperand &Op = Inst.getOperand(I); if (ClearsSuperReg(Op.getReg())) Mask.setBit(I); } for (unsigned I = 0, E = NumImplicitDefs; I < E; ++I) { const MCPhysReg Reg = Desc.getImplicitDefs()[I]; if (ClearsSuperReg(Reg)) Mask.setBit(NumDefs + I); } return Mask.getBoolValue(); } } // end of namespace X86_MC } // end of namespace llvm static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) { return new X86_MC::X86MCInstrAnalysis(Info); } // Force static initialization. extern "C" void LLVMInitializeX86TargetMC() { for (Target *T : {&getTheX86_32Target(), &getTheX86_64Target()}) { // Register the MC asm info. RegisterMCAsmInfoFn X(*T, createX86MCAsmInfo); // Register the MC instruction info. TargetRegistry::RegisterMCInstrInfo(*T, createX86MCInstrInfo); // Register the MC register info. TargetRegistry::RegisterMCRegInfo(*T, createX86MCRegisterInfo); // Register the MC subtarget info. TargetRegistry::RegisterMCSubtargetInfo(*T, X86_MC::createX86MCSubtargetInfo); // Register the MC instruction analyzer. TargetRegistry::RegisterMCInstrAnalysis(*T, createX86MCInstrAnalysis); // Register the code emitter. TargetRegistry::RegisterMCCodeEmitter(*T, createX86MCCodeEmitter); // Register the obj target streamer. TargetRegistry::RegisterObjectTargetStreamer(*T, createX86ObjectTargetStreamer); // Register the asm target streamer. TargetRegistry::RegisterAsmTargetStreamer(*T, createX86AsmTargetStreamer); TargetRegistry::RegisterCOFFStreamer(*T, createX86WinCOFFStreamer); // Register the MCInstPrinter. TargetRegistry::RegisterMCInstPrinter(*T, createX86MCInstPrinter); // Register the MC relocation info. TargetRegistry::RegisterMCRelocationInfo(*T, createX86MCRelocationInfo); } // Register the asm backend. TargetRegistry::RegisterMCAsmBackend(getTheX86_32Target(), createX86_32AsmBackend); TargetRegistry::RegisterMCAsmBackend(getTheX86_64Target(), createX86_64AsmBackend); } unsigned llvm::getX86SubSuperRegisterOrZero(unsigned Reg, unsigned Size, bool High) { switch (Size) { default: return 0; case 8: if (High) { switch (Reg) { default: return getX86SubSuperRegisterOrZero(Reg, 64); case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::SI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::DI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::BP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::SP; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AH; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DH; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CH; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BH; } } else { switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AL; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DL; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CL; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BL; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::SIL; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::DIL; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::BPL; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::SPL; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8B; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9B; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10B; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11B; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12B; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13B; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14B; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15B; } } case 16: switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::SI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::DI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::BP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::SP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8W; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9W; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10W; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11W; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12W; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13W; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14W; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15W; } case 32: switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::EAX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::EDX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::ECX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::EBX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::ESI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::EDI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::EBP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::ESP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8D; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9D; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10D; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11D; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12D; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13D; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14D; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15D; } case 64: switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::RAX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::RDX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::RCX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::RBX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::RSI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::RDI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::RBP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::RSP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15; } } } unsigned llvm::getX86SubSuperRegister(unsigned Reg, unsigned Size, bool High) { unsigned Res = getX86SubSuperRegisterOrZero(Reg, Size, High); assert(Res != 0 && "Unexpected register or VT"); return Res; }