//===- AggressiveInstCombine.cpp ------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the aggressive expression pattern combiner classes. // Currently, it handles expression patterns for: // * Truncate instruction // //===----------------------------------------------------------------------===// #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" #include "AggressiveInstCombineInternal.h" #include "llvm-c/Initialization.h" #include "llvm-c/Transforms/Scalar.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Pass.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "aggressive-instcombine" namespace { /// Contains expression pattern combiner logic. /// This class provides both the logic to combine expression patterns and /// combine them. It differs from InstCombiner class in that each pattern /// combiner runs only once as opposed to InstCombine's multi-iteration, /// which allows pattern combiner to have higher complexity than the O(1) /// required by the instruction combiner. class AggressiveInstCombinerLegacyPass : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid AggressiveInstCombinerLegacyPass() : FunctionPass(ID) { initializeAggressiveInstCombinerLegacyPassPass( *PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override; /// Run all expression pattern optimizations on the given /p F function. /// /// \param F function to optimize. /// \returns true if the IR is changed. bool runOnFunction(Function &F) override; }; } // namespace /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain /// of 'and' ops, then we also need to capture the fact that we saw an /// "and X, 1", so that's an extra return value for that case. struct MaskOps { Value *Root; APInt Mask; bool MatchAndChain; bool FoundAnd1; MaskOps(unsigned BitWidth, bool MatchAnds) : Root(nullptr), Mask(APInt::getNullValue(BitWidth)), MatchAndChain(MatchAnds), FoundAnd1(false) {} }; /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a /// chain of 'and' or 'or' instructions looking for shift ops of a common source /// value. Examples: /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8) /// returns { X, 0x129 } /// and (and (X >> 1), 1), (X >> 4) /// returns { X, 0x12 } static bool matchAndOrChain(Value *V, MaskOps &MOps) { Value *Op0, *Op1; if (MOps.MatchAndChain) { // Recurse through a chain of 'and' operands. This requires an extra check // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere // in the chain to know that all of the high bits are cleared. if (match(V, m_And(m_Value(Op0), m_One()))) { MOps.FoundAnd1 = true; return matchAndOrChain(Op0, MOps); } if (match(V, m_And(m_Value(Op0), m_Value(Op1)))) return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); } else { // Recurse through a chain of 'or' operands. if (match(V, m_Or(m_Value(Op0), m_Value(Op1)))) return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); } // We need a shift-right or a bare value representing a compare of bit 0 of // the original source operand. Value *Candidate; uint64_t BitIndex = 0; if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex)))) Candidate = V; // Initialize result source operand. if (!MOps.Root) MOps.Root = Candidate; // The shift constant is out-of-range? This code hasn't been simplified. if (BitIndex >= MOps.Mask.getBitWidth()) return false; // Fill in the mask bit derived from the shift constant. MOps.Mask.setBit(BitIndex); return MOps.Root == Candidate; } /// Match patterns that correspond to "any-bits-set" and "all-bits-set". /// These will include a chain of 'or' or 'and'-shifted bits from a /// common source value: /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns /// that differ only with a final 'not' of the result. We expect that final /// 'not' to be folded with the compare that we create here (invert predicate). static bool foldAnyOrAllBitsSet(Instruction &I) { // The 'any-bits-set' ('or' chain) pattern is simpler to match because the // final "and X, 1" instruction must be the final op in the sequence. bool MatchAllBitsSet; if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value()))) MatchAllBitsSet = true; else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One()))) MatchAllBitsSet = false; else return false; MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet); if (MatchAllBitsSet) { if (!matchAndOrChain(cast(&I), MOps) || !MOps.FoundAnd1) return false; } else { if (!matchAndOrChain(cast(&I)->getOperand(0), MOps)) return false; } // The pattern was found. Create a masked compare that replaces all of the // shift and logic ops. IRBuilder<> Builder(&I); Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask); Value *And = Builder.CreateAnd(MOps.Root, Mask); Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) : Builder.CreateIsNotNull(And); Value *Zext = Builder.CreateZExt(Cmp, I.getType()); I.replaceAllUsesWith(Zext); return true; } /// This is the entry point for folds that could be implemented in regular /// InstCombine, but they are separated because they are not expected to /// occur frequently and/or have more than a constant-length pattern match. static bool foldUnusualPatterns(Function &F, DominatorTree &DT) { bool MadeChange = false; for (BasicBlock &BB : F) { // Ignore unreachable basic blocks. if (!DT.isReachableFromEntry(&BB)) continue; // Do not delete instructions under here and invalidate the iterator. // Walk the block backwards for efficiency. We're matching a chain of // use->defs, so we're more likely to succeed by starting from the bottom. // Also, we want to avoid matching partial patterns. // TODO: It would be more efficient if we removed dead instructions // iteratively in this loop rather than waiting until the end. for (Instruction &I : make_range(BB.rbegin(), BB.rend())) MadeChange |= foldAnyOrAllBitsSet(I); } // We're done with transforms, so remove dead instructions. if (MadeChange) for (BasicBlock &BB : F) SimplifyInstructionsInBlock(&BB); return MadeChange; } /// This is the entry point for all transforms. Pass manager differences are /// handled in the callers of this function. static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) { bool MadeChange = false; const DataLayout &DL = F.getParent()->getDataLayout(); TruncInstCombine TIC(TLI, DL, DT); MadeChange |= TIC.run(F); MadeChange |= foldUnusualPatterns(F, DT); return MadeChange; } void AggressiveInstCombinerLegacyPass::getAnalysisUsage( AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); } bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) { auto &TLI = getAnalysis().getTLI(); auto &DT = getAnalysis().getDomTree(); return runImpl(F, TLI, DT); } PreservedAnalyses AggressiveInstCombinePass::run(Function &F, FunctionAnalysisManager &AM) { auto &TLI = AM.getResult(F); auto &DT = AM.getResult(F); if (!runImpl(F, TLI, DT)) { // No changes, all analyses are preserved. return PreservedAnalyses::all(); } // Mark all the analyses that instcombine updates as preserved. PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); PA.preserve(); return PA; } char AggressiveInstCombinerLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass, "aggressive-instcombine", "Combine pattern based expressions", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine", "Combine pattern based expressions", false, false) // Initialization Routines void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) { initializeAggressiveInstCombinerLegacyPassPass(Registry); } void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) { initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R)); } FunctionPass *llvm::createAggressiveInstCombinerPass() { return new AggressiveInstCombinerLegacyPass(); } void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) { unwrap(PM)->add(createAggressiveInstCombinerPass()); }