//===- Object.cpp ---------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Object.h" #include "llvm-objcopy.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator_range.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/Path.h" #include #include #include #include #include #include using namespace llvm; using namespace llvm::objcopy; using namespace object; using namespace ELF; Buffer::~Buffer() {} void FileBuffer::allocate(size_t Size) { Expected> BufferOrErr = FileOutputBuffer::create(getName(), Size, FileOutputBuffer::F_executable); handleAllErrors(BufferOrErr.takeError(), [this](const ErrorInfoBase &E) { error("failed to open " + getName() + ": " + E.message()); }); Buf = std::move(*BufferOrErr); } Error FileBuffer::commit() { return Buf->commit(); } uint8_t *FileBuffer::getBufferStart() { return reinterpret_cast(Buf->getBufferStart()); } void MemBuffer::allocate(size_t Size) { Buf = WritableMemoryBuffer::getNewMemBuffer(Size, getName()); } Error MemBuffer::commit() { return Error::success(); } uint8_t *MemBuffer::getBufferStart() { return reinterpret_cast(Buf->getBufferStart()); } std::unique_ptr MemBuffer::releaseMemoryBuffer() { return std::move(Buf); } template void ELFWriter::writePhdr(const Segment &Seg) { using Elf_Phdr = typename ELFT::Phdr; uint8_t *B = Buf.getBufferStart(); B += Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr); Elf_Phdr &Phdr = *reinterpret_cast(B); Phdr.p_type = Seg.Type; Phdr.p_flags = Seg.Flags; Phdr.p_offset = Seg.Offset; Phdr.p_vaddr = Seg.VAddr; Phdr.p_paddr = Seg.PAddr; Phdr.p_filesz = Seg.FileSize; Phdr.p_memsz = Seg.MemSize; Phdr.p_align = Seg.Align; } void SectionBase::removeSectionReferences(const SectionBase *Sec) {} void SectionBase::removeSymbols(function_ref ToRemove) {} void SectionBase::initialize(SectionTableRef SecTable) {} void SectionBase::finalize() {} void SectionBase::markSymbols() {} template void ELFWriter::writeShdr(const SectionBase &Sec) { uint8_t *B = Buf.getBufferStart(); B += Sec.HeaderOffset; typename ELFT::Shdr &Shdr = *reinterpret_cast(B); Shdr.sh_name = Sec.NameIndex; Shdr.sh_type = Sec.Type; Shdr.sh_flags = Sec.Flags; Shdr.sh_addr = Sec.Addr; Shdr.sh_offset = Sec.Offset; Shdr.sh_size = Sec.Size; Shdr.sh_link = Sec.Link; Shdr.sh_info = Sec.Info; Shdr.sh_addralign = Sec.Align; Shdr.sh_entsize = Sec.EntrySize; } SectionVisitor::~SectionVisitor() {} void BinarySectionWriter::visit(const SectionIndexSection &Sec) { error("Cannot write symbol section index table '" + Sec.Name + "' "); } void BinarySectionWriter::visit(const SymbolTableSection &Sec) { error("Cannot write symbol table '" + Sec.Name + "' out to binary"); } void BinarySectionWriter::visit(const RelocationSection &Sec) { error("Cannot write relocation section '" + Sec.Name + "' out to binary"); } void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) { error("Cannot write '" + Sec.Name + "' out to binary"); } void BinarySectionWriter::visit(const GroupSection &Sec) { error("Cannot write '" + Sec.Name + "' out to binary"); } void SectionWriter::visit(const Section &Sec) { if (Sec.Type == SHT_NOBITS) return; uint8_t *Buf = Out.getBufferStart() + Sec.Offset; std::copy(std::begin(Sec.Contents), std::end(Sec.Contents), Buf); } void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } void SectionWriter::visit(const OwnedDataSection &Sec) { uint8_t *Buf = Out.getBufferStart() + Sec.Offset; std::copy(std::begin(Sec.Data), std::end(Sec.Data), Buf); } void OwnedDataSection::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); Size = StrTabBuilder.getSize(); } uint32_t StringTableSection::findIndex(StringRef Name) const { return StrTabBuilder.getOffset(Name); } void StringTableSection::finalize() { StrTabBuilder.finalize(); } void SectionWriter::visit(const StringTableSection &Sec) { Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset); } void StringTableSection::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } template void ELFSectionWriter::visit(const SectionIndexSection &Sec) { uint8_t *Buf = Out.getBufferStart() + Sec.Offset; auto *IndexesBuffer = reinterpret_cast(Buf); std::copy(std::begin(Sec.Indexes), std::end(Sec.Indexes), IndexesBuffer); } void SectionIndexSection::initialize(SectionTableRef SecTable) { Size = 0; setSymTab(SecTable.getSectionOfType( Link, "Link field value " + Twine(Link) + " in section " + Name + " is invalid", "Link field value " + Twine(Link) + " in section " + Name + " is not a symbol table")); Symbols->setShndxTable(this); } void SectionIndexSection::finalize() { Link = Symbols->Index; } void SectionIndexSection::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { switch (Index) { case SHN_ABS: case SHN_COMMON: return true; } if (Machine == EM_HEXAGON) { switch (Index) { case SHN_HEXAGON_SCOMMON: case SHN_HEXAGON_SCOMMON_2: case SHN_HEXAGON_SCOMMON_4: case SHN_HEXAGON_SCOMMON_8: return true; } } return false; } // Large indexes force us to clarify exactly what this function should do. This // function should return the value that will appear in st_shndx when written // out. uint16_t Symbol::getShndx() const { if (DefinedIn != nullptr) { if (DefinedIn->Index >= SHN_LORESERVE) return SHN_XINDEX; return DefinedIn->Index; } switch (ShndxType) { // This means that we don't have a defined section but we do need to // output a legitimate section index. case SYMBOL_SIMPLE_INDEX: return SHN_UNDEF; case SYMBOL_ABS: case SYMBOL_COMMON: case SYMBOL_HEXAGON_SCOMMON: case SYMBOL_HEXAGON_SCOMMON_2: case SYMBOL_HEXAGON_SCOMMON_4: case SYMBOL_HEXAGON_SCOMMON_8: case SYMBOL_XINDEX: return static_cast(ShndxType); } llvm_unreachable("Symbol with invalid ShndxType encountered"); } void SymbolTableSection::assignIndices() { uint32_t Index = 0; for (auto &Sym : Symbols) Sym->Index = Index++; } void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type, SectionBase *DefinedIn, uint64_t Value, uint8_t Visibility, uint16_t Shndx, uint64_t Sz) { Symbol Sym; Sym.Name = Name; Sym.Binding = Bind; Sym.Type = Type; Sym.DefinedIn = DefinedIn; if (DefinedIn != nullptr) DefinedIn->HasSymbol = true; if (DefinedIn == nullptr) { if (Shndx >= SHN_LORESERVE) Sym.ShndxType = static_cast(Shndx); else Sym.ShndxType = SYMBOL_SIMPLE_INDEX; } Sym.Value = Value; Sym.Visibility = Visibility; Sym.Size = Sz; Sym.Index = Symbols.size(); Symbols.emplace_back(llvm::make_unique(Sym)); Size += this->EntrySize; } void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) { if (SectionIndexTable == Sec) SectionIndexTable = nullptr; if (SymbolNames == Sec) { error("String table " + SymbolNames->Name + " cannot be removed because it is referenced by the symbol table " + this->Name); } removeSymbols([Sec](const Symbol &Sym) { return Sym.DefinedIn == Sec; }); } void SymbolTableSection::updateSymbols(function_ref Callable) { std::for_each(std::begin(Symbols) + 1, std::end(Symbols), [Callable](SymPtr &Sym) { Callable(*Sym); }); std::stable_partition( std::begin(Symbols), std::end(Symbols), [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; }); assignIndices(); } void SymbolTableSection::removeSymbols( function_ref ToRemove) { Symbols.erase( std::remove_if(std::begin(Symbols) + 1, std::end(Symbols), [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }), std::end(Symbols)); Size = Symbols.size() * EntrySize; assignIndices(); } void SymbolTableSection::initialize(SectionTableRef SecTable) { Size = 0; setStrTab(SecTable.getSectionOfType( Link, "Symbol table has link index of " + Twine(Link) + " which is not a valid index", "Symbol table has link index of " + Twine(Link) + " which is not a string table")); } void SymbolTableSection::finalize() { // Make sure SymbolNames is finalized before getting name indexes. SymbolNames->finalize(); uint32_t MaxLocalIndex = 0; for (auto &Sym : Symbols) { Sym->NameIndex = SymbolNames->findIndex(Sym->Name); if (Sym->Binding == STB_LOCAL) MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); } // Now we need to set the Link and Info fields. Link = SymbolNames->Index; Info = MaxLocalIndex + 1; } void SymbolTableSection::prepareForLayout() { // Add all potential section indexes before file layout so that the section // index section has the approprite size. if (SectionIndexTable != nullptr) { for (const auto &Sym : Symbols) { if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE) SectionIndexTable->addIndex(Sym->DefinedIn->Index); else SectionIndexTable->addIndex(SHN_UNDEF); } } // Add all of our strings to SymbolNames so that SymbolNames has the right // size before layout is decided. for (auto &Sym : Symbols) SymbolNames->addString(Sym->Name); } const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const { if (Symbols.size() <= Index) error("Invalid symbol index: " + Twine(Index)); return Symbols[Index].get(); } Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) { return const_cast( static_cast(this)->getSymbolByIndex(Index)); } template void ELFSectionWriter::visit(const SymbolTableSection &Sec) { uint8_t *Buf = Out.getBufferStart(); Buf += Sec.Offset; typename ELFT::Sym *Sym = reinterpret_cast(Buf); // Loop though symbols setting each entry of the symbol table. for (auto &Symbol : Sec.Symbols) { Sym->st_name = Symbol->NameIndex; Sym->st_value = Symbol->Value; Sym->st_size = Symbol->Size; Sym->st_other = Symbol->Visibility; Sym->setBinding(Symbol->Binding); Sym->setType(Symbol->Type); Sym->st_shndx = Symbol->getShndx(); ++Sym; } } void SymbolTableSection::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } template void RelocSectionWithSymtabBase::removeSectionReferences( const SectionBase *Sec) { if (Symbols == Sec) { error("Symbol table " + Symbols->Name + " cannot be removed because it is " "referenced by the relocation " "section " + this->Name); } } template void RelocSectionWithSymtabBase::initialize( SectionTableRef SecTable) { setSymTab(SecTable.getSectionOfType( Link, "Link field value " + Twine(Link) + " in section " + Name + " is invalid", "Link field value " + Twine(Link) + " in section " + Name + " is not a symbol table")); if (Info != SHN_UNDEF) setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) + " in section " + Name + " is invalid")); else setSection(nullptr); } template void RelocSectionWithSymtabBase::finalize() { this->Link = Symbols->Index; if (SecToApplyRel != nullptr) this->Info = SecToApplyRel->Index; } template static void setAddend(Elf_Rel_Impl &Rel, uint64_t Addend) {} template static void setAddend(Elf_Rel_Impl &Rela, uint64_t Addend) { Rela.r_addend = Addend; } template static void writeRel(const RelRange &Relocations, T *Buf) { for (const auto &Reloc : Relocations) { Buf->r_offset = Reloc.Offset; setAddend(*Buf, Reloc.Addend); Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false); ++Buf; } } template void ELFSectionWriter::visit(const RelocationSection &Sec) { uint8_t *Buf = Out.getBufferStart() + Sec.Offset; if (Sec.Type == SHT_REL) writeRel(Sec.Relocations, reinterpret_cast(Buf)); else writeRel(Sec.Relocations, reinterpret_cast(Buf)); } void RelocationSection::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } void RelocationSection::removeSymbols( function_ref ToRemove) { for (const Relocation &Reloc : Relocations) if (ToRemove(*Reloc.RelocSymbol)) error("not stripping symbol `" + Reloc.RelocSymbol->Name + "' because it is named in a relocation"); } void RelocationSection::markSymbols() { for (const Relocation &Reloc : Relocations) Reloc.RelocSymbol->Referenced = true; } void SectionWriter::visit(const DynamicRelocationSection &Sec) { std::copy(std::begin(Sec.Contents), std::end(Sec.Contents), Out.getBufferStart() + Sec.Offset); } void DynamicRelocationSection::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } void Section::removeSectionReferences(const SectionBase *Sec) { if (LinkSection == Sec) { error("Section " + LinkSection->Name + " cannot be removed because it is " "referenced by the section " + this->Name); } } void GroupSection::finalize() { this->Info = Sym->Index; this->Link = SymTab->Index; } void GroupSection::removeSymbols(function_ref ToRemove) { if (ToRemove(*Sym)) { error("Symbol " + Sym->Name + " cannot be removed because it is " "referenced by the section " + this->Name + "[" + Twine(this->Index) + "]"); } } void GroupSection::markSymbols() { if (Sym) Sym->Referenced = true; } void Section::initialize(SectionTableRef SecTable) { if (Link != ELF::SHN_UNDEF) { LinkSection = SecTable.getSection(Link, "Link field value " + Twine(Link) + " in section " + Name + " is invalid"); if (LinkSection->Type == ELF::SHT_SYMTAB) LinkSection = nullptr; } } void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; } void GnuDebugLinkSection::init(StringRef File, StringRef Data) { FileName = sys::path::filename(File); // The format for the .gnu_debuglink starts with the file name and is // followed by a null terminator and then the CRC32 of the file. The CRC32 // should be 4 byte aligned. So we add the FileName size, a 1 for the null // byte, and then finally push the size to alignment and add 4. Size = alignTo(FileName.size() + 1, 4) + 4; // The CRC32 will only be aligned if we align the whole section. Align = 4; Type = ELF::SHT_PROGBITS; Name = ".gnu_debuglink"; // For sections not found in segments, OriginalOffset is only used to // establish the order that sections should go in. By using the maximum // possible offset we cause this section to wind up at the end. OriginalOffset = std::numeric_limits::max(); JamCRC crc; crc.update(ArrayRef(Data.data(), Data.size())); // The CRC32 value needs to be complemented because the JamCRC dosn't // finalize the CRC32 value. It also dosn't negate the initial CRC32 value // but it starts by default at 0xFFFFFFFF which is the complement of zero. CRC32 = ~crc.getCRC(); } GnuDebugLinkSection::GnuDebugLinkSection(StringRef File) : FileName(File) { // Read in the file to compute the CRC of it. auto DebugOrErr = MemoryBuffer::getFile(File); if (!DebugOrErr) error("'" + File + "': " + DebugOrErr.getError().message()); auto Debug = std::move(*DebugOrErr); init(File, Debug->getBuffer()); } template void ELFSectionWriter::visit(const GnuDebugLinkSection &Sec) { auto Buf = Out.getBufferStart() + Sec.Offset; char *File = reinterpret_cast(Buf); Elf_Word *CRC = reinterpret_cast(Buf + Sec.Size - sizeof(Elf_Word)); *CRC = Sec.CRC32; std::copy(std::begin(Sec.FileName), std::end(Sec.FileName), File); } void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } template void ELFSectionWriter::visit(const GroupSection &Sec) { ELF::Elf32_Word *Buf = reinterpret_cast(Out.getBufferStart() + Sec.Offset); *Buf++ = Sec.FlagWord; for (const auto *S : Sec.GroupMembers) support::endian::write32(Buf++, S->Index); } void GroupSection::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } // Returns true IFF a section is wholly inside the range of a segment static bool sectionWithinSegment(const SectionBase &Section, const Segment &Segment) { // If a section is empty it should be treated like it has a size of 1. This is // to clarify the case when an empty section lies on a boundary between two // segments and ensures that the section "belongs" to the second segment and // not the first. uint64_t SecSize = Section.Size ? Section.Size : 1; return Segment.Offset <= Section.OriginalOffset && Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize; } // Returns true IFF a segment's original offset is inside of another segment's // range. static bool segmentOverlapsSegment(const Segment &Child, const Segment &Parent) { return Parent.OriginalOffset <= Child.OriginalOffset && Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; } static bool compareSegmentsByOffset(const Segment *A, const Segment *B) { // Any segment without a parent segment should come before a segment // that has a parent segment. if (A->OriginalOffset < B->OriginalOffset) return true; if (A->OriginalOffset > B->OriginalOffset) return false; return A->Index < B->Index; } static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) { if (A->PAddr < B->PAddr) return true; if (A->PAddr > B->PAddr) return false; return A->Index < B->Index; } template void ELFBuilder::setParentSegment(Segment &Child) { for (auto &Parent : Obj.segments()) { // Every segment will overlap with itself but we don't want a segment to // be it's own parent so we avoid that situation. if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) { // We want a canonical "most parental" segment but this requires // inspecting the ParentSegment. if (compareSegmentsByOffset(&Parent, &Child)) if (Child.ParentSegment == nullptr || compareSegmentsByOffset(&Parent, Child.ParentSegment)) { Child.ParentSegment = &Parent; } } } } template void ELFBuilder::readProgramHeaders() { uint32_t Index = 0; for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) { ArrayRef Data{ElfFile.base() + Phdr.p_offset, (size_t)Phdr.p_filesz}; Segment &Seg = Obj.addSegment(Data); Seg.Type = Phdr.p_type; Seg.Flags = Phdr.p_flags; Seg.OriginalOffset = Phdr.p_offset; Seg.Offset = Phdr.p_offset; Seg.VAddr = Phdr.p_vaddr; Seg.PAddr = Phdr.p_paddr; Seg.FileSize = Phdr.p_filesz; Seg.MemSize = Phdr.p_memsz; Seg.Align = Phdr.p_align; Seg.Index = Index++; for (auto &Section : Obj.sections()) { if (sectionWithinSegment(Section, Seg)) { Seg.addSection(&Section); if (!Section.ParentSegment || Section.ParentSegment->Offset > Seg.Offset) { Section.ParentSegment = &Seg; } } } } auto &ElfHdr = Obj.ElfHdrSegment; // Creating multiple PT_PHDR segments technically is not valid, but PT_LOAD // segments must not overlap, and other types fit even less. ElfHdr.Type = PT_PHDR; ElfHdr.Flags = 0; ElfHdr.OriginalOffset = ElfHdr.Offset = 0; ElfHdr.VAddr = 0; ElfHdr.PAddr = 0; ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr); ElfHdr.Align = 0; ElfHdr.Index = Index++; const auto &Ehdr = *ElfFile.getHeader(); auto &PrHdr = Obj.ProgramHdrSegment; PrHdr.Type = PT_PHDR; PrHdr.Flags = 0; // The spec requires us to have p_vaddr % p_align == p_offset % p_align. // Whereas this works automatically for ElfHdr, here OriginalOffset is // always non-zero and to ensure the equation we assign the same value to // VAddr as well. PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = Ehdr.e_phoff; PrHdr.PAddr = 0; PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum; // The spec requires us to naturally align all the fields. PrHdr.Align = sizeof(Elf_Addr); PrHdr.Index = Index++; // Now we do an O(n^2) loop through the segments in order to match up // segments. for (auto &Child : Obj.segments()) setParentSegment(Child); setParentSegment(ElfHdr); setParentSegment(PrHdr); } template void ELFBuilder::initGroupSection(GroupSection *GroupSec) { auto SecTable = Obj.sections(); auto SymTab = SecTable.template getSectionOfType( GroupSec->Link, "Link field value " + Twine(GroupSec->Link) + " in section " + GroupSec->Name + " is invalid", "Link field value " + Twine(GroupSec->Link) + " in section " + GroupSec->Name + " is not a symbol table"); auto Sym = SymTab->getSymbolByIndex(GroupSec->Info); if (!Sym) error("Info field value " + Twine(GroupSec->Info) + " in section " + GroupSec->Name + " is not a valid symbol index"); GroupSec->setSymTab(SymTab); GroupSec->setSymbol(Sym); if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) || GroupSec->Contents.empty()) error("The content of the section " + GroupSec->Name + " is malformed"); const ELF::Elf32_Word *Word = reinterpret_cast(GroupSec->Contents.data()); const ELF::Elf32_Word *End = Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word); GroupSec->setFlagWord(*Word++); for (; Word != End; ++Word) { uint32_t Index = support::endian::read32(Word); GroupSec->addMember(SecTable.getSection( Index, "Group member index " + Twine(Index) + " in section " + GroupSec->Name + " is invalid")); } } template void ELFBuilder::initSymbolTable(SymbolTableSection *SymTab) { const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index)); StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr)); ArrayRef ShndxData; auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr)); for (const auto &Sym : Symbols) { SectionBase *DefSection = nullptr; StringRef Name = unwrapOrError(Sym.getName(StrTabData)); if (Sym.st_shndx == SHN_XINDEX) { if (SymTab->getShndxTable() == nullptr) error("Symbol '" + Name + "' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists."); if (ShndxData.data() == nullptr) { const Elf_Shdr &ShndxSec = *unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index)); ShndxData = unwrapOrError( ElfFile.template getSectionContentsAsArray(&ShndxSec)); if (ShndxData.size() != Symbols.size()) error("Symbol section index table does not have the same number of " "entries as the symbol table."); } Elf_Word Index = ShndxData[&Sym - Symbols.begin()]; DefSection = Obj.sections().getSection( Index, "Symbol '" + Name + "' has invalid section index " + Twine(Index)); } else if (Sym.st_shndx >= SHN_LORESERVE) { if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) { error( "Symbol '" + Name + "' has unsupported value greater than or equal to SHN_LORESERVE: " + Twine(Sym.st_shndx)); } } else if (Sym.st_shndx != SHN_UNDEF) { DefSection = Obj.sections().getSection( Sym.st_shndx, "Symbol '" + Name + "' is defined has invalid section index " + Twine(Sym.st_shndx)); } SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection, Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size); } } template static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl &Rel) {} template static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl &Rela) { ToSet = Rela.r_addend; } template static void initRelocations(RelocationSection *Relocs, SymbolTableSection *SymbolTable, T RelRange) { for (const auto &Rel : RelRange) { Relocation ToAdd; ToAdd.Offset = Rel.r_offset; getAddend(ToAdd.Addend, Rel); ToAdd.Type = Rel.getType(false); ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false)); Relocs->addRelocation(ToAdd); } } SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) { if (Index == SHN_UNDEF || Index > Sections.size()) error(ErrMsg); return Sections[Index - 1].get(); } template T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg, Twine TypeErrMsg) { if (T *Sec = dyn_cast(getSection(Index, IndexErrMsg))) return Sec; error(TypeErrMsg); } template SectionBase &ELFBuilder::makeSection(const Elf_Shdr &Shdr) { ArrayRef Data; switch (Shdr.sh_type) { case SHT_REL: case SHT_RELA: if (Shdr.sh_flags & SHF_ALLOC) { Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return Obj.addSection(Data); } return Obj.addSection(); case SHT_STRTAB: // If a string table is allocated we don't want to mess with it. That would // mean altering the memory image. There are no special link types or // anything so we can just use a Section. if (Shdr.sh_flags & SHF_ALLOC) { Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return Obj.addSection
(Data); } return Obj.addSection(); case SHT_HASH: case SHT_GNU_HASH: // Hash tables should refer to SHT_DYNSYM which we're not going to change. // Because of this we don't need to mess with the hash tables either. Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return Obj.addSection
(Data); case SHT_GROUP: Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return Obj.addSection(Data); case SHT_DYNSYM: Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return Obj.addSection(Data); case SHT_DYNAMIC: Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return Obj.addSection(Data); case SHT_SYMTAB: { auto &SymTab = Obj.addSection(); Obj.SymbolTable = &SymTab; return SymTab; } case SHT_SYMTAB_SHNDX: { auto &ShndxSection = Obj.addSection(); Obj.SectionIndexTable = &ShndxSection; return ShndxSection; } case SHT_NOBITS: return Obj.addSection
(Data); default: Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); return Obj.addSection
(Data); } } template void ELFBuilder::readSectionHeaders() { uint32_t Index = 0; for (const auto &Shdr : unwrapOrError(ElfFile.sections())) { if (Index == 0) { ++Index; continue; } auto &Sec = makeSection(Shdr); Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr)); Sec.Type = Shdr.sh_type; Sec.Flags = Shdr.sh_flags; Sec.Addr = Shdr.sh_addr; Sec.Offset = Shdr.sh_offset; Sec.OriginalOffset = Shdr.sh_offset; Sec.Size = Shdr.sh_size; Sec.Link = Shdr.sh_link; Sec.Info = Shdr.sh_info; Sec.Align = Shdr.sh_addralign; Sec.EntrySize = Shdr.sh_entsize; Sec.Index = Index++; } // If a section index table exists we'll need to initialize it before we // initialize the symbol table because the symbol table might need to // reference it. if (Obj.SectionIndexTable) Obj.SectionIndexTable->initialize(Obj.sections()); // Now that all of the sections have been added we can fill out some extra // details about symbol tables. We need the symbol table filled out before // any relocations. if (Obj.SymbolTable) { Obj.SymbolTable->initialize(Obj.sections()); initSymbolTable(Obj.SymbolTable); } // Now that all sections and symbols have been added we can add // relocations that reference symbols and set the link and info fields for // relocation sections. for (auto &Section : Obj.sections()) { if (&Section == Obj.SymbolTable) continue; Section.initialize(Obj.sections()); if (auto RelSec = dyn_cast(&Section)) { auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index; if (RelSec->Type == SHT_REL) initRelocations(RelSec, Obj.SymbolTable, unwrapOrError(ElfFile.rels(Shdr))); else initRelocations(RelSec, Obj.SymbolTable, unwrapOrError(ElfFile.relas(Shdr))); } else if (auto GroupSec = dyn_cast(&Section)) { initGroupSection(GroupSec); } } } template void ELFBuilder::build() { const auto &Ehdr = *ElfFile.getHeader(); std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Obj.Ident); Obj.Type = Ehdr.e_type; Obj.Machine = Ehdr.e_machine; Obj.Version = Ehdr.e_version; Obj.Entry = Ehdr.e_entry; Obj.Flags = Ehdr.e_flags; readSectionHeaders(); readProgramHeaders(); uint32_t ShstrIndex = Ehdr.e_shstrndx; if (ShstrIndex == SHN_XINDEX) ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link; Obj.SectionNames = Obj.sections().template getSectionOfType( ShstrIndex, "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " + " is invalid", "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " + " is not a string table"); } // A generic size function which computes sizes of any random access range. template size_t size(R &&Range) { return static_cast(std::end(Range) - std::begin(Range)); } Writer::~Writer() {} Reader::~Reader() {} ElfType ELFReader::getElfType() const { if (isa>(Bin)) return ELFT_ELF32LE; if (isa>(Bin)) return ELFT_ELF64LE; if (isa>(Bin)) return ELFT_ELF32BE; if (isa>(Bin)) return ELFT_ELF64BE; llvm_unreachable("Invalid ELFType"); } std::unique_ptr ELFReader::create() const { auto Obj = llvm::make_unique(); if (auto *o = dyn_cast>(Bin)) { ELFBuilder Builder(*o, *Obj); Builder.build(); return Obj; } else if (auto *o = dyn_cast>(Bin)) { ELFBuilder Builder(*o, *Obj); Builder.build(); return Obj; } else if (auto *o = dyn_cast>(Bin)) { ELFBuilder Builder(*o, *Obj); Builder.build(); return Obj; } else if (auto *o = dyn_cast>(Bin)) { ELFBuilder Builder(*o, *Obj); Builder.build(); return Obj; } error("Invalid file type"); } template void ELFWriter::writeEhdr() { uint8_t *B = Buf.getBufferStart(); Elf_Ehdr &Ehdr = *reinterpret_cast(B); std::copy(Obj.Ident, Obj.Ident + 16, Ehdr.e_ident); Ehdr.e_type = Obj.Type; Ehdr.e_machine = Obj.Machine; Ehdr.e_version = Obj.Version; Ehdr.e_entry = Obj.Entry; Ehdr.e_phoff = Obj.ProgramHdrSegment.Offset; Ehdr.e_flags = Obj.Flags; Ehdr.e_ehsize = sizeof(Elf_Ehdr); Ehdr.e_phentsize = sizeof(Elf_Phdr); Ehdr.e_phnum = size(Obj.segments()); Ehdr.e_shentsize = sizeof(Elf_Shdr); if (WriteSectionHeaders) { Ehdr.e_shoff = Obj.SHOffset; // """ // If the number of sections is greater than or equal to // SHN_LORESERVE (0xff00), this member has the value zero and the actual // number of section header table entries is contained in the sh_size field // of the section header at index 0. // """ auto Shnum = size(Obj.sections()) + 1; if (Shnum >= SHN_LORESERVE) Ehdr.e_shnum = 0; else Ehdr.e_shnum = Shnum; // """ // If the section name string table section index is greater than or equal // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff) // and the actual index of the section name string table section is // contained in the sh_link field of the section header at index 0. // """ if (Obj.SectionNames->Index >= SHN_LORESERVE) Ehdr.e_shstrndx = SHN_XINDEX; else Ehdr.e_shstrndx = Obj.SectionNames->Index; } else { Ehdr.e_shoff = 0; Ehdr.e_shnum = 0; Ehdr.e_shstrndx = 0; } } template void ELFWriter::writePhdrs() { for (auto &Seg : Obj.segments()) writePhdr(Seg); } template void ELFWriter::writeShdrs() { uint8_t *B = Buf.getBufferStart() + Obj.SHOffset; // This reference serves to write the dummy section header at the begining // of the file. It is not used for anything else Elf_Shdr &Shdr = *reinterpret_cast(B); Shdr.sh_name = 0; Shdr.sh_type = SHT_NULL; Shdr.sh_flags = 0; Shdr.sh_addr = 0; Shdr.sh_offset = 0; // See writeEhdr for why we do this. uint64_t Shnum = size(Obj.sections()) + 1; if (Shnum >= SHN_LORESERVE) Shdr.sh_size = Shnum; else Shdr.sh_size = 0; // See writeEhdr for why we do this. if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE) Shdr.sh_link = Obj.SectionNames->Index; else Shdr.sh_link = 0; Shdr.sh_info = 0; Shdr.sh_addralign = 0; Shdr.sh_entsize = 0; for (auto &Sec : Obj.sections()) writeShdr(Sec); } template void ELFWriter::writeSectionData() { for (auto &Sec : Obj.sections()) Sec.accept(*SecWriter); } void Object::removeSections(std::function ToRemove) { auto Iter = std::stable_partition( std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { if (ToRemove(*Sec)) return false; if (auto RelSec = dyn_cast(Sec.get())) { if (auto ToRelSec = RelSec->getSection()) return !ToRemove(*ToRelSec); } return true; }); if (SymbolTable != nullptr && ToRemove(*SymbolTable)) SymbolTable = nullptr; if (SectionNames != nullptr && ToRemove(*SectionNames)) SectionNames = nullptr; if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable)) SectionIndexTable = nullptr; // Now make sure there are no remaining references to the sections that will // be removed. Sometimes it is impossible to remove a reference so we emit // an error here instead. for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { for (auto &Segment : Segments) Segment->removeSection(RemoveSec.get()); for (auto &KeepSec : make_range(std::begin(Sections), Iter)) KeepSec->removeSectionReferences(RemoveSec.get()); } // Now finally get rid of them all togethor. Sections.erase(Iter, std::end(Sections)); } void Object::removeSymbols(function_ref ToRemove) { if (!SymbolTable) return; for (const SecPtr &Sec : Sections) Sec->removeSymbols(ToRemove); } void Object::sortSections() { // Put all sections in offset order. Maintain the ordering as closely as // possible while meeting that demand however. auto CompareSections = [](const SecPtr &A, const SecPtr &B) { return A->OriginalOffset < B->OriginalOffset; }; std::stable_sort(std::begin(this->Sections), std::end(this->Sections), CompareSections); } static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) { // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align. if (Align == 0) Align = 1; auto Diff = static_cast(Addr % Align) - static_cast(Offset % Align); // We only want to add to Offset, however, so if Diff < 0 we can add Align and // (Offset + Diff) & -Align == Addr & -Align will still hold. if (Diff < 0) Diff += Align; return Offset + Diff; } // Orders segments such that if x = y->ParentSegment then y comes before x. static void OrderSegments(std::vector &Segments) { std::stable_sort(std::begin(Segments), std::end(Segments), compareSegmentsByOffset); } // This function finds a consistent layout for a list of segments starting from // an Offset. It assumes that Segments have been sorted by OrderSegments and // returns an Offset one past the end of the last segment. static uint64_t LayoutSegments(std::vector &Segments, uint64_t Offset) { assert(std::is_sorted(std::begin(Segments), std::end(Segments), compareSegmentsByOffset)); // The only way a segment should move is if a section was between two // segments and that section was removed. If that section isn't in a segment // then it's acceptable, but not ideal, to simply move it to after the // segments. So we can simply layout segments one after the other accounting // for alignment. for (auto &Segment : Segments) { // We assume that segments have been ordered by OriginalOffset and Index // such that a parent segment will always come before a child segment in // OrderedSegments. This means that the Offset of the ParentSegment should // already be set and we can set our offset relative to it. if (Segment->ParentSegment != nullptr) { auto Parent = Segment->ParentSegment; Segment->Offset = Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset; } else { Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align); Segment->Offset = Offset; } Offset = std::max(Offset, Segment->Offset + Segment->FileSize); } return Offset; } // This function finds a consistent layout for a list of sections. It assumes // that the ->ParentSegment of each section has already been laid out. The // supplied starting Offset is used for the starting offset of any section that // does not have a ParentSegment. It returns either the offset given if all // sections had a ParentSegment or an offset one past the last section if there // was a section that didn't have a ParentSegment. template static uint64_t LayoutSections(Range Sections, uint64_t Offset) { // Now the offset of every segment has been set we can assign the offsets // of each section. For sections that are covered by a segment we should use // the segment's original offset and the section's original offset to compute // the offset from the start of the segment. Using the offset from the start // of the segment we can assign a new offset to the section. For sections not // covered by segments we can just bump Offset to the next valid location. uint32_t Index = 1; for (auto &Section : Sections) { Section.Index = Index++; if (Section.ParentSegment != nullptr) { auto Segment = *Section.ParentSegment; Section.Offset = Segment.Offset + (Section.OriginalOffset - Segment.OriginalOffset); } else { Offset = alignTo(Offset, Section.Align == 0 ? 1 : Section.Align); Section.Offset = Offset; if (Section.Type != SHT_NOBITS) Offset += Section.Size; } } return Offset; } template void ELFWriter::assignOffsets() { // We need a temporary list of segments that has a special order to it // so that we know that anytime ->ParentSegment is set that segment has // already had its offset properly set. std::vector OrderedSegments; for (auto &Segment : Obj.segments()) OrderedSegments.push_back(&Segment); OrderedSegments.push_back(&Obj.ElfHdrSegment); OrderedSegments.push_back(&Obj.ProgramHdrSegment); OrderSegments(OrderedSegments); // Offset is used as the start offset of the first segment to be laid out. // Since the ELF Header (ElfHdrSegment) must be at the start of the file, // we start at offset 0. uint64_t Offset = 0; Offset = LayoutSegments(OrderedSegments, Offset); Offset = LayoutSections(Obj.sections(), Offset); // If we need to write the section header table out then we need to align the // Offset so that SHOffset is valid. if (WriteSectionHeaders) Offset = alignTo(Offset, sizeof(typename ELFT::Addr)); Obj.SHOffset = Offset; } template size_t ELFWriter::totalSize() const { // We already have the section header offset so we can calculate the total // size by just adding up the size of each section header. auto NullSectionSize = WriteSectionHeaders ? sizeof(Elf_Shdr) : 0; return Obj.SHOffset + size(Obj.sections()) * sizeof(Elf_Shdr) + NullSectionSize; } template void ELFWriter::write() { writeEhdr(); writePhdrs(); writeSectionData(); if (WriteSectionHeaders) writeShdrs(); if (auto E = Buf.commit()) reportError(Buf.getName(), errorToErrorCode(std::move(E))); } template void ELFWriter::finalize() { // It could happen that SectionNames has been removed and yet the user wants // a section header table output. We need to throw an error if a user tries // to do that. if (Obj.SectionNames == nullptr && WriteSectionHeaders) error("Cannot write section header table because section header string " "table was removed."); Obj.sortSections(); // We need to assign indexes before we perform layout because we need to know // if we need large indexes or not. We can assign indexes first and check as // we go to see if we will actully need large indexes. bool NeedsLargeIndexes = false; if (size(Obj.sections()) >= SHN_LORESERVE) { auto Sections = Obj.sections(); NeedsLargeIndexes = std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(), [](const SectionBase &Sec) { return Sec.HasSymbol; }); // TODO: handle case where only one section needs the large index table but // only needs it because the large index table hasn't been removed yet. } if (NeedsLargeIndexes) { // This means we definitely need to have a section index table but if we // already have one then we should use it instead of making a new one. if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) { // Addition of a section to the end does not invalidate the indexes of // other sections and assigns the correct index to the new section. auto &Shndx = Obj.addSection(); Obj.SymbolTable->setShndxTable(&Shndx); Shndx.setSymTab(Obj.SymbolTable); } } else { // Since we don't need SectionIndexTable we should remove it and all // references to it. if (Obj.SectionIndexTable != nullptr) { Obj.removeSections([this](const SectionBase &Sec) { return &Sec == Obj.SectionIndexTable; }); } } // Make sure we add the names of all the sections. Importantly this must be // done after we decide to add or remove SectionIndexes. if (Obj.SectionNames != nullptr) for (const auto &Section : Obj.sections()) { Obj.SectionNames->addString(Section.Name); } // Before we can prepare for layout the indexes need to be finalized. uint64_t Index = 0; for (auto &Sec : Obj.sections()) Sec.Index = Index++; // The symbol table does not update all other sections on update. For // instance, symbol names are not added as new symbols are added. This means // that some sections, like .strtab, don't yet have their final size. if (Obj.SymbolTable != nullptr) Obj.SymbolTable->prepareForLayout(); assignOffsets(); // Finalize SectionNames first so that we can assign name indexes. if (Obj.SectionNames != nullptr) Obj.SectionNames->finalize(); // Finally now that all offsets and indexes have been set we can finalize any // remaining issues. uint64_t Offset = Obj.SHOffset + sizeof(Elf_Shdr); for (auto &Section : Obj.sections()) { Section.HeaderOffset = Offset; Offset += sizeof(Elf_Shdr); if (WriteSectionHeaders) Section.NameIndex = Obj.SectionNames->findIndex(Section.Name); Section.finalize(); } Buf.allocate(totalSize()); SecWriter = llvm::make_unique>(Buf); } void BinaryWriter::write() { for (auto &Section : Obj.sections()) { if ((Section.Flags & SHF_ALLOC) == 0) continue; Section.accept(*SecWriter); } if (auto E = Buf.commit()) reportError(Buf.getName(), errorToErrorCode(std::move(E))); } void BinaryWriter::finalize() { // TODO: Create a filter range to construct OrderedSegments from so that this // code can be deduped with assignOffsets above. This should also solve the // todo below for LayoutSections. // We need a temporary list of segments that has a special order to it // so that we know that anytime ->ParentSegment is set that segment has // already had it's offset properly set. We only want to consider the segments // that will affect layout of allocated sections so we only add those. std::vector OrderedSegments; for (auto &Section : Obj.sections()) { if ((Section.Flags & SHF_ALLOC) != 0 && Section.ParentSegment != nullptr) { OrderedSegments.push_back(Section.ParentSegment); } } // For binary output, we're going to use physical addresses instead of // virtual addresses, since a binary output is used for cases like ROM // loading and physical addresses are intended for ROM loading. // However, if no segment has a physical address, we'll fallback to using // virtual addresses for all. if (std::all_of(std::begin(OrderedSegments), std::end(OrderedSegments), [](const Segment *Segment) { return Segment->PAddr == 0; })) for (const auto &Segment : OrderedSegments) Segment->PAddr = Segment->VAddr; std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments), compareSegmentsByPAddr); // Because we add a ParentSegment for each section we might have duplicate // segments in OrderedSegments. If there were duplicates then LayoutSegments // would do very strange things. auto End = std::unique(std::begin(OrderedSegments), std::end(OrderedSegments)); OrderedSegments.erase(End, std::end(OrderedSegments)); uint64_t Offset = 0; // Modify the first segment so that there is no gap at the start. This allows // our layout algorithm to proceed as expected while not out writing out the // gap at the start. if (!OrderedSegments.empty()) { auto Seg = OrderedSegments[0]; auto Sec = Seg->firstSection(); auto Diff = Sec->OriginalOffset - Seg->OriginalOffset; Seg->OriginalOffset += Diff; // The size needs to be shrunk as well. Seg->FileSize -= Diff; // The PAddr needs to be increased to remove the gap before the first // section. Seg->PAddr += Diff; uint64_t LowestPAddr = Seg->PAddr; for (auto &Segment : OrderedSegments) { Segment->Offset = Segment->PAddr - LowestPAddr; Offset = std::max(Offset, Segment->Offset + Segment->FileSize); } } // TODO: generalize LayoutSections to take a range. Pass a special range // constructed from an iterator that skips values for which a predicate does // not hold. Then pass such a range to LayoutSections instead of constructing // AllocatedSections here. std::vector AllocatedSections; for (auto &Section : Obj.sections()) { if ((Section.Flags & SHF_ALLOC) == 0) continue; AllocatedSections.push_back(&Section); } LayoutSections(make_pointee_range(AllocatedSections), Offset); // Now that every section has been laid out we just need to compute the total // file size. This might not be the same as the offset returned by // LayoutSections, because we want to truncate the last segment to the end of // its last section, to match GNU objcopy's behaviour. TotalSize = 0; for (const auto &Section : AllocatedSections) { if (Section->Type != SHT_NOBITS) TotalSize = std::max(TotalSize, Section->Offset + Section->Size); } Buf.allocate(TotalSize); SecWriter = llvm::make_unique(Buf); } namespace llvm { namespace objcopy { template class ELFBuilder; template class ELFBuilder; template class ELFBuilder; template class ELFBuilder; template class ELFWriter; template class ELFWriter; template class ELFWriter; template class ELFWriter; } // end namespace objcopy } // end namespace llvm