//===- subzero/crosstest/test_icmp_main.cpp - Driver for tests. -----------===// // // The Subzero Code Generator // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Driver for cross testing the icmp bitcode instruction // //===----------------------------------------------------------------------===// /* crosstest.py --test=test_icmp.cpp --test=test_icmp_i1vec.ll \ --driver=test_icmp_main.cpp --prefix=Subzero_ --output=test_icmp */ #include // CHAR_BIT #include // memcmp, memset #include #include // Include test_icmp.h twice - once normally, and once within the // Subzero_ namespace, corresponding to the llc and Subzero translated // object files, respectively. #include "test_icmp.h" namespace Subzero_ { #include "test_icmp.h" } #include "insertelement.h" #include "xdefs.h" volatile unsigned Values[] = { 0x0, 0x1, 0x7ffffffe, 0x7fffffff, 0x80000000, 0x80000001, 0xfffffffe, 0xffffffff, 0x7e, 0x7f, 0x80, 0x81, 0xfe, 0xff, 0x100, 0x101, 0x7ffe, 0x7fff, 0x8000, 0x8001, 0xfffe, 0xffff, 0x10000, 0x10001, }; const static size_t NumValues = sizeof(Values) / sizeof(*Values); template void testsInt(size_t &TotalTests, size_t &Passes, size_t &Failures) { typedef bool (*FuncTypeUnsigned)(TypeUnsigned, TypeUnsigned); typedef bool (*FuncTypeSigned)(TypeSigned, TypeSigned); static struct { const char *Name; FuncTypeUnsigned FuncLlc; FuncTypeUnsigned FuncSz; } Funcs[] = { #define X(cmp, op) \ { \ STR(cmp), (FuncTypeUnsigned)icmp##cmp, \ (FuncTypeUnsigned)Subzero_::icmp##cmp \ } \ , ICMP_U_TABLE #undef X #define X(cmp, op) \ { \ STR(cmp), (FuncTypeUnsigned)(FuncTypeSigned)icmp##cmp, \ (FuncTypeUnsigned)(FuncTypeSigned)Subzero_::icmp##cmp \ } \ , ICMP_S_TABLE #undef X }; const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs); if (sizeof(TypeUnsigned) <= sizeof(uint32_t)) { // This is the "normal" version of the loop nest, for 32-bit or // narrower types. for (size_t f = 0; f < NumFuncs; ++f) { for (size_t i = 0; i < NumValues; ++i) { for (size_t j = 0; j < NumValues; ++j) { TypeUnsigned Value1 = Values[i]; TypeUnsigned Value2 = Values[j]; ++TotalTests; bool ResultSz = Funcs[f].FuncSz(Value1, Value2); bool ResultLlc = Funcs[f].FuncLlc(Value1, Value2); if (ResultSz == ResultLlc) { ++Passes; } else { ++Failures; std::cout << "icmp" << Funcs[f].Name << (CHAR_BIT * sizeof(TypeUnsigned)) << "(" << Value1 << ", " << Value2 << "): sz=" << ResultSz << " llc=" << ResultLlc << "\n"; } } } } } else { // This is the 64-bit version. Test values are synthesized from // the 32-bit values in Values[]. for (size_t f = 0; f < NumFuncs; ++f) { for (size_t iLo = 0; iLo < NumValues; ++iLo) { for (size_t iHi = 0; iHi < NumValues; ++iHi) { for (size_t jLo = 0; jLo < NumValues; ++jLo) { for (size_t jHi = 0; jHi < NumValues; ++jHi) { TypeUnsigned Value1 = (((TypeUnsigned)Values[iHi]) << 32) + Values[iLo]; TypeUnsigned Value2 = (((TypeUnsigned)Values[jHi]) << 32) + Values[jLo]; ++TotalTests; bool ResultSz = Funcs[f].FuncSz(Value1, Value2); bool ResultLlc = Funcs[f].FuncLlc(Value1, Value2); if (ResultSz == ResultLlc) { ++Passes; } else { ++Failures; std::cout << "icmp" << Funcs[f].Name << (CHAR_BIT * sizeof(TypeUnsigned)) << "(" << Value1 << ", " << Value2 << "): sz=" << ResultSz << " llc=" << ResultLlc << "\n"; } } } } } } } } template void testsIntWithZero(size_t &TotalTests, size_t &Passes, size_t &Failures) { typedef bool (*FuncTypeUnsigned)(TypeUnsigned); typedef bool (*FuncTypeSigned)(TypeSigned); static struct { const char *Name; FuncTypeUnsigned FuncLlc; FuncTypeUnsigned FuncSz; } Funcs[] = { #define X(cmp, op) \ { \ STR(cmp), (FuncTypeUnsigned)icmp_zero##cmp, \ (FuncTypeUnsigned)Subzero_::icmp_zero##cmp \ } \ , ICMP_U_TABLE #undef X #define X(cmp, op) \ { \ STR(cmp), (FuncTypeUnsigned)(FuncTypeSigned)icmp_zero##cmp, \ (FuncTypeUnsigned)(FuncTypeSigned)Subzero_::icmp_zero##cmp \ } \ , ICMP_S_TABLE #undef X }; const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs); if (sizeof(TypeUnsigned) <= sizeof(uint32_t)) { // This is the "normal" version of the loop nest, for 32-bit or // narrower types. for (size_t f = 0; f < NumFuncs; ++f) { for (size_t i = 0; i < NumValues; ++i) { TypeUnsigned Value = Values[i]; ++TotalTests; bool ResultSz = Funcs[f].FuncSz(Value); bool ResultLlc = Funcs[f].FuncLlc(Value); if (ResultSz == ResultLlc) { ++Passes; } else { ++Failures; std::cout << "icmp" << Funcs[f].Name << (CHAR_BIT * sizeof(TypeUnsigned)) << "(" << Value << "): sz=" << ResultSz << " llc=" << ResultLlc << "\n"; } } } } else { // This is the 64-bit version. Test values are synthesized from // the 32-bit values in Values[]. for (size_t f = 0; f < NumFuncs; ++f) { for (size_t iLo = 0; iLo < NumValues; ++iLo) { for (size_t iHi = 0; iHi < NumValues; ++iHi) { TypeUnsigned Value = (((TypeUnsigned)Values[iHi]) << 32) + Values[iLo]; ++TotalTests; bool ResultSz = Funcs[f].FuncSz(Value); bool ResultLlc = Funcs[f].FuncLlc(Value); if (ResultSz == ResultLlc) { ++Passes; } else { ++Failures; std::cout << "icmp" << Funcs[f].Name << (CHAR_BIT * sizeof(TypeUnsigned)) << "(" << Value << "): sz=" << ResultSz << " llc=" << ResultLlc << "\n"; } } } } } } const static size_t MaxTestsPerFunc = 100000; template void testsVecInt(size_t &TotalTests, size_t &Passes, size_t &Failures) { typedef typename Vectors::Ty TypeUnsigned; typedef typename Vectors::Ty TypeSigned; typedef typename Vectors::ElementTy ElementTypeUnsigned; typedef typename Vectors::ElementTy ElementTypeSigned; typedef TypeUnsigned (*FuncTypeUnsigned)(TypeUnsigned, TypeUnsigned); typedef TypeSigned (*FuncTypeSigned)(TypeSigned, TypeSigned); static struct { const char *Name; FuncTypeUnsigned FuncLlc; FuncTypeUnsigned FuncSz; } Funcs[] = { #define X(cmp, op) \ { \ STR(cmp), (FuncTypeUnsigned)icmp##cmp, \ (FuncTypeUnsigned)Subzero_::icmp##cmp \ } \ , ICMP_U_TABLE #undef X #define X(cmp, op) \ { \ STR(cmp), (FuncTypeUnsigned)(FuncTypeSigned)icmp##cmp, \ (FuncTypeUnsigned)(FuncTypeSigned)Subzero_::icmp##cmp \ } \ , ICMP_S_TABLE #undef X }; const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs); const static size_t NumElementsInType = Vectors::NumElements; for (size_t f = 0; f < NumFuncs; ++f) { PRNG Index; for (size_t i = 0; i < MaxTestsPerFunc; ++i) { // Initialize the test vectors. TypeUnsigned Value1, Value2; for (size_t j = 0; j < NumElementsInType; ++j) { setElement(Value1, j, Values[Index() % NumValues]); setElement(Value2, j, Values[Index() % NumValues]); } // Perform the test. TypeUnsigned ResultSz = Funcs[f].FuncSz(Value1, Value2); TypeUnsigned ResultLlc = Funcs[f].FuncLlc(Value1, Value2); ++TotalTests; if (!memcmp(&ResultSz, &ResultLlc, sizeof(ResultSz))) { ++Passes; } else { ++Failures; std::cout << "test" << Funcs[f].Name << Vectors::TypeName << "(" << vectAsString(Value1) << "," << vectAsString(Value2) << "): sz=" << vectAsString(ResultSz) << " llc=" << vectAsString(ResultLlc) << "\n"; } } } } // Return true on wraparound template bool __attribute__((noinline)) incrementI1Vector(typename Vectors::Ty &Vect) { size_t Pos = 0; const static size_t NumElements = Vectors::NumElements; for (Pos = 0; Pos < NumElements; ++Pos) { if (Vect[Pos] == 0) { Vect[Pos] = 1; break; } Vect[Pos] = 0; } return (Pos == NumElements); } template void testsVecI1(size_t &TotalTests, size_t &Passes, size_t &Failures) { typedef typename Vectors::Ty Ty; typedef Ty (*FuncType)(Ty, Ty); static struct { const char *Name; FuncType FuncLlc; FuncType FuncSz; } Funcs[] = { #define X(cmp, op) \ { STR(cmp), (FuncType)icmpi1##cmp, (FuncType)Subzero_::icmpi1##cmp } \ , ICMP_U_TABLE ICMP_S_TABLE}; const static size_t NumFuncs = sizeof(Funcs) / sizeof(*Funcs); const static size_t NumElements = Vectors::NumElements; const static size_t MAX_NUMBER_OF_ELEMENTS_FOR_EXHAUSTIVE_TESTING = 8; // Check if the type is small enough to try all possible input pairs. if (NumElements <= MAX_NUMBER_OF_ELEMENTS_FOR_EXHAUSTIVE_TESTING) { for (size_t f = 0; f < NumFuncs; ++f) { Ty Value1, Value2; memset(&Value1, 0, sizeof(Value1)); for (bool IsValue1Done = false; !IsValue1Done; IsValue1Done = incrementI1Vector(Value1)) { memset(&Value2, 0, sizeof(Value2)); for (bool IsValue2Done = false; !IsValue2Done; IsValue2Done = incrementI1Vector(Value2)) { Ty ResultSz = Funcs[f].FuncSz(Value1, Value2); Ty ResultLlc = Funcs[f].FuncLlc(Value1, Value2); ++TotalTests; if (!memcmp(&ResultSz, &ResultLlc, sizeof(ResultSz))) { ++Passes; } else { ++Failures; std::cout << "test" << Funcs[f].Name << Vectors::TypeName << "(" << vectAsString(Value1) << "," << vectAsString(Value2) << "): sz=" << vectAsString(ResultSz) << " llc=" << vectAsString(ResultLlc) << "\n"; } } } } } else { for (size_t f = 0; f < NumFuncs; ++f) { PRNG Index; for (size_t i = 0; i < MaxTestsPerFunc; ++i) { Ty Value1, Value2; // Initialize the test vectors. for (size_t j = 0; j < NumElements; ++j) { setElement(Value1, j, Index() % 2); setElement(Value2, j, Index() % 2); } // Perform the test. Ty ResultSz = Funcs[f].FuncSz(Value1, Value2); Ty ResultLlc = Funcs[f].FuncLlc(Value1, Value2); ++TotalTests; if (!memcmp(&ResultSz, &ResultLlc, sizeof(ResultSz))) { ++Passes; } else { ++Failures; std::cout << "test" << Funcs[f].Name << Vectors::TypeName << "(" << vectAsString(Value1) << "," << vectAsString(Value2) << "): sz=" << vectAsString(ResultSz) << " llc=" << vectAsString(ResultLlc) << "\n"; } } } } } int main(int argc, char *argv[]) { size_t TotalTests = 0; size_t Passes = 0; size_t Failures = 0; testsInt(TotalTests, Passes, Failures); testsInt(TotalTests, Passes, Failures); testsInt(TotalTests, Passes, Failures); testsInt(TotalTests, Passes, Failures); testsIntWithZero(TotalTests, Passes, Failures); testsIntWithZero(TotalTests, Passes, Failures); testsIntWithZero(TotalTests, Passes, Failures); testsIntWithZero(TotalTests, Passes, Failures); testsVecInt(TotalTests, Passes, Failures); testsVecInt(TotalTests, Passes, Failures); testsVecInt(TotalTests, Passes, Failures); testsVecI1(TotalTests, Passes, Failures); testsVecI1(TotalTests, Passes, Failures); testsVecI1(TotalTests, Passes, Failures); std::cout << "TotalTests=" << TotalTests << " Passes=" << Passes << " Failures=" << Failures << "\n"; return Failures; }