/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ // GraphCycles provides incremental cycle detection on a dynamic // graph using the following algorithm: // // A dynamic topological sort algorithm for directed acyclic graphs // David J. Pearce, Paul H. J. Kelly // Journal of Experimental Algorithmics (JEA) JEA Homepage archive // Volume 11, 2006, Article No. 1.7 // // Brief summary of the algorithm: // // (1) Maintain a rank for each node that is consistent // with the topological sort of the graph. I.e., path from x to y // implies rank[x] < rank[y]. // (2) When a new edge (x->y) is inserted, do nothing if rank[x] < rank[y]. // (3) Otherwise: adjust ranks in the neighborhood of x and y. #include "tensorflow/compiler/jit/graphcycles/graphcycles.h" #include #include #include "absl/container/inlined_vector.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace { typedef std::unordered_set NodeSet; template struct VecStruct { typedef absl::InlinedVector type; }; template using Vec = typename VecStruct::type; struct Node { Node() : in(4), out(4) {} // Small hashtables for in/out edges int32 rank; // rank number assigned by Pearce-Kelly algorithm bool visited; // Temporary marker used by depth-first-search void* data; // User-supplied data NodeSet in; // List of immediate predecessor nodes in graph NodeSet out; // List of immediate successor nodes in graph }; } // namespace struct GraphCycles::Rep { Vec nodes_; Vec free_nodes_; // Indices for unused entries in nodes_ // Temporary state. Vec deltaf_; // Results of forward DFS Vec deltab_; // Results of backward DFS Vec list_; // All nodes to reprocess Vec merged_; // Rank values to assign to list_ entries Vec stack_; // Emulates recursion stack when doing depth first search }; GraphCycles::GraphCycles() : rep_(new Rep) {} GraphCycles::~GraphCycles() { for (Vec::size_type i = 0; i < rep_->nodes_.size(); i++) { delete rep_->nodes_[i]; } delete rep_; } bool GraphCycles::CheckInvariants() const { Rep* r = rep_; NodeSet ranks; // Set of ranks seen so far. for (Vec::size_type x = 0; x < r->nodes_.size(); x++) { Node* nx = r->nodes_[x]; if (nx->visited) { LOG(FATAL) << "Did not clear visited marker on node " << x; } if (!ranks.insert(nx->rank).second) { LOG(FATAL) << "Duplicate occurrence of rank " << nx->rank; } for (auto y : nx->out) { Node* ny = r->nodes_[y]; if (nx->rank >= ny->rank) { LOG(FATAL) << "Edge " << x << "->" << y << " has bad rank assignment " << nx->rank << "->" << ny->rank; } } } return true; } int32 GraphCycles::NewNode() { if (rep_->free_nodes_.empty()) { Node* n = new Node; n->visited = false; n->data = nullptr; n->rank = rep_->nodes_.size(); rep_->nodes_.push_back(n); return n->rank; } else { // Preserve preceding rank since the set of ranks in use must be // a permutation of [0,rep_->nodes_.size()-1]. int32 r = rep_->free_nodes_.back(); rep_->nodes_[r]->data = nullptr; rep_->free_nodes_.pop_back(); return r; } } void GraphCycles::RemoveNode(int32 node) { Node* x = rep_->nodes_[node]; for (auto y : x->out) { rep_->nodes_[y]->in.erase(node); } for (auto y : x->in) { rep_->nodes_[y]->out.erase(node); } x->in.clear(); x->out.clear(); rep_->free_nodes_.push_back(node); } void* GraphCycles::GetNodeData(int32 node) const { return rep_->nodes_[node]->data; } void GraphCycles::SetNodeData(int32 node, void* data) { rep_->nodes_[node]->data = data; } bool GraphCycles::HasEdge(int32 x, int32 y) const { return rep_->nodes_[x]->out.find(y) != rep_->nodes_[x]->out.end(); } void GraphCycles::RemoveEdge(int32 x, int32 y) { rep_->nodes_[x]->out.erase(y); rep_->nodes_[y]->in.erase(x); // No need to update the rank assignment since a previous valid // rank assignment remains valid after an edge deletion. } static bool ForwardDFS(GraphCycles::Rep* r, int32 n, int32 upper_bound); static void BackwardDFS(GraphCycles::Rep* r, int32 n, int32 lower_bound); static void Reorder(GraphCycles::Rep* r); static void Sort(const Vec&, Vec* delta); static void MoveToList(GraphCycles::Rep* r, Vec* src, Vec* dst); static void ClearVisitedBits(GraphCycles::Rep* r, const Vec& nodes); bool GraphCycles::InsertEdge(int32 x, int32 y) { if (x == y) return false; Rep* r = rep_; Node* nx = r->nodes_[x]; if (!nx->out.insert(y).second) { // Edge already exists. return true; } Node* ny = r->nodes_[y]; ny->in.insert(x); if (nx->rank <= ny->rank) { // New edge is consistent with existing rank assignment. return true; } // Current rank assignments are incompatible with the new edge. Recompute. // We only need to consider nodes that fall in the range [ny->rank,nx->rank]. if (!ForwardDFS(r, y, nx->rank)) { // Found a cycle. Undo the insertion and tell caller. nx->out.erase(y); ny->in.erase(x); // Since we do not call Reorder() on this path, clear any visited // markers left by ForwardDFS. ClearVisitedBits(r, r->deltaf_); return false; } BackwardDFS(r, x, ny->rank); Reorder(r); return true; } static bool ForwardDFS(GraphCycles::Rep* r, int32 n, int32 upper_bound) { // Avoid recursion since stack space might be limited. // We instead keep a stack of nodes to visit. r->deltaf_.clear(); r->stack_.clear(); r->stack_.push_back(n); while (!r->stack_.empty()) { n = r->stack_.back(); r->stack_.pop_back(); Node* nn = r->nodes_[n]; if (nn->visited) continue; nn->visited = true; r->deltaf_.push_back(n); for (auto w : nn->out) { Node* nw = r->nodes_[w]; if (nw->rank == upper_bound) { return false; // Cycle } if (!nw->visited && nw->rank < upper_bound) { r->stack_.push_back(w); } } } return true; } static void BackwardDFS(GraphCycles::Rep* r, int32 n, int32 lower_bound) { r->deltab_.clear(); r->stack_.clear(); r->stack_.push_back(n); while (!r->stack_.empty()) { n = r->stack_.back(); r->stack_.pop_back(); Node* nn = r->nodes_[n]; if (nn->visited) continue; nn->visited = true; r->deltab_.push_back(n); for (auto w : nn->in) { Node* nw = r->nodes_[w]; if (!nw->visited && lower_bound < nw->rank) { r->stack_.push_back(w); } } } } static void Reorder(GraphCycles::Rep* r) { Sort(r->nodes_, &r->deltab_); Sort(r->nodes_, &r->deltaf_); // Adds contents of delta lists to list_ (backwards deltas first). r->list_.clear(); MoveToList(r, &r->deltab_, &r->list_); MoveToList(r, &r->deltaf_, &r->list_); // Produce sorted list of all ranks that will be reassigned. r->merged_.resize(r->deltab_.size() + r->deltaf_.size()); std::merge(r->deltab_.begin(), r->deltab_.end(), r->deltaf_.begin(), r->deltaf_.end(), r->merged_.begin()); // Assign the ranks in order to the collected list. for (Vec::size_type i = 0; i < r->list_.size(); i++) { r->nodes_[r->list_[i]]->rank = r->merged_[i]; } } static void Sort(const Vec& nodes, Vec* delta) { struct ByRank { const Vec* nodes; bool operator()(int32 a, int32 b) const { return (*nodes)[a]->rank < (*nodes)[b]->rank; } }; ByRank cmp; cmp.nodes = &nodes; std::sort(delta->begin(), delta->end(), cmp); } static void MoveToList(GraphCycles::Rep* r, Vec* src, Vec* dst) { for (Vec::size_type i = 0; i < src->size(); i++) { int32 w = (*src)[i]; (*src)[i] = r->nodes_[w]->rank; // Replace src entry with its rank r->nodes_[w]->visited = false; // Prepare for future DFS calls dst->push_back(w); } } static void ClearVisitedBits(GraphCycles::Rep* r, const Vec& nodes) { for (Vec::size_type i = 0; i < nodes.size(); i++) { r->nodes_[nodes[i]]->visited = false; } } int GraphCycles::FindPath(int32 x, int32 y, int max_path_len, int32 path[]) const { // Forward depth first search starting at x until we hit y. // As we descend into a node, we push it onto the path. // As we leave a node, we remove it from the path. int path_len = 0; Rep* r = rep_; NodeSet seen; r->stack_.clear(); r->stack_.push_back(x); while (!r->stack_.empty()) { int32 n = r->stack_.back(); r->stack_.pop_back(); if (n < 0) { // Marker to indicate that we are leaving a node path_len--; continue; } if (path_len < max_path_len) { path[path_len] = n; } path_len++; r->stack_.push_back(-1); // Will remove tentative path entry if (n == y) { return path_len; } for (auto w : r->nodes_[n]->out) { if (seen.insert(w).second) { r->stack_.push_back(w); } } } return 0; } bool GraphCycles::IsReachable(int32 x, int32 y) const { return FindPath(x, y, 0, nullptr) > 0; } bool GraphCycles::IsReachableNonConst(int32 x, int32 y) { if (x == y) return true; Rep* r = rep_; Node* nx = r->nodes_[x]; Node* ny = r->nodes_[y]; if (nx->rank >= ny->rank) { // x cannot reach y since it is after it in the topological ordering return false; } // See if x can reach y using a DFS search that is limited to y's rank bool reachable = !ForwardDFS(r, x, ny->rank); // Clear any visited markers left by ForwardDFS. ClearVisitedBits(r, r->deltaf_); return reachable; } bool GraphCycles::CanContractEdge(int32 a, int32 b) { CHECK(HasEdge(a, b)) << "No edge exists from " << a << " to " << b; RemoveEdge(a, b); bool reachable = IsReachableNonConst(a, b); // Restore the graph to its original state. InsertEdge(a, b); // If reachable, then contracting edge will cause cycle. return !reachable; } bool GraphCycles::ContractEdge(int32 a, int32 b) { CHECK(HasEdge(a, b)); RemoveEdge(a, b); if (IsReachableNonConst(a, b)) { // Restore the graph to its original state. InsertEdge(a, b); return false; } Node* nb = rep_->nodes_[b]; std::unordered_set out = std::move(nb->out); std::unordered_set in = std::move(nb->in); for (auto y : out) { rep_->nodes_[y]->in.erase(b); } for (auto y : in) { rep_->nodes_[y]->out.erase(b); } rep_->free_nodes_.push_back(b); for (auto y : out) { InsertEdge(a, y); } for (auto y : in) { InsertEdge(y, a); } return true; } std::unordered_set GraphCycles::Successors(int32 node) { return rep_->nodes_[node]->out; } std::unordered_set GraphCycles::Predecessors(int32 node) { return rep_->nodes_[node]->in; } } // namespace tensorflow